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On ninth order knottiness
by

Kenneth A. Perko, Jr.

This paper 1is an exercise in applied algebraic
topology. Our purpcse 1s to examine the known knots, up to
a certain level of complexity, and try to decide which of them
are in fact topologically inequivalent. There 1s at pfosent
no generai algorithm for determining if two knots* are different
(Figure 1) or the same (Figure 2) and empirical methods, although
persuasive to some [3,pp.341-342], are demonstrably unreliable
[8,Fig.l]. Thus, we search on an ad hoc basis for invariants
which suffice to distinguish certain knots in the hope that we
will be able tc show the equivalence of those which then remain.
If successful, we will have proven (not Jjust guessed) the
number of different knot types in a given table. Cf. [8].

In the present paper we direct our attention to the
tabled knots with eleven crossings and discuss the extent to
which we fall short of our goal of complete classification.

An invaluable tool in distinguishing those knots is D. A.
Lombardero's table of the Alexander polynomials and signatures
of virtually all known (and presumably prime) knots with

eleven or fewer crossings [7]. We are grateful to Professor

H. F. Trotter for funishing us with a copy of it.

*  There do exist generally applicable methods for deciding
if a given knot 1is trivial [17,pp.72-73,171].



1. Background

In the late nineteenth century knot tables were
compiled by P. G. Tait [15; 16] and C. N. Little [4; 5; 6] in
an effort to list as many as possible of the prime knot types

with ten or fewer crossings and alternating primes with

eleven crossings. Both authors seem to have recognized that,

in the absence of mathematical proofs, their tables were not
necessarily complete and might contain duplications which they

had not empirically detected [15,pp.327-328; 16,pp.502,505-506;
6,p.776]. In 1967 J; H. Conway made some corrections to one

of Little's tables, expanded it to include a number of (supposedly)
non-alternating knots with eleven crossings, and announced that

he had proven that the tables, as corrected and expanded, were
complete [3,pp.330,341].

Conway also expressed the belief that his tables were

- free of duplications [3,pp.341-342]. Notwithstanding his "very

strong" evidence for this proposition, the tables contain a
duplication in the portion originally compiled by Little which
Conway tells us he was able to re-check in "just one afternoon's
work" [3,p.329]. Little's attention was no doubt diverted from

this duplication by the "theorem" in [6,p.774] to which it is an

a??ar¢n4fkcounterekample. Regrettably, this error in Conway's table

C

has recently been perpetuated [14,p.415].
In 1927 Alexander and Briggs distinguished the tabled

knots with eight or fewer crossings by reference to the homology
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invariants of their branched cyclic covering spaces [2].
In the subsequent paper which introduced his famous
polynomial, Alexander noted the inability of cyclic in-
variants to cope with certain knots in the range of nine
crossings [1,p.306]. Classification of those knots was
completed by Reidemeister by use of dihedral linking
invariants [11l] which also suffice to classify the

tabled knots with ten crossings [8; 10].
2. Lombardero's results

It appears from Lombardero's calculations [7] that
Conway's table omits at least two knot types: 8%210:-20
(Figure 3) and 8%}10:.2 (Figure 4). One may be explained
by the fact that Conway lists knot 8%210:.20 twice [3,p.357].
The other casts doubt on Conway's claim that his tables are
complete.

This 1s especially regrettable from the standpoint of
establishing the minimal crossing number of tabled knot types.
Were the tables complete, it would then suffice to prove a
knot prime and distinguish it from the tabled primes with
fewer crossings. In the absence of a proof of completeness,
however, we really do not know that the tabled knots cannot
be projected with fewer crossings -- after, say, several
billion deformations which raise and then lower the crossing

number. Note, in this regard, that the equivalence of the 10-

crossing knots gyp and gyp (Figure 2) can only be demonstrated



by an interim increase in tﬁe number of crossings [8,Fig.1l].

Lombardero also lists the following five knots which
are equivalent to knots in Conway's table: 9%-3(8%2.-20.20),
6*%-30:210:20 (6*-2110:2:20), 6*-210:30:20 (6*-310:20:20),
6%-210:-30:2 (mirror image of 6*-30:21:-20) and 8*-210:-20
(mirror image of 6%2.-3.-20.20). The latter two are further ppavren
counterexamples to the "theorem" in [6]. Suppressing these
duplications, we arrive at a total of 550 supposedly distinct
knots with eleven crossings, listed by either Conway [3] or
Lombardero [7]. Cf. [5].

At least* 272 of these 550 knots possess Alexander
polynomials which are unique among all 800 tabled knots.
The remaining 278 give rise to (at least) 68 more new
polynomials which do not belong to any of the 250 known prime
knot types with ten or fewer crossings. Thus, while the
Alexander polynomial remains a central knot theoretic
invariant, the need for stonger (or, at least, radically
different) methods of proving knot types inequivalent becomes
more pronounced as the crossing number increases.

Knot types not

Tabled Distinct distinguishable by the
knots knot types Alexander polynomial
0-8 crossings 36 36 0
9 crossings 49 49 6
10 crossings 166 165 33
11 crossings 550 ? 210 (or more)

* Five knots are missing from Lombardero's table and we do not
know the polynomials of four of them.



3. Remarks on polynomial duplicates

Appended hereto 1s a table of invariants which
distinguish certain knot types with the same Alexander
polynomial. The notation is that of [8], [9] and [10].
Included are knot types distinguished by other invariants
and other authors, including the signature ¢ as tabulated
by Lombardero [7], the torsion numbers T of the first
vintegral homology group of the double branched cyclic
covering [2] and homology invariants of the coverings
studied by S. W. Reyner [12] and R. Riley [13]. 1In
comparing 2-bridged knots either with each other, or with
a knot known not to be 2-bridged [(10,p.77,fn.], we merely
note these facts and rely on Schubert's theorems.

As predicted by Reyner [12,p.37] there are knots
in this range which, although presumably distinct, possess

identical dihedral linking invariants. A couple of represent-

ho

ative examples are 3,21,3,2- 3,3,21,2- and 6**.2.-(21,2)
Z 6**.-(21,2).2. In this regard, 1t is noteworthy that
Riley has successfully distinguished 6**.-(3,2).2 from
6**.2.-(3,2) [13,pp.615~-616].

The signature seems to us to be remarkably in-
efficient in distinguishing polynomial duplicates and we have
no explanation for the frequency with which such knots share

the numerator, but not the dencminator, of a dihedral linking

number.
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