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SOME RECENT RESULTS IN CHEMICAL ENUMERATION.
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A method is described for enumerating all acyclic chemical
compounds and radicals consisting of carbon and hydrogen alone,
classified according to the number of carbon atoms, and the numbers
of double and triple bonds. This work extends enumerations
previously carried out by Cayley, Pé]ya, and others.  Some

numerical results are given.

Section 1. Preliminaries.

Before outlining the background and scope of the problem that
we shall consider, it will be as well to review briefly the basic
facts about chemical compounds. For our purposes we can regard a

molecule of a chemical compound as an assemblage of atoms in which

= S
some atoms are linked to others by {Xilsgfz_gonds‘. These bonds may
—

be S|ngle, double or triple (other kinds will not concern us).

—ee———

o —
A(s ructural formula is a method of representing the way in which the

atoms in a molecule are linked together. In a structural formula



each atom is represented by a symbol, usually the initjal letter or
{_r two of its name, e.g. C for carbon, H for hydrogen. A single bond
is represented by a line drawn between the symbols for the two atoms
: that it links, a double bond by a double line, and a triple bond by
g' a three-fold line. Examples of structural formulae are given in
figure 1. Note that a structural formula makes no attempt to
indicate how the atoms are situated in space relative to each other;
it simply indicates which atoms are linked to which, and by what sort
(-' of valency bond. Thus a structural formula, from our point of view,
is essentially a multigraph in which the nodes are of several
different kinds. In this paper we shall be concerned only with

— —

hyd[ocg[bgns} in which there are only two kinds of atoms, carbon and
s

hydrogen.
The valency of an atom in a molecule is the number of bonds
‘.' by which it is linked to other atoms, double and triple bonds
counting as 2 and 3 respectively. Carbon atoms have valency &4,
and hydrogen atoms have valency 1.
T ——

An‘acyclic]compound is one for which the structural formula,
regarded as a graph, has no cycles, i.e. is a tree. The term
"cycle" is here used in its usual graph-theoretical sense, on the

‘-' understanding that double and triple bonds are to be regarded as
single edges of the graph. Thus, although for many purposes a
double edge in a multigraph is regarded as forming a cycle of
length 2, we shall not so regard a double bond. The compounds (a)

_ and (b) in figure 1 are therefore acyclic, while (c) is a cyclic

"’ compound.

' By aKEEEEE%E!we shall mean an incomplete molecule --

incomplete in the sense that there is exactly one valency bond
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(single,

double or triple) one end of which does not have an atom.

Thus a radical is not a molecule, but something from which molecules

can be constructed by placing an atom, Or another radical, at the end

of this free bond. 1f the free bond is single, double or triple,
then the radical is said to be monovalent, divalent or trivalent
respectively. Figure 2(a) shows the isopropyl radical, having a
free single bond. If we put an iodine atom at the end of the free
bond, we get the isopropyl iodide molecule of figure 1(a). 1f,
instead, we put another isopropyl radical there we shall get the
hydrocarbon of figure 2(b).

entirely

then its

It is easily verified that if an acyclic compound consists
of carbon and hydrogen, and has no double or triple bonds,

general formula will be ChHon+2- That is, if the number

of carbon atoms is n, then the number of hydrogen atoms is 2n * 2.

[
Such compounds used to be called‘paraffinsz but are now usually
f >

e ——

[ 7\ s ——) .
called Malkanes'", and the corresponding radicals are called Palkyl S
|
J J
'*Tradicals'. Thus figure 2(a) shows an alkyl radical; figure 2(b)

shows an alkane.

The above discussion of nomenclature and notation is greatly

oversimplified, and would not satisfy a professional chemist.

However,

it will be sufficient for our needs.



Section 2. Background.

A problem that has provided a great stimulus to the
development of many tools and results in Combinatorial Analysis is

that of enumerating"qlLﬂghemjcal_compounds with formulae of a given

kind. pProblems of this type were studied Dy Cayley [2, 3] who
g;e;e;ded in enumerating the alkyl radicals and the alkanes.

Cayley's results were later extended by other investigators, notably
8lair and Henze [4, 5, 6], and Perry [12]. Enumerative results for
other types of chemical compounds (mostly acyclic) were obtained, but
the methods whereby this was done remained similar to those used by
Cayley. A new tool for working with problems of this type was
forged by pdlya; it is the "Hauptsatz" of his 1938 paper [13].

The use of this fundamental theorem enables the findings of Cayley,
Blair and Henze, etc. to be proved much more easily and concisely
than by the original methods, and applications to some kinds of
cyclic compounds (benzene derivatives, etc. ) became possible.

OJne somewhat unsatisfactory aspect of the above work was the
transition from the alkyl radicals to the alkanes. It can be seen
from figure 2(b) that the enumeration of alkanes is essentially the
enumeration of a type of tree; but in an alkyl radical one of the
carbon atoms, namely the one incident with the free bond, is
different from the others, soO that the enumeration of the alkyl
radicals is an enumeration of rooted trees. The transition in
question is therefore essentially that of going from the enumeration
of rooted trees to the enumeration of unrooted trees, and at the

time of P61ya's paper this could be achieved only by somewhat ad hoc

methods. A better method of making this transition was published



by Otter [10]1, and was extended by Harary and Norman [9].

In this paper we shall use all available up-to-date methods
in order to enumerate acyclic hydrocarbons with the general formula
O, We have already remarked that for the alkanes, m = 2n + 2.
If m < 2n + 2 then there must be double or triple bonds present in
the molecule. We shall therefore enumerate these compounds
according to the number n of carbon atoms that they contain, the
number d of double bonds and the number t of triple bonds. Blair
and Henze enumerated the ethylene derivatives (having exactly one
double bond) and, with Coffman, the acetylene derivatives (nhaving
exactly one triple bond), but the problem of enumerating acyclic
hydrocarbons with any numbers of double and triple bonds does not
seem to Have been studied before. Thus this enumeration represents
an extension of results already obtained, and the accuracy of this
work can be checked, in part, by comparison with these previously

known results.



Section 3. Hydrocarbon radicals.

In this section we shall enumerate the hydrocarbon radicals,
which are of three types, according to the nature of the free bond.
The radicals of each of the three types will be classified by the
number of carbon atoms, and the numbers of double and triple bonds.

We shall let Gn,d,t denote the number of monovalent radicals
having n carbon atoms, d double bonds and t triple bonds. Note
that we do not need to specify the number of hydrogen atoms, since
it is easily verified that this will be 2n + 1 - 2d - hLt. We
similarly define Hn,d,t to be the number of divalent radicals (in the
sense that the free bond is double) and In,d,t the number of
trivalent radicals. These types of radicals are depicted
diagrammatically in figure 3, and will be called, for brevity,
G-radicals, H-radicals and I-radicals. In figure 3 each shaded
"balloon'" denotes the rest of the radical apart from the free bond
and the carbon atom to which it is attached. Note that the free
double or triple bond is included in the count for d or t, as the
case may be.

For each of these three types of radical we define a counting

series, as follows:

(1) G(x,y,z) = 2226, 4 txnydzt
n d & 2 M |

_ n,d,t
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(3) I1(x,y,z)
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If we examine the G-radicals in closer detail we see that
they are of three types, as shown in figure h. G-radicals of
type (a) can be enumerated by means of Pé]ya's theorem. We have

three positions - the three balloons - each of which can be occupied



by a G-radical, or possibly by a hydrogen atom. These three
positions can be permuted by any permutation of the symmetric group
53 . Using Pélya's theorem, with figure-counting series G(x,y,z)
and group ?5 , we obtain the configuration counting series

(4) xZ(sa; G(x,y,2z))

in the notation of Pé]yds paper; or rather, we would if the
possibility of a G-radlcal being a single hydrogen atom were included
in G(x,y,z). It is therefore convenient to adopt this convention,
and regard the radical ' H- " a5 a G-radical, with n = 0.

Expression (4) is then valid. Note the multiplier "x" in (L), which
is needed to account for the carbon atom to which the three radicals
are attached.

In figure 4(b) we have two dissimilar positions into one of
which a G-radical must be placed, while an H-radical must be placed
in the other. Hence radicals of this type are enumerated by
(5) x G(x,y,z).H(x,y,2).

In figure 4(c) there is only one position, in which must be
placed an I-radical. Hence these radicals are enumerated by
(6) x I(x,y,z).

Combining these results, and adding a term '"1'" for the
hydrogen radical, we obtain the following equation.

(7) G(x,y,z) = 1+ x[Z(SS;G(x,y,z))+G(x,y,z)H(x,y,z)+I(x,y,z)].

Looking more closely at H-radicals we see two types, as in

figure 5(a) and 5(b). In figure 5(a) we have two interchangeable
positions in which to place a G-radical. Pélya's theorem then gives
(8) Xy Z(Sl; G(x,y,z))

as the counting series for these, the factor xy being included to

account for the free double bond and the incident carbon atom.



In figure 5(b) we have a single position in which to put an H-radical.
This gives us the counting series xyH(x,y,z). From this, and (8),

we derive

(9) H(x,y,z) = xyZ(%l; G(x,y,z)) + xyH(x,y,2)

or
(10) H(x,y,2) Tf%%%g (S ; G(x,y,z))
I-radicals are of one type only (figure 5(c)), and hence are
given by the counting series xzG(x,y,z). Thus
(11) 1(x,y,z) = xz G(x,y,z).

We now substitute for H and I, from (10) and (11) in equation
(7), and obtain

(12) G(x,y,z) = 1 + x[Z(Sg;G(x,y,z))

+ G(x,y,z).Z(Sz;G(x,y,z)) + xz G(x,y,z)] .

—x
Equation (12) ;nab?es G(x,y,z) to be calculated recursively
up to terms in a given power of Xx. The calculation is extremely
tedious by hand, but not too difficult on a computer. Results for
n ¢ 10 are given in Table I.
As a check on these results, we note that if we put y = z =0
we eliminate all radicals having double or triple bonds, and are
left with the alkyl radicals alone. If we write r(x) for G(x,0,0)
and perform the indicated substitution in Z(S ), equation (12) becomes
(13) r(x) = 1+ {;x[rg(x) + 3r(x)r%(€l v 2r(xM)]
which is the functional equation given by Polya for the alkyl

radicals (see [13], page 150).



Section 4. Hydrocarbons with a distinguished carbon atom.

As stepping-stones toward our goal of enumerating hydrocarbons
we need two subsidiary results. The first of these is the
enumeration of hydrocarbons in which one carbon atom has been
distinguished from the others. We shall denote this distinguished
carbon atom by Cx*.

We readily see that these compounds are of four types, s hown

in figure 6. Each of these types can be enumerated using Pé]ya's
theorem. We find that those in figure 6(a) are enumerated by
(14) x Z(S,; G(x,y,2)) ;

those in figure 6(b) by

(15) X Z(Si; G(x,y,z)).H(x,y,z) ;
those in figure 6(c) by

(16) X Z(Sz; H(x,y,z))

and those in figure 6(d) by

(17) X G(x,y,z).I(x,y,z)

Adding these four results we obtain the counting series for
the hydrocarbons with a distinguished carbon atom. We shall denote
it by K(x,y,z). Hence we have
(18) K(x,y,z) = xZ(S4;G(x,y,z)) + xZ(S.;G(x,y,z)).H(x,y,2)

+ xZ(%Z;H(x,y,z)) + xG(x,y,z).1(x,y,2)

from which K(x,y,z) can be computed, since everything else is known.



Section 5. Hydrocarbons with a distinguished carbon-carbon bond.

Jur second subsidiary result is the enumeration of
hydrocarbons in which one particular carbon-carbon bond has been
distinguished from the rest. If this bond is single, then our
compound looks like figure 7, and is clearly the result of joining
two monovalent radicals. Since the distinguished bond is to join
two carbon atoms, neither of these radicals can be just a hydrogen
atom. We therefore have a Pé]ya type enumeration problem, with two
interchangeable positions, into each of which must be put a radical
enumerated by Gl(x,yz) = G(x,y,z) - 1. These hydrocarbons are
therefore enumerated by
(19) NgﬁG(xm,ﬂ) = é @f?xm,ﬂ +G“x%y%z%]

For reasons that will become apparent, we shall be more
interested in those hydrocarbon of this kind for which the two

radicals are dissimilar. The counting series for these can be

found either by subtracting from (19) the counting series for
hydrocarbons for which these radicals are identical, or by using a
modification of Pé]ya's theorem (for which see [13], page 172).
In either case the counting series turns out to be
(20) %L[Gi?Yx,y,z) - G)(xljyz;zl3]

I1f the distinguished bond is double, then a similar
argument gives us
(21) if [HQTx,y,z) - Hix5y— 2]
for those compounds for which the two radicals are dissimilar. The
corresponding result for a triple bond is
(22) 5; [%(x,y,2) - Lx"y 5 27)) .

The division by y and z in (21) and (22) results from the

fact that in putting the two radicals together we convert what were

previously two bonds into one.



Section 6. Acyclic hydrocarbons.

We shall now tie together these apparently disconnected
results, and obtain the counting series for general acyclic
hydrocarbons that wqére seeking. To do this we need a theorem,
given in [9], which we now briefly describe.

Let T be a tree, and u and v two of its nodes. If there is
an automorphism of T which maps u onto v we say that u and v are
equivalent. This relation is an equivalence relation, and the nodes
of T are therefore partitioned into equivalence classes. Let p*
be the number of these classes.

An automorphism of T induces, in an obvious way, a mapping of
the set of edges of T onto itself, and we can define equivalence
between edges a and b if a maps onto b in some such mapping. The

edge set of T is thus partitioned into a number, q* say, of

equivalence classes. The theorem is then that
(23) px - (qgq* - s) = 1,
where s = 1 if T has a symmetric edge, and s = 0 otherwise. An edge

uv is symmetric if there is an automorphism which maps u onto v and

v onto u. Clearly the "hal f-trees'" at the ends of a symmetric edge

must be identical, and a tree can have at most one symmetric edge.
If we sum (23) over all trees with a glven number p of nodes

we obtain

(24) Spr - (Zax - Is) = Z1.

Now p* is the number of distinct ways (to within automorphism) of

choosing a node of T, and is therefore the number of trees with a

distinguished node that can be obtained from T. Thus.Zb* is the

total number of distinct trees rooted at a node. By similar
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reasoning Zﬁ* is the total number of distinct trees having one edge
distinguished from the others.

The term st in (24) is the number of trees having a symmetric
edge, and the term > 1 on the right-hand side is simply the total
number of trees. Hence this latter number can be computed ipr*,

2 q* and ds are known.

For simplicity this argument has been given in terms of
ordinary graph-theoretical trees, but it holds just as well for the
hydrocarbons that wehave been discussing. For any given n, d and
t the terWIZp* gives the number of hydrocarbons with a distinguished

4 5

carbon atom, and this is the coefficient of xnybz in K(x,y,z) of
equation (19).  The term Jq* - Xs will be the number of
hydrocarbons with a distinguished carbon-carbon bond minus the number
of these with a symmetric bond. We have anticipated this subtraction
in finding (20), (21) and (22). The sum of these three

expressions will be a counting series in which the coefficient of
dzkis Tqr - 2s

Finally, let us denote by L(x,y,z) the counting series in

n
Xy

which the coefficient of fﬁfiztis the number of hydrocarbons that we
are seeking, having n carbon atoms, d double bonds, and t triple
bonds. This coefficient is thus the 21 of (24). Putting
together the results of this section we have

(25) L(x,y,z) = K(x,y,z) - [Glg?x,y,z) - Gi(x7:y ?217]

|
2‘ »-
- %Uﬂglx,y,z) - H(xZy 5zD)]
i e N =
-’élu (x,y,z) - L(x"5y 2]

The coefficients in L(x,y,z) have been calculated for n X 10

and are exhibited in Table II.



Section 7. Deductions and verification.

It is of interest to see briefly how (25) Tlinks up with
previously known results. The coefficient of y in L(x,y,0) will
no hifle bondy, G O corbon

enumerate compounds having just one double bon%é i.e. the alkyl

derivatives of ethylene. From Table II we extract the information

that it is NG9 #‘3";’”“4""‘9

A
-

(26) x s k0 4 5+ 5xT + 13x° % 27x7 + 66x° + 153x) + 377x"°
The coefficients in (26) agree with the numbers of ethylene
derivatives as given by Blair and Henze IB] who computed them by a
completely different method.
Similarly the coefficient of z in L(x,0,z) will enumerate

the alkyl derivatives of acetylene (having just one triple bond) .

From Table II we see that this is e %‘ %ﬂWV&W

_ — I3 o
(27) xL’+ x3 + 2x7'+ Ix> + Ix + 1&*7 + 32xY/+ 72xq + 171x' + .. Vag

in which the coefficients agree with the computations of Coffman,
Blair and Henze [8].
The term independent of y and z in L{x,y,z) will enumerate

\ {
the alkanes. It is N2 ®%\%‘
. [#3 -
3x5 + 5x” 7

3

N 5 /
(28) x + x + x + 2x + .

+ax/ + 18x° ¢ 35x 7+ 75x/ %
in which the coefficients agree with those given in 5].

Another interesting result, not previously obtained, is that
for the number of hydrocarbons with a given number n of carbon atoms,
irrespective of the number of double and triple bonds. This number
is the coefficient of x in L(x,1,1) and, from Table 11, we have

—

: 2 5 6 7 &
(29) L(x,1,1) = x + 3x° + ux =+ 12x + 27x + 8hx~ + 247x  + 826x \

// « 2777x7 + 9868x' 4 ... \
N 25 '
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Section 8. Prospects.

One naturally asks whether results such as these could be
extended further, or generalized. One could consider, for example,
removing the restriction to acyclic compounds, but if one does this
one is beset by a host of difficulties. The problem is then
essentially that of enumerating graphs or multigraphs with a given
partition, and although methods have been published for doing this
(see [7], [117) they are all extremely cumbersome and, in general,
quite impracticable. The prospect in this direction is not very
bright, though some special cases may be amenable to treatment.

One can, instead, retain the restriction to acyclic compounds
but allow atoms other than carbon or hydrogen . Uxygen is the
obvious next candidate, and I have, in fact, carried out an
enumeration, similar to that given here, for acyclic compounds of
carbon, oxygen and hydrogen, having given numbers of these atoms, and
given numbers of single, double and triple bonds. The results are
complicated, tedious and uninspiring, and, what is more, they suffer
from a grave defect.

The molecules enumerated by L(x,y,z) are all more or less
chemically feasible, and we can therefore cherish the illusion that
what we have done in this paper has at least a tenuous connection
with real life. When we include oxygen atoms, all such illusions
are shattered. For example, chains of any number of oxygen atoms,
of the form

-0-0-0-0- ....
are theoretically possible, whereas chains of more than three oxygen

atoms are not chemically feasible. This difficulty can be overcome



)

(at the expense of making the results even messier) but there are
other snags. Take, for instance, the hydroxyl radical " -0-H ".
There is no obvious reason why there should not be two such radicals
attached to one and the same carbon atom; yet such a configuration is
not chemically possible. Considerations such as these make it
virtually impossible to derive a series which will count only those
carbon-oxygen-hydrogen compounds that are chemically significant;

yet any enumeration that includes impossible compounds is pretty much
a waste of time. There seems to be little scope in this direction
either,

One related problem that is not entirely pointless is that of
enumerating molecules taking into account something of the way that
they are situated in space. If this is done to the extent of
recognising differences between left-handedness and right-handedness
we have the problem of enumerating stereo-isomers. This problem
was discussed by Pélya for the alkanes, and I have extended it to
general hydrocarbons, much as in this paper. The results of this
enumeration, and others, are to be included in a chapter of a

book |1] at present in course of preparation.
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t t t t
n=2 | 0 1 n=3 | 0 1 n=4 | 0 1 2 n=5 11 0 1 2
- | |
011 1 01 2 2 0 | & & 1 0] 810 b4
dl | 1 d1l | 3 118 3 1 | 21 14
2 11 d2 | 5 d2 | 20 3
311 301 7
b | 1
t t t
n=6 | 0 1 .2 3 n=7 | 0 1 2 3 n=8 | 0 1 2 3 4
| | |
0 | 17 25 12 1 0| 39 64 38 7 0 | 89 166 115 29 1
1| 56 50 7 1 | 149 166 45 1 | 398 531 206 153
2 | 69 25 2 | 228 134 7 2 | 725 587 84
d3 | 37 3 d 3 | 165 36 d 3 | 664 261 7
b | 9 4 | 60 3 4 | 326 47
5 1 1 5 1 11 5 1 88 3
6 | 1 6 | 13
7 1 1
t t
n=9 | 0 1 2 3 L n=10 | 0 1 2 3 4 5
I |
0 | 211 437 348 114 11 0 | 507 1157 1040 417 62 1
1 | 1068 1656 829 115 1 | 2876 5076 3103 661 22
2 | 2261 2325 577 13 2 | 6932 8639 3066 222
3 | 2505 1k70 1253 3 | 9032 7121 1155 13
d 4 | 1570 433 7 du | 6909 2998 162
5 | 570 58 5 | 3204 648 7
6 | 122 3 6 | 915 69
7 | 15 7 | 161 3
8 | 1 8 | 17
9 | 1
Table I. Monovalent acyclic radicals.



" t t t t
n=2 | 0 1 n=3 | 0 1 n=4 | 0 1 2 n=5 |1 0 1 2
| | 1 I
011 1 011 1 012 2 1 013 3 2
dl |1 d1l | 1 113 1 115 &
‘.’ 2 |11 d 2 | 2 d2 | 6 1
311 31 2
b |1
t t t
n=6 | 0 1 2 3 n=7 | 0 1 2 3 n=8 | 0 1 2 3
| | I
- 0] 5 7 5 1 0| 9 14 11 3 0 | 18 32 28 10
‘-’ 111312 3 1 | 27 34 12 1| 66 95 48 &
2 | 16 7 2 | b4 29 3 2 | 120 110 22
d3 | 10 1 d3 ] 32 9 d 3| 115 53 3
b | 3 b | 15 1 L | 62 12
5 1 1 51 3 5 | 21 1
6 | 1 6 | L
71 1
t t
n=9 | 0 1 2 3 L n =10 | 0 1 2 3 L
I |
0| 35 72 69 28 5 0 | 75 171 179 88 20
‘-' 1 | 153 262 157 29 1| 377 718 518 138 8
2 | 328 376 120 L 2 | 901 1245 537 53
3 | 367 254 29 3 | 1196 1074 226 L
du4 | 253 85 3 d 4 | 964 498 38
5 | 100 1b 5 1 491 124 3
6 | 28 1 6 | 160 17
7 | L 7 | 36 1
8 | 1 8 | 5
9 | 1
L Table II. Acyclic hydrocarbons.
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Figure 3. The three kinds of radicals.
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Figure L. Types of G-radicals.
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Figure 5. Types of H- and I-radicals.
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Figure 6.

Types of hydrocarbon with a distinguished carbon atom.

distinguished bond
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Figure 7.



