3022

Sum Triangles of Natural Numbers Having Minimum Top

Anton Kotzig and Philip J. Laufer

ABSTRACT

Golomb's results [3], on sum triangles (difference sets) are herein improved and extended. Equivalent problems have also been considered by B. Lindström [8]. Exact values of minimum tops for sum triangles of size $n, 1 \le n < 14$ are found and in extreme sum triangle (one having a minimum top) is given for each case considered here.

Introduction.

Let $\mathcal{K} = (x_1, x_2, ..., x_n)$ be a sequence of natural numbers.

Define for
$$1 \le \hat{j} \le \hat{k} \le n$$
, $s_{\hat{k}} = \frac{\hat{s}_{\hat{k}}}{1 + \hat{s}_{\hat{k}}}$

Clearly, $s_{jj} = x_j$, $1 \le j \le n$.

It is convenient to display the $s_{jk}, \ 1 \le j \le k \le n,$ in the form c triangle T as shown in Figure 1.

T is called a sum triangle if and only if all $\binom{n+1}{2}$ numbers $1 \le j \le k \le n$, are distinct or $|T| = \binom{n+1}{2}$. We note that $s_{jk} = \sum_{i=j}^{k} s_i$ the sum of the corresponding entries of the first row of the subtrial

whose top is s_{jk} .

 $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ 4 \\ 5 \end{bmatrix}$ are examples of sum triangles.

Let R_i be the sequence $(s_{1i}, s_{2,i+1}, ..., s_{n-i+1,n})$. Then, R_i , $1 \le i \le n$, is called the *i*th row of T and $s_{1,n} \in R_n$ is called the *top* of T.

The open problem which has resisted the efforts of many mathematicians is to determine the minimum top in a sum triangle for a given n. We denote this value by $\tau(n)$.

The triangle T can also be defined as a difference set of a given increasing sequence A of integers, say, $a_0 < a_1 < \cdots < a_n$, where for every $1 \le i \le n$, $a_i - a_{i-1} = x_i$. As before, the other differences form the other rows of the triangle T. In this case, T is called a difference triangle or a component of the system of difference sets, [1,2,6]. T is uniquely determined by A. However, the converse is not true; because addition of the same constant to each term of the sequence, or multiplying each term by -1 and then reversing the order, yields a sequence which has the same difference set. We consider the mirror image of T as being equivalent to T.

The first three values of τ follow readily from the definition. The values of τ for $n \in \{4,5,6\}$ were given by Golomb [3]. He did not prove them to be minimum. In [3], Golomb gave a construction which proved that $\tau(7) \leq 36$, $\tau(8) \leq 48$ and $\tau(9) \leq 64$. The results herein improve those of Golomb.

Table 1 contains solutions for n < 14. It suffices to list only the first row of each sum triangle T, as T is completely determined by it.

	n	$\tau(n)$	First Row of Sum Triangle
	1	1	1
1.	2	3	1 2
	3	6	1 3 2
	0 4	11	1 3 5 2
099	≥ 5	17	1 3 6 2 5
511	6	25	1 3 6 8 5 2 2
J	7	34	1 3 5 6 7 10 (12)
	8	44	3 6 8 2 13 7 4 1
	9	55	2 12 7 8 3 13 4 5 1
	10	72	2 6 10 7 14 5 15 9 3 1
	11	85	9 1 7 13 12 3 11 5 10 4 2
	12	106	7 1 9 4 15 11 16 6 12 20 3 2
	13	127	5 23 10 3 8 1 18 7 17 15 14 2 4

Table 1

For n>11, the best known published estimates of $\tau(n)$ are due to Lindström [8].

His result, when translated into our notation yields:

$$n \leq (\tau(n))^{1/2} + (\tau(n))^{1/4} + 1. \tag{1}$$

The above inequality does not give satisfactory estimates for the tops of the sum triangles for the cases considered here, 3 < n < 14. For 3 < n < 14, the estimates given by (1) are denoted by t_1 and are listed in Table 2.

Notation:

$$\sigma(n) = \sum_{i=1}^{n} i; \ S_i = \sum_{x \in R_i} x.$$

The following result is given in [2, Prop. 1.1].

Lemma 1: In any sum triangle T,

$$\sum_{i=1}^{k} S_{i} = \sum_{i=1}^{k} S_{n-i+1}, \ 1 \le k \le n.$$

In order to improve the estimates of $\tau(n)$ given by (1), consider the following inequalities for a sum triangle of size n with top $t_2(n)$:

$$\sum_{i=1}^{2n-1} i = \frac{1}{2} (2n)(2n-1) \le \sum_{i=1}^{2} S_i \le 3t_2(n) - 3.$$
 (2)

$$\int_{i=1}^{3n-3} i = \frac{1}{2} (3n-3)(3n-2) \le \sum_{i=1}^{3} S_i \le 6t_2(n) - 16.$$
 (3)

$$\sum_{i=1}^{4n-6} i = \frac{1}{2} (4n-6)(4n-5) \le \sum_{i=1}^{4} S_i \le 10t_2(n) - 50.$$

(3) implies that $t_2(n) \geq \frac{17}{6} + \frac{1}{4}(n-1)(3n-2)$ and (4) implies tha $t_2(n) \geq 5, 6 + \frac{1}{10}(2n-3)(4n-5)$. Since $t_2(n)$ must be an integer, one call easily show that the best approximations to $\tau(n)$ using the above method for $4 \leq n < 14$ are obtained from (3). These are listed in Table 2 as t_2 .

Table 2 also includes the estimates t_3 of the tops for a given size π . They are an improvement over those obtained for t_2 . The methods use in obtaining t_3 are concretely described in the proofs which follow. Thes methods are a variation of those used for t_2 . The values of π ($0 \le n < 14$) were calculated using t_3 and a simple computer program.

Remark:

For i = 1,2,3, $t_i(n)$ has the following property: for a given n, $t_i(n) \le \tau(n)$, i = 1,2,3.

	n	$t_i(n)$	$t_2(n)$	$t_3(n)$	$\tau(n)$	
	3	1	6	6	6	
	4	3	11	11	11	
	5	6	16	16	17	
	6	11	23	24	25	
	7	16	32	33	34	
	8	24	42	43	44	₹ 55
	9	42	53	67	72	
_	11	54	66	81	85	
	12	67	81	98	106	
	13	81	97	116	127	

Table 2

Proof that r(4) = 11:

From Lemma 1, $S_1 + S_2 \ge \sigma(7) = 28$. Also,

$$S_1 + S_2 \le \tau(4) + [\tau(4) - 1] + [\tau(4) - 2] = 3\tau(4) - 3.$$

Thus, $3\pi |1\rangle \geq 31$ which implies $\tau(4) > 10$

Table 1 lists a sum triangle with $\tau(4) = 11$.

Proof that $\tau(5) = 17$:

From Lemma 1, $S_1+S_2=3\pi(5)-(x_1+x_5)$. But $x_1+x_5\geq 3$ gives $S_1+S_2\leq 3\pi(5)-3$. Also, $S_1+S_2\geq \sigma(9)=45$.

Thus, $45 \le 3\tau(5) - 3$, which implies $\tau(5) \ge 16$.

Suppose $\tau(5)=16$. Without loss of generality one may assume that $x_1=1$ and $x_5=2$. It now follows that $x_2+x_3+x_4=13$. This implies that $\{x_2,x_3,x_4\}=\{3,4,6\}$. $x_2\neq 3$ because $x_1+x_2\in R_2$ would be equal to 4 and $4\in R_4$. Similarly $x_4\neq 4$ because then $x_4+x_5=6\in R_2$ and $6\in R_4$. Only two cases remain to be considered:

Case 1: $x_1 = 1$, $x_2 = 4$ and $x_5 = 2$.

Case 2: $x_1 = 1$, $x_2 = 6$ and $x_5 = 2$.

Case 2 is not possible because $x_1+x_2=7$ and $x_3+x_4=7$. In Case 1, $x_4\neq 3$ because $x_1+x_2=5$ and this must be distinct from x_4+x_5 . Thus, $x_3=3$ and $x_4=6$. Constructing the sum triangle leads to a contradiction.

Thus, $\pi(5) \ge 17$. Table 1 lists a sum triangle with $\pi(5) = 17$.

Proof that $\tau(6) = 25$:

Consider the sum $U = S_1 + S_2 + s_{13} + s_{46}$.

Clearly, $U \geq \sigma(13) = 91$. Using the properties of a sum triangle, one obtains $4\tau(6) - (x_1 + x_6) \geq 91$, which implies

$$4\tau(6) \ge 91 + (x_1 + x_3) \ge 94.$$

Since $\tau(6)$ is an integer, $\tau(6) \geq 24$.

In a sum triangle of size six (having six rows) $s_{13}-s_{46}=s_{16}$. It is known by use of the computer that there are only two incomplete perfect systems of difference sets having two components of size three and for which $s_{13}+s_{46}=24$.

They are given by:

None of the above systems and their mirror images can be completed to give a sum triangle for $\tau(6)$. Thus, $\tau(6) > 24$. Table 1 lists a sum triangles with $\tau(6) = 25$.

Proof that $\tau(7) = 34$:

Consider the following two sums:

$$S_1 + S_2 + s_{13} + s_{46}$$

$$= 4\tau(7) - (x_1 + x_4 + x_7) \ge \sigma(15) = 120$$
(5)

and

$$S_1 + S_2 + S_3 - s_{25} + s_{23} + s_{57}$$

= $6\pi(7) - 2(x_1 + x_7) + x_4 \ge \sigma(19) = 190.$

Adding (5) and (6), one obtains

$$10\tau(7) = 3(x_1 + x_7) \ge 310.$$

Thus, $10\pi(7) \geq 310 + 3(x_1 + x_7)$. Since $x_1 + x_7 \geq 3$, then $10\pi(7) \geq 319 + \pi(7) \geq 32$. Suppose $\pi(7) = 32$. Then $320 \geq 310 + 3(x_1 + x_7)$. This implies $10 \geq 3(x_1 + x_7)$ or $x_1 + x_7 = 3$. Without loss of generality one may assum that $x_1 = 1$ and $x_7 = 2$. Using (5), one obtains

$$4\tau(7) - x_4 \ge 123$$

Thus, $128 \ge x_4 + 123$ or $x_4 \le 5$. Using (6), one obtains

$$6\tau(7) + x_4 \ge 190 + 2(x_1 + x_7).$$

Thus, $192 + x_4 \ge 196$ or $x_4 \ge 4$.

Consider the sum

$$S_1 + S_2 + S_3 + s_{14} + s_{47}$$

$$= 7\tau(7) - 3(x_1 + x_7) - (x_2 + x_6) + x_4 \ge \sigma(20)$$

$$= 210. \tag{7}$$

Adding (5) and (7) yields

$$11\tau(7) - 4(x_1 + x_7) - (x_2 + x_6) \ge 330.$$

Thus, $11\tau(7) \ge 330 + 4(x_1+x_7) + (x_2+x_6)$. Since $\tau(7) = 32$ and $x_1 + x_7 = 3$ one has $10 \ge x_2 + x_6$. Thus, $x_2 + x_6 \in \{8, 9, 10\}$. Also $x_4 \in \{4, 5\}$. The above yields the following twelve cases:

Case	X_1	X_2	X_4	$X_{\mathfrak{g}}$	X_7
1	1	3	4	- 5	2
2	1	5	4	3	$\overline{2}$
3	1	3	4	. 6	2
4	1	6	-4	3	2
5	1	3	Ť	3	$\overline{2}$
6	1	7	4	3	5
7	1	3	5	6	2
8	1	6	5	3	2
9	1	3	5	7	2
10	1	7	5	3	2
11	1	4	5	в	2
12	1	6	5	1	2

Cases 1, 3 and 5 are not possible because $x_1 + x_2 = 4 = x_4$. Case 11 is not possible because $x_1 + x_2 = 5 = x_4$. Using similar arguments, cases 1, 8, 10 and 12 can be eliminated. The only remaining cases are 4, 6, 7 and 9.

In case 4, $x_3+x_5=16$. Thus, $x_3\in\{8.9,...\}$ and $x_5\in\{8,9,...\}$ which is impossible because 8+9>16.

In case 7, $x_3+x_5=15$. 8 $\{x_3,x_5\}$ because $x_6+x_7=8$. This implies that $x_3\in\{7,9,...\}$ and $x_5\in\{7,9,...\}$ which is impossible because 7+9>15. In case 6, $x_3+x_5=15$, which implies $\{x_3,x_5\}=\{6,9\}$. In case 9, $x_3+x_5=14$ and this gives $\{x_3,x_5\}=\{6,8\}$. Using each of the two possible values for x_3 and x_5 , the first four rows of a sum triangle are obtained. However, none of them yields a solution. Thus, $\tau(7)\geq 33$. Using methods similar to the above as well as a computer program

requiring several seconds of CPU time, $\tau(7) \neq 33$ was obtained. Table 1 lists a sum triangle with $\tau(7) = 34$, also obtained by computer.

Proof that $\tau(8) = 44$:

Consider the sum

$$S_1 + S_2 + S_3 + s_{14} + s_{58}$$

= 7.7(8) - 3(x₁+x₈) - (x₂+x₇) \geq \sigma(23) = 276. (8)

Thus, $7\pi(8) \ge 276 + 3(x_1 + x_8) + (x_2 + x_7)$. Using properties of the sum triangle, $3(x_1 + x_3) + (x_2 + x_7) \ge 17$. This yields $7\pi(8) \ge 293$. or $\pi(8) \ge 42$. Suppose $\pi(8) = 42$. Using (8),

$$294 \ge 276 + 3(x_1 + x_8) + (x_2 + x_7),$$

which gives $3(x_1+x_8)+(x_2+x_7)\leq 18$. let $\xi=3(x_1+x_8)+(x_2+x_7)$. Then $\xi\in\{17,18\}$.

Consider the case $\xi = 17$. Assume that $x_1 = 1$ and $x_3 = 2$. Then $x_2 = 3$ and $x_7 = 5$. This yields $\{x_3, x_4, x_5, x_6\} \subset \{6, 8, 9, 10, \ldots\}$. However, $x_1 + x_2 + x_7 + x_8 + 33 = 44$, which contradicts the assumption $\tau(8) = 42$.

Now let $\xi = 18$. If $(x_1 + x_9) \ge 4$, then $(x_2 + x_7) \le 6$. This yields $\{x_1, x_8\} = \{1.3\}$ and $\{x_2, x_7\} = \{2.4\}$; which leads to a contradiction. The above implies that $\{x_1 + x_8\} = 3$ and $\{x_2 + x_7\} = 18 - 9 = 9$. Thus $\{x_1, x_8\} = \{1.2\}$ and $\{x_2, x_7\} \subset \{3.6\} \cup \{4.5\}$. This gives rise to the following four cases:

Case	.Y ₁	X_2	X_7	X_{8}
1	1	3	6	2
2	1	4	5	2
3	1	5	4	2
4	1	6	3	2

Case 2 is not possible because $x_1+x_2=5=x_7$. In case 3. $x+x_2=6=x_7+x_8$. Case 1 gives $x_3+x_4+x_5+x_6=42-12=30$. Using properties of the sum triangle, $\{x_3,x_4,x_5,x_6\}\subset\{5.7.9.10...\}$. Thus $x_3+x_4+x_5+x_6\geq 31$. For case 4, $x_3+x_4+x_5+x_8=30$ and $\{x_3,x_4,x_5,x_6\}\subset\{4.3.9.10,...\}$. As before, $x_3+x_4+x_5+x_6=31$. One concludes that $\tau(8)\geq 43$.

Applying the same techniques as above it can be shown that

$$\tau(8) \neq 43$$
.

Table 1 lists a sum triangle with $\tau(8) = 44$.

Proof that $\tau(9) = 55$:

Consider the sum

$$S_1 + S_2 + s_{13} + s_{46} + s_{79}$$

= $4\tau(9) - (x_1 + x_9) \ge \sigma(20) = 210$.

This yields $4\tau(9) \ge 210 + (x_1 + x_9) = 213$, or $\tau(9) \ge 54$. Table 1 lists a sum triangle with $\tau(9) = 55$.

To complete the proof it remains to show that $\tau(9) = 54$ is not possible. Using a computer program similar to that for $\tau(8)$, it was found that $\tau(9) \neq 54$ after several minutes of CPU time.

For n = 10, 11, 12 and 13 the above methods yielded the following inequalities:

$$\tau(10) \ge 67$$
. $\tau(11) \ge 81$, $\tau(12) \ge 98$ and $\tau(13) \ge 116$.

For n = 10, consider the sum

$$\begin{split} S_1 + S_2 + s_{13} + s_{24} + s_{46} \\ &= S_1 + S_2 + S_3 - s_{25} - s_{68} \\ &= 5\pi(10) - 2(x_1 + x_{10}) \ge \sigma(25) = 325. \end{split}$$

Thus. $5\pi (10 \ge 325 + 2(x_1 + x_{10}) \ge 331$, which yields $\pi (10) \ge 67$. For n = 11, consider the sum

$$S_1 + S_2 + S_3 = 6\tau(11) - 3(x_1 + x_{11}) - (x_2 + x_{10})$$

 $\geq \sigma(30) = 465.$

Thus,
$$3\pi(11) \ge 465 + 3(x_1+x_{11}) + (x_2+x_{10})$$
. Since
$$3(x_1+x_{11}) + (x_2+x_{10}) \ge 17, \ 6\pi(11) \ge 482.$$

This gives $\tau(11) \ge 81$.

For n = 12, consider the sum

$$\begin{split} S_1 + S_2 + S_3 + s_{14} + s_{58} + s_{9,12} \\ &= 7\tau(12) - 3(x_1 + x_{12}) - (x_2 + x_{11}) \ge \tau(36) = 666. \end{split}$$

Thus.

$$7\pi(12) \ge 666 + 3(x_1 + x_{12}) + (x_2 + x_{11})$$
$$\ge 666 + 9 + 8 \ge 683.$$

This gives $\tau(12) \geq 98$.

For n = 13, consider the sum

$$\begin{split} S_1 + S_2 + S_3 + s_{14} + s_{25} + s_{58} + s_{59} + s_{9,12} + s_{10,13} \\ &= 37(13) - 4(x_1 + x_{13}) - (x_1 + x_{12}) \geq \sigma(42) = 903. \end{split}$$

Thus.

$$3\pi(13) \ge 903 + 4(x_1 + x_{13}) + (x_1 + x_{12})$$

 $\ge 903 + 12 + 8 \ge 923.$

This gives $\pi(13) \ge 116$.

Using the estimates $t_3(10),\ t_3(11),\ t_3(12)$ and $t_3(13)$ listed in Table 2 as well as a computer program requiring several hours of CPU time, the results $\tau(10) = 72$, $\tau(11) = 85$, $\tau(12) = 106$ and $\tau(13) = 127$ were obtained.

The effectiveness of the methods used in finding $\pi(n)$ for the values of n considered is exhibited in Table 2. For n < 7, the values of $\eta(n)$ were calculated directly. For $n \in \{7.3.9\}$ the estimates of $\pi(n)$, namely t_3 , were close to the solutions. A computer program requiring several minutes of CPU time yielded the exact values.

Acknowledgements.

Research supported by grants CRSNG (A-9232) and FCAC (EQ-

missimy skix