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Introduction

Using Polya enumeration and generating functions, we derive formulas to
count the number of plane trees, first up to orientation preserving home-
omorphism of the plane, and then up to arbitrary homeomorphism. As a
corollary we also get a strikingly simple formula for the number of plane
trees that possess a bilateral symmetry.

Plane trees up to orientation preserving homeomorphism

Let po,...,pam—1 be points equally spaced along the perimeter of a disk in
the plane. A planar n-pairing is here a collection of n non-intersecting line
segments connecting the points p; in pairs. The cyclic group G = Cy, =
Z/(2n) acts by rotations on the set P of planar pairings. The number of
orbits of this action, p(n), is just the number of distinct planar n-pairings up
to rotation.

A planar n-pairing partitions the disk into n 4+ 1 cells. Choosing a point in
each cell and connecting points in adjacent cells by line segments gives rise
to a planar embedded tree with n + 1 nodes. Accordingly, p(n) also repre-

sents number of planar embed es with n + 1 nodes up to orientation
preserving homeomorphisms of the plane.

Our first theorem gives a formula for p(n):
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p(n) = ™

Theorem 1
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Proof The formula follows from an application of Polya’s method of enu-



meration which we now recall. Assign to each element p of P a weight w(p)
equal to the the reciprical of the size of the orbit containing p. The num-

ber of orbits is then Y  w(P). Let Stab p be the subgroup of G that fixes
pEP
p. Since the size of an orbit is the index of the stabilizer of any of its ele-

Stab
ments w(p) = %. Let Fizg be the set of points fixed by ¢g. Then the
calculation
1 1 1 1 .
ZW(P)=?Z|5t&bP|=? > 12?2 > 1:?Z|F‘X9|
p€EP | |p€7J | |p€Pg€G | IgEG pEP | |geG
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allows us to replace a sum over P with a sum over (G, which often, as here,
turns out to be more tractible.

To apply Polya’s method we must compute |Fix g| for each g in C,. This
will be done in three lemmas.

Lemma 1 If g is the identity, |Fix g|, the total number of planar n-pairings
is given by the Catalan number

2n

n

= 1
Proof This is well known, but we offer a quick combinatorial argument for
the sake of completeness. First we will associate to each planar n-pairing a
rectilinear path through an n x n grid. These paths start at the upper left
corner, end at the lower right corner, and never crossing below the diagonal.
Begin at po and proceed clockwise through the 2n points, adding a unit
segment to the path for each point. If a point represents first contact with
a particular line segment, move a unit to the right; if it represents second
contact, move down.

e (2
The total number of paths through an n xn grid is : . We now construct

an n + 1 to 1 from the set of all paths through an n x n grid to the subset of



paths which never pass below the diagonal. Start with an arbitrary path 7'
Add a right moving segment at the end of 7', forming a path 7" through an
n x n+ 1 grid. Let ¢ be the unique point on T" farthest to the right of the
diagonal of the n x n+1 grid. Construct a new path 7" through an n xn+1
grid, starting at ¢, by extending T’ periodically if necessary. T" never passes
below the diagonal of the n x n + 1 grid. Thus, it must begin with two right
moving segments. Delete the first segment to obtain a path 7", through an
n x n grid, that never passes below the diagonal.

To see that the map is n+ 1 to 1, reverse the process. Adjoin a right moving
segment at the start of 7" to recover T"”. Then the start of 7", and so of T',
may be any right endpoint of one of the n 4 1 right moving segments of 7".m

Lemma 2 If n is odd and g is the element of order 2 in Cy,, |Fix g| is
1 n+1
3 \(n+1)/2)

Proof Let P be an element of Fix ¢g. Since the number of segments in P
is odd, ¢ fixes at least one segment. To fix a segment, ¢ must interchange
its endpoints, making the segment a diagonal. But P contains at most one
diagonal. In an obvious sense, we can take the quotient of P by g. We
may regard the result as a planar (n — 1)/2-pairing plus a loop coming from
the diagonal attached between two point. Let po,...,p.—1 be points equally
spaced along the perimeter of a disk in the plane. There are n ways to choose
one of these points for the base of a loop and

((nn—_I;/Q)
(n+1)/2

ways to form a planar pairing on the remaining points. Finally,
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(n+1)/2  2\(n+1)/2

Lemma 3 Let e be the order of g. Assume that e > 1 and e|n and set
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d =n/e. Then |Fix ¢| is
2d
g
Proof As is well known, the generating function for the Catalan numbers

f(z)=co+eaz+cer?+ez®+- - =1+z+222 +52°+---

may be expressed as
1= (1—dx)/?
- 2z

f(z)

and satisfies the functional equation

zf(z)* = f(z) +1=0.

These facts are easily derived from Lemma 1; alternatively, the functional
equation follows directly from standard combinatorial reasoning.

Suppose P is a planar n-pairing fixed by g. Suppose py is connected to p;.
Then ¢ must be odd so that the points between py and p; may be paired.
Furthermore, either 0 < ¢ < 2n/e = 2d or 2n —2d < 1 < 2n, lest the segment
that connects py to p; cross its translate by either g or g7!.

By reflection through the diagonal containing po we see that the number
of planar n-pairings fixed by g with 0 < ¢ < 2d equals the number with
2n — 2d < ¢ < 2n. Temporarily assume that 0 < 7 < 2n/e = 2d. There
are ¢(;_1)/2 Ways to pair the points {p;,...,pi-1}. The pairing of the points
{p1,...,pi_1} determines the pairing of the sets {piy2j4,...,Pic142ja} for
3 = 0,...,e — 1, by translation. Removing all these points and segments,
leaves a planar 2n — (7 + 1)e-pairing which is also fixed by an element of order
e, but now in Cyp_(iy1)e-

To formalize the recursion, we introduce the generating function
9(z) = bo + by + box? + baz® + - --

where b; is the number of planar je-pairings fixed by an element of order e.
The previous paragraph show that if y > 0

b] = Z(Cobj_l + Clbj_g +- 4+ Cj—lbO) 5
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where the factor 2 takes account of the pairings with 2n —2d < < 2n. We
may express this equation as a generating function identity

g(z) = 2z f(z)g(z) +1

. g(z) -1
2zg(z)

Substituting this expression for f(z) into the function equation

zf(z)’ = f(z) +1=0

flz) =

and simplifying yields
g(z) = (1 —42)™"?

and expanding g(z) as a Taylor series yields the desired result. m

Putting the lemmas together yields Theorem 1. Lemma 1 contributes the
first term in the numerator, Lemma 2 the second. If e|n, the number of
elements in Cy, of order e is ¢(e), so Lemma 3 contributes the third term.m

Comment Perhaps it is worth noting that the generating function g(z) does
not depend on e.

Comment The formula may be very slightly simplified:

() () 2@ ()

2n

p(n) =

Plane trees up to arbitrary homeomorphism

The dihedral group G = Dy, also acts by rotations on the set P of planar
pairings. The number of orbits of this action, ¢(n), is just the number of
distinct planar n-pairings up to rotation and reflection. As before, q(n)
also represents number of planar embedded trees with n + 1 nodes up to
homeomorphisms of the plane. Our second theorem gives a formula for ¢(n):



Theorem 2

G+l o 6) (2) ()

'I’l+1 d<n

4n

q(n) =

Proof To apply Polya’s method it will be sufficient to compute |Fix g| for
the reflections g in Dy, the contribution of the rotations being as in Theorem
1. If g is a reflection, let us orient ourselves so that the axis of g is vertical.

Lemma 4 Let n be odd. Consider reflections ¢ that fix two points from
{pos---,Pan-1}, say p; and p;4,. The sets Fix ¢ are disjoint and the total of

|Fix g| for all such g is
1/ n+1
2\(n+1)/2)

Proof Consider a reflection g that fixes the points p; and p;4,. If P is a planar
n-pairing fixed by ¢ there must be a diagonal segment A in P connecting p;
and p;4,. Form a new planar n-pairing P’ by reflecting the segments to the
left of the A, as viewed from p;, across the diagonal perpendicular to A. As
i varies, the pairings P’ will range over all the pairings counted in Lemma 2,
so the total of |Fix g| for all g that fix two points is also

% ((nn++1;/2) "

Note that if n is even, reflections that fix two points from {po, ..., pan-1} fix
no pairings at all.

Lemma 5 Let ¢ be a reflection with no fixed points in {po, ..., p2n-1}. Then

|Fix g| = (Ln;L?J) .

Proof Consider the generating function

h(z) = ao + a1z + axx’ + azz® + - -
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where a,, is the number of fixed points of such a ¢ € Dy, on P. We first
establish the identity

h(z) = % = f(2®) +af(e®)? + 22 f(2*)* + - -

The contribution to h(z) from 27 f(2%)7*! corresponds to pairings with j hor-
izontal segments crossing the axis of reflection, the factor z’ taking account
of these segments. Whether above the highest horizontal segment, between
two horizontal segments, or below the lowest, the points on the left side of the
axis are paired among themselves, the pairing being mirrored on the right.
The Catalan numbers give the number of ways the points on the left side
of each of these 7 + 1 regions may be paired. This accounts for the factor

f(a?)*.
By elementary algebra
1 — (1 —42%)/?

_ 22?2 _
h(z) = . (1 (- 4$2)1/2) =(1

1 1
— 42)71/2 (1 + —) - —
2z

Q2

and it follows that

T RO R R RO G

as desired.m

Theorem 2 follows on noting that there are n reflections of the type considered
in Lemma 5.

Comment The number of plane trees with n nodes which possess at least
one bilateral symmetry is

B‘((nn++1)1/2)Lodd+”(Ln7zj) :( 5l )

2n L(n —1)/2]

2q(n) —p(n) =



or equivalently, the number of plane trees with n edges which possess at least

n
one bilateral symmetry is .
Iy (Ln/zJ)

Values of p(n) and ¢(n)

The following values were computed using Mathematica.



n p(n) q(n)
1 1 1
2 1 1
3 2 2
4 3 3
5 6 6
6 14 12
7 34 27
8 95 65
9 280 175
10 854 490
11 2694 1473
12 8714 4588
13 28640 14782
14 95640 48678
15 323396 163414
16 1105335 555885
17 3813798 1913334
18 13269146 6646728
19 46509358 23278989
20 164107650 82100014
21 582538732 291361744
22 2079165208 1039758962
23 7457847082 3729276257
24 | 26873059986 13437206032
25 | 97239032056 | 48620868106
26 | 353218528324 | 176611864312
27 | 1287658723550 | 643834562075
28 | 4709785569184 | 2354902813742
29 | 17280039555348 | 8640039835974
30 | 63583110959728 | 31791594259244




