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ON COVERING SPACES OF KNOTS
Kenneth A. Perko, Jr., New York, USA

To each representation o of the group of a knot k onto a
transitive permutation group P there corresponds a branched cover-
ing space M of S$3, with branch link k over k. Consider the set of
all such spaces for a given k and a given P. Then any topological
invariant of each element (or of the placement of k within it) is,
taken as a set over all possible g, a placement invariant of k in S3.
Among such invariants are the linking numbers, where defined,
between identifiable components of k and the fundamental groups
of their complements in M [5]. Algorithms for computing the latter
(algebraically) have been set forth by R. H. Fox in varying degrees
of generality [2; 3, §8; 5, §4]. However, no general algorithm
appears to have been published for computing these linking num-
bers, examples of which have appeared in the literature from time
to time [1, §8; 2, §5; 4; 5, § 5; 6, Ch. III, § 15]. It is the purpose of
this paper to fill this gap. As background, we discuss the known
algorithms for covering groups.

Our approach is intuitive in the strict sense of the word. Avoid-
ing the apparent (and possibly inherent) algebraic intractability of
noncyclic coverings, we simply take a careful\look at the geometric
model.

1. The fundamental groups

There is an obvious, Wirtinger-like algorithm for calculating
the fundamental group of any covering space (cyclic or noncyclic,
with or without particular components of k) of a tame knot (or
link) arising cut of a representation onto any transitive permu-

tation group. Simply write the permutation corresponding to each
Wirtinger meridian to one side (say the right) of each oriented
segment of a knot diagram (in regular projection) and imagine n
copies of S? woven together along the 2-cells lying beneath the knot
in Reidemeister’s halfeylinder [6, pp. 53 and_§5], where n is the
number of sheets in the covering. Since M — k is connected, n—1
of these 2-cells must be removed to create a maximal cave and they
may always be removed from beneath a minimal set of generating
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segments of the knot diagram. Thus if ¢ is the bridge number of k
(Cf. [7, p. 606]), there will be at most ng—n + 1 generators for
a (M —%). Adjoining to M—k any branch curve (component of 15
will further reduce the number of generating 2-cells by adjoining
relations corresponding to the one or more* pre-images in M of the
circle shown in Figure 1 which surround that particular branch
curve. Adjoining them all, to get M, will clearly eliminate a total
of cg generators, where ¢ is the number of cycles in a meridian
permutation. Thus we obtain (geometrically) the well known for-
mula g° = ng—cg—n + 1 for the maximum number of non-trivial
generators of (M) [2; 4]. Note that in choosing generators for this
Wirtinger-like presentation one need only look at 2-cells which lie
beneath generating segments of k, since the remaining 2-cells may
be defined in terms of these in essentially the same manner as one
works out the Wirtinger algorithm on a knot diagram (Cf. [3, p.
129]). Specifically, n relations are obtained at each crossing by con-
sidering, as Wirtinger-like relations, the n pre-images in M of the
circle shown in Figure 2. One only has to pay attention to which
2-cells are connected to which along the n vertical lines below the
crossing. This may easily be done on a knot diagram (with meri-
dian permutations written in, as above) by associating with each
letter of each permutation the 2-cells in M which can be »seen« on
the right hand side of that segment from that particular copy
of S3,

@)

Figure 1 Figure 2 Figure 3

2. Linking numbers between branch curves

There is a similar geometric algorithm for constructing (where
possible) a 2-chain in M which bounds (i. e., has as its only boun-
dary) any component k; of k, or a multiple thereof. One merely
assigns variable coefficients to the 2-cells in the cellular decompo-
sition of M induced by Reidemeister’s half-cylindrical cellular de-
composition of $3 and obtains from each pre-image in M of the
circles shown in Figures 1 and 2 a linear equation relating these

- * Cf. the footnote at [5, p. 200]. Actually, this possibility was sug-
gested by Fox. For an example, see Figure 4.
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variables. These equations are obtained in the obvious way to
reflect the fact that along the vertical 1l-cells in M (Figure 2) the
coefficients assigned to the 2-cells which meet thereat must cancel
each other out, while at the horozontal 1-cells (Figure 1) their boun-
daries (summed together) must result in only a unit contribution to
the component of k which one is attempting to bound. One then
attempts to solve these equations. If they have a solution in in-
tegers, the resulting coefficients, assigned to their respective 2-cells,
form a 2-chain with boundary k;. If they have a solution in rational
numbers, simply multiply the solution vector by an appropriate
integer d to obtain a 2-chain with boundary d times k;. If they have
no solution, no multiple of k; bounds in M and its linking number
with any other branch curve is undefined.

In practice certain variables (those assigned to any set of 2-cells
which may be removed to create a maximal cave in M) may be
set equal to zero at the outset, since if k; bounds in M it bounds on
the walls of a maximal cave. The variables assigned to 2-cells lying
beneath generating segments may then be expressed in terms oif
each other for each cycle of the corresponding permutations, and
the remaining variables worked out through each crossing, so as
to reduce drastically the number of equations and unknowns. This
parallels the algorithm for = (M — k;), viewing each generator as a
variable and obtaining linear equations from the exponents of a
relation. Where ¢ = 0, this will circumvent the need for any
equations or unknowns whatsoever. One may simply plug in unit
coefficients for the 2-cells bounding portions of k; along generating
segments and they will work themselves out to bound it all.

Once these coefficients are obtained, it is a simple matter to
compute the linking number between the branch curve which they
bound and any other. Simply follow any path in M lying e-close
to that other branch curve (Figure 3), moting the copies of S?
through which it passes and the 2-cells in M which it intersects,
and sum the resulting intersection numbers (the coefficient times
the sign of the intersection) until one returns to the point (and copy
number) where one started, dividing the total by d. Note that it
may be necessary to go around the knot more than once (as for the
one curve of branching index 1 in Figure 4).

3. Visualization of covering linkage

Linking numbers in M may sometimes be easily read from a
knot diagram. In Figure 5, a self-intersecting disc is exhibited which
bounds k and lifts to the copy numbers of S? indicated in Roman

numerals to bound the component of k of branching index 2. The
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linking number between branch curves in this 3-sheeted noncyclic
covering of the trefoil is (obviously) the sum of the intersections
of the projected disc with its boundary.

This method works for a great many 3-, 4-, and 5-sheeted co-
verings of tabled knots, where meridians are sent into transposit-
iong, transpositions and 3-cycles (i. e., reps onto S3 [5, p. 200], S,
and Aj [7, p. 613]). For example, one may easily distinguish the
square knot, the granny and R. Riley’s »favourite knot« [8, p. 239]
by their linking numbers with respect to S; — (2, 0, 0, —2), (2, 2, 4, 4)
and (0, 0, 2, 4), respectively.

(23) (34)
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Figure 4 Figure 5
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O PROSTORIMA NATKRIVANJA UZLOVA

Kenneth A, Perko, Jr. New York

Sadrzaj

Neka je k uzao, tada svakoj reprezentaciji ¢ grupe uzla na
tranzitivnu grupu permutacija P odgovara prostor natkrivanja s
grananjem M nad S?% sa spletom grananja % nad k. Promatrajmo
skup svih ovakvih prostora za dani k i danu grupu P, tj. skup svih
M koje dobivamo variranjem ¢. Proizvoljna topoloSka invarijanta
svakog elementa tog skupa je invarijanta smjestenja od k u S3.
Medu takve invarijante spadaju i spletni brojevi (linking numbers)
izmedu komponenata od k (koje se mogu poistovjetiti) 1 fundamen-
talnih grupa njihovih komplemenata u M (za preciznu definiciju
spomenutih spletnih brojeva v. ref. [5]). U radu je dan opéi algori-
tam za izradunavanje tih spletnih brojeva.



