ON SOME MATHEMATICAL PROBLEMS CONNECTED
WITH PATTERNS OF GROWTH OF FIGURES

BY
STANISLAW ULAM

1. Introduction. This note will contain a brief discussion of certain properties
of figures in two or three dimensional space which are obtained by rather simple
recursion relations. Starting from an initial configuration, one defines in succes-
sive ‘“‘generations’ additions to the existing figure, representing, as it were, a
growth of the initial pattern, in discrete units of time. The basic thing will be a
fixed division of the plane (or space) into regular elementary figures. For example,
the plane may be divided into squares or else into equilateral triangles (the space
into cubes, etc.). An initial configuration will be a finite number of elements of
such a subdivision and our induction rule will define successive accretions to the
starting configuration.

The simplest patterns observed, for example in crystals, are periodic and the
properties of such have been studied mathematically very extensively. The rules
which we shall employ will lead to much more complicated and in general non-
periodic structures, whose properties are more difficult to establish, despite the
relative simplicity of our recursion relations. The objects defined in that way
seem to be, so to say, intermediate in complexity between inorganic patterns like
those of crystals and the more varied intricacies of organic molecules and structures.
In fact, one of the aims of the present note is to show, by admittedly somewhat
artificial examples, an enormous variety of objects which may be obtained by
means of rather simple inductive definitions and to throw a sidelight on the
question of how much “information™ is necessary to describe the seemingly
enormously elaborate structures of living objects.

Much of the work described below was performed in collaboration with Dr. J.
Holladay! and Robert Schrandt.? We have used electronic computing machines
at the Los Alamos Scientific Laboratory to produce a great number of such
patterns and to survey certain properties of their morphology, both in time and
space. Most of the results are empirical in nature, and so far there are very few
general properties which can be obtained theoretically.

2. In the simplest case we have the subdivision of the infinite plane into squares.
We start, in the first generation, with a finite number of squares and define now a
rule of growth as follows: Given a number of squares in the nth generation, the
squares of the (» 4+ 1)th generation will be all those which are adjacent to the

! Holladay, J. C. and Ulam, S. M., Notices Amer. Math. Soc. 7 (1960), 234.
* Schrandt, R. G. and Ulam, S. M., Notices Amer. Math. Soc. 7 (1960), 642.
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existing ones but with the following proviso: the squares which are adjacent to
more than one square of the nth generation will not be taken. For example,
starting with one square in the first generation one obtains the following configura-
tion after five generations.
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FIGURE 1.

It is obvious that with this rule of growth the figure will continue increasing
indefinitely. It will have the original symmetry of the initial configuration (1
square) and on the four perpendicular axes all the squares will be present—these
are the “stems,” from which side branches of variable lengths will grow.

We can consider right away a slightly modified rule of growth. Starting again
with a single square and defining: the (n + 1)th generation as before to be squares
adjacent to the squares of the nth generation, we modify our exclusion proviso as
follows: we will not put into existence any square for the (n + 1)th generation if
another prospective candidate for it would as much as touch at one point the square
under consideration. With this second rule we obtain after five generations the
figure shown on the next page. With this rule we will again notice immediately
that the “stem” will continue indefinitely but now the density of the growing
squares will be less than in the previous case. In this case again one can calculate
which squares will appear in the plane and which will remain vacant.

A general property of systems growing under the rules (and even somewhat more
general ones) is given by a theorem due to J. Holladay. At generations whose
index number 7 is of the form n = 2%, the growth is cut off everywhere except
on the “stems,” i.e., the straight lines issuing from the original point.

The old side-branches will terminate and the only new ones will start growing
from the continuation of the stems.

One of the most interesting situations arises when the plane is divided into
equilateral triangles and starting from one initial triangle we construct new ones,
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generation by generation. We can again have the analogue of the first rule, i.e.,
for the (n + 1)th generation we consider all triangles adjacent to a triangle of the
nth generation. As before we shall not construct those which have two different
parents in the nth generation. The system which will grow will have the six-fold
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FIGURE 2.

symmetry of the original figure. There will appear a rather dense collection of
triangles in the plane. The second way is to take the analogue of the second rule
of “conflict,” i.e., do not construct a triangle in the (n 4+ 1)th generation if it
would so much as touch at one point another prospective child of some other
element in the nth generation. (We of course allow two prospective children to
touch on their base from two adjacent parents.) This rule will lead to a pattern
which has fewer elements and a smaller density in the plane than the one con-
structed under the first conflict definition.

One can prove easily that the initial hexagonal symmetry will persist and that
the growth will continue indefinitely with the *““stems” increasing in each generation
by one element, i.e., forming continuous lines. The side branches have variable
lengths and get “choked off” at variable times (generations). The author did not
manage to prove that there will exist infinitely long side branches. It is possible
to demonstrate that there will be arbitrarily long ones. The figure® shows a seg-
ment of the growing pattern. It represents one-half of a sixty degree section. The
other half is obtained by a mirror image. The other sections are obtained by
rotation.

For the construction with triangles under the first rule Holladay’s cut-off
property holds for generations with index of the form 2*. Under the second rule
it was not even possible to prove the value or indeed the existence of a limiting

3 See Example 5 at the end.
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density of the triangles obtained by the construction (relative to all the triangles in
the whole plane).

In the division of the plane into regular hexagons and starting with, say, again
one element, one can obtain the analogues of the two patterns. Again the analogue
of the more liberal construction has the cut-off property. For the more stringent
rule it was, so far, impossible to predict the asymptotic properties.

3. The construction of the elements of the (n + 1)th generation is through a
single parentage: each element attempts to generate on¢ new one in the next
generation. In the division of the plane into squares, triangles, hexagons, etc.,
one could adopt a different point of view: in the case of, say triangles, one can
consider instead of the areas of the triangles, their vertices only and imagine that
each pair of vertices produces a new vertex—namely, the one forming the triangle
with the two given vertices as their sides. Actually, the origin of the above-
mentioned constructions is due to this point of view:

In a paper, “Quadratic Transformations” (Los Alamos Laboratory Report
LA-2305, 1959), P. R. Stein and the writer have considered problems of “binary”
reaction systems. Mathematically, these involve the following situation: a great
number of elements is given, each element being one of, say, three types. These
elements combine in pairs and produce, in the next generation another pair of
elements whose types are unique functions of the types of the two parents. The
problem is to determine the properties of the composition of the population, as
time goes on. If x, , z denote the proportions of elements of the three types in
the nth generation, then the expected value of the numbers of particles of each
type in the new generation will be given by a quadratic transformation. For
example, the rule could be that an x type and a y type particle together produce
an x type, the (x + x) a z type, (x + z) a y type, (y + ) an x type, (y + z)
a z type and (z + z) a y type. (Actually there are more than ninety possible and
different such rules—we assume, however, that once a rule is chosen it is valid for
all time.) The rule above would lead to the new proportions x', y', z' given, as
follows:

"= 2xy + ),
y = 2% + 2xz,
z' =y + 2yz.

This is a transformation of a part of the plane into itself. We have three variables,
but x+y+z=1=x"+ y +2z. By iterating this transformation one
obtains the expected values of the numbers of elements of each type in the sub-
sequent generations. In the above-mentioned study some properties of the
iterates of the transformation were established. In particular, in some cases there
may be convergence to a stable distribution, in other cases there is a convergence
to an oscillating behavior, etc.

These studies concerned a random mating (or collisions) between pairs of
elements. The question arose as to the behavior of such systems if the binary
production were not a random one but instead subject to some constraints, say
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due to geometry. A most stringent one seemed to be to imagine, for example,
that the elements form the vertices of a division of a plane into regular triangles,
each vertex being of one of the three possible “colors.” Then consider an initial
configuration as given and assume the production of new elements by pairs of
vertices forming sides of the triangular division. In the simplest case one can
start with one triangle whose three vertices are all different in type. The next
generation will be formed then by the three pairs as parents and each side of the
given triangle will produce a new vertex whose color is a function of the two colors
of the parents. We shall obtain then a second generation and continue in this
fashion. Itisimmediately found, however, that the construction cannot be uniquely
continued. After a small number of generations it will appear that two pairs of
vertices forming two sides of the configuration will have a single vertex as com-
pleting the two triangles to be constructed. Which color to assign to the new
vertex? It may be that the two sets of parents will give a conflicting recipe for the
color of the new point.

One way out of this dilemma would be not to consider a point for which a
conflicting determination of color may be given and leave its position vacant.
This recipe extended to points which are doubly determined by two sides of pre-
viously constructed triangles gave rise to the study mentioned in the previous
paragraphs. Actually the patterns mentioned above could be considered as
consisting of points which are of three different kinds (imagining, for example,
that the new ones arise in a “molecule” as a result of a double bond, etc.). As it
is R. Schrandt and the writer have considered also other recipes for determining
the color of points which were given conflicting determinations by the two pairs
of parents. One rule (1) was to choose the type not involved in the conflicting deter-
mination: since there are three types, if the two determinations for the new points
differ, one may choose the third one. Another rule (2) was also considered: to
decide, at random with equal probability, which of the two contrasting deter-
mination should be chosen. Still another rule (3) was to choose, in case of such
a conflict, a fourth color whose proportion will be denoted by w and such that an
x type + w type produces x; y + w produces y and z + w produces zand w + w
produces w in subsequent combinations. This could have an interpretation of
representing a molecule of a type which cannot propagate except in combination
with itself. We have studied experimentally, on a computing machine, the
propagation of such systems. The Rule No. 2 in particular involves sometimes
a random determination of points somewhat similar to the study in LA-2305
mentioned above on random mating. Under all these rules, there seems to be a
convergence of the number of particles of different types to a steady distribution
(in contrast to the behavior given by iteration of the quadratic transformations
where in many cases there is an oscillatory limit or even more irregular ergodic
asymptotic behavior). In some cases the convergence seems to take place to a
fixed point (i.e., a definite value of x, y, z), and under Rule No. 2 to values, numeric-
ally not too different from the fixed point of the corresponding quadratic trans-
formation. It has not been possible to prove the existence of a limiting distribution
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but the numerical work strongly indicates it. It should be noted that all the
initial configurations were of the simplest possible type, e.g., consisted of one
triplet of points. A detailed description of this work will appear in a report by
R. Schrandt.

4. We return now to our discussion of growing patterns where we do not label
the new elements by different colors but merely consider, as in paragraph 2, the
geometry of the growing figure. The problem arose of considering the properties
of growth of such figures with a rule of erasure or “death” of old elements: suppose
we fix an integer k arbitrarily and to our recursive definition of construction of new
elements add the rule that we erase from the pattern all elements which are k genera-
tions old. In particular, suppose k = 3 and consider the growth from squares,
as in the first rule in paragraph 1, with the additional proviso that after constructing
the (n + 1)st generation, we shall erase all points of the (n — 1)st generation.
(The construction allows the configuration to grow back into points of a previous
generation of index / where /is less than » — 1.) In this construction, starting say
with two squares to begin with, one will observe a growth of patterns, then a splitting
(due to erasures) and then later recombinations of the pattern. A search was
undertaken for initial patterns which in future generations split into figures similar
or identical with previous ones, i.e., a reproduction at least for certain values of the
index of generation. It was not possible, in general, even in the cases where a
growth pattern without erasure could be predicted, to describe the appearance of the
apparently moving figures which in general exhibit a very chaotic behavior. In
one starting configuration, however, one could predict the future behavior. This
configuration consists of two squares touching each other at one point and located
diagonally. Under our Rule No. 1 with erasure of the third oldest generation, this
pattern is reproduced as four copies of itself in every 2?th generation (p =1, 2,
3. - ), displaced by 2” units from the original pattern. The same behavior
holds for starting patterns of say four squares located diagonally, or 8 points or
16 points, etc.

In case of a triangular subdivision the behavior of growth with a rule of erasure
for old elements was also experimentally investigated. The process of growth was
considered as follows: given a finite collection of vertices of the triangular sub-
division of the plane—some labeled with the index » — 1 and others with n—one
constructs the points of the (n 4+ 1)th generation by adding vertices of the triangles
whose sides are labeled either with n — 1 and »n or n and n—again, however, not
putting in points which are doubly determined. One then erases all points with
the index n — 1. In case of squares our rules of growth enable the pattern to
exist indefinitely, starting with any non-trivial initial condition. This is not
always the case for triangles. In particular a starting pattern of two vertices with
the same generation terminates after ten generations—that is to say, all possible
points of growth are conflicting ones and these are not allowed by our rule of
construction. One has to point out here that in the case of the “death” rule which
operates by erasure of all elements that are k generations old the initial con-
figuration has to specify which elements are of the Ist and which of: the 2nd
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generation. Two vertices, one labeled Ist and the other 2nd generation, will give
rise to a viable pattern.
ON THIS PAGE: A2858 AND A2859

5. In three-dimensional space a similar experimental study was made of growth
of patterns on a cubical lattice. The rules of growth can be considered in a similar
way to the recipes used in two dimensions. Starting with one cube one may
construct new ones which are adjacent to it (have a face in common). Again one
will not put in new cubes if they have a face in common with more than one cube of
the previous generation. The analogue of the first rule gives a system whose
density in space tends to 0. This is in contrast to the situation in the plane where a
finite density was obtained for this case.

R. Schrandt has investigated on a computer the growth of system with a rule
for erasure of old elements. The case of erasure of elements three generations old
was followed. The patterns which appear seem to be characterized by bunches
of cubes forming flat groups. These groups are connected by thin threads.
Description of these patterns and a few general statements one can make about
them will be also contained in Schrandt’s report.

These heuristic studies, already in two dimensions, show that the variety of
patterns is too great to allow simple characterizations. The writer has attempted
to make corresponding definitions in one dimensions with the hope that some
general properties of sequences defined by analogous recursive rules would be
gleaned from them. Suppose we define a sequence of integers as follows: starting
with the integers 1, 2 we construct new ones in sequence by considering sums of
two previously defined integers but not including in our collection those integers
which can be obtained as a sum of previous ones in more than one way. We
never add an integer to itself. The sequence which starts with 1 and 2 will con-
tinue as follows: 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, - -. The integer 5 is not
in it because it i1s a sum of two previous ones in two different ways. The next
integer which is expressed in one and only one way of the sum of previous ones is
6; 7 has a double representation but 8 is uniquely determined. 11 is the next and
so on. Starting with 1 and 3 one obtains the following sequence: 1, 3, 4, 5, 6, 8,
10, 12, 17, 21, - -. Unfortunately, it appears to the writer that even here it is
not easy to establish properties of these “unique sum sequences.” For example,
the question of whether there will be infinitely many twins, i.e., integers in suc-
cession differing by two, seems difficult to answer. Even a good estimate of
density of these sequences relative to the set of all integers is not easily made.

The aim in presenting these disconnected empirical studies was to point out
problems attending the combinatorics of systems which, in an extremely simplified
and schematic way, show a growth of figures subject to simple geometrical con-
straints. It seems obvious that, before one can obtain some general properties in
“auxology,’” a great deal of experimental data have to be surveyed, It was possible
to study the effect of many variations in our rules on the computing machines. A
scope attached to the machine allows one to survey the resulting patterns visually—
their computation takes only a very short time. This work is continuing and
perhaps some more general properties of their morphology will be demonstrable.
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EXAMPLE 2. ‘““‘Maltese” crosses. The black cells in this pattern are arranged according
to the pattern for Example 1, except that they are more spread out. Here we use the same
rule as in Example 1 with the following exception: if a cell would touch some other cell
(either already grown or being considered for growth in this generation) on either a corner
or a side, it is rejected. However, we made two exceptions to this restriction: (1) if the
cell touches some other cell by virtue of having the same parent.

2* 5*
(2) In the following case, 1 2 3 4 5. The two starred elements of the fifth generation
2* 5*

are allowed to touch potential, though previously rejected, children of the third generation.
This has to be allowed to enable the growth to turn corners. Note that the children of the
third generation were rejected only because of the potential children of the starred members
of the second generation.
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ExampLE 3. This pattern follows the same rule as Example 1, except that triangles are

used instead of squares.
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ExampLE 4. This pattern follows the same rule as Example 3 with one exception: if a new
cell would touch the corner of some old cell (other than a parent), it is rqected
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This pattern follows the same rule as Example 1, except that hexagons are

EXAMPLE 6.
used instead of squares.

The reason it is disconnected is that a triangle of cells is left out.

This triangle is the same as that formed in the first few generations for what is drawn plus a

fit.
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