%I M3053 N1237 #41 Sep 30 2023 09:18:34
%S 1,3,18,190,3285,88851,3640644,220674924,19427552055,2448107338105,
%T 436330306419678,108909970814260122,37752710546082668409,
%U 18044326480066641231855,11818118910855384843861960,10549135258779933616014791704,12772521057179994145518171256587
%N Number of precomplete Post functions.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
%H Ivo Rosenberg, <a href="http://dx.doi.org/10.1016/0097-3165(73)90058-7">The number of maximal closed classes in the set of functions over a finite domain</a>, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
%H Ivo Rosenberg and N. J. A. Sloane, <a href="/A002824/a002824_1.pdf">Correspondence, 1971</a>
%H E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, <a href="/A002824/a002824.pdf">Precomplete classes in k-valued logics. (Russian)</a>, Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
%F a(n) = binomial(n, 2) * A001035(n - 2). - _Sean A. Irvine_, Aug 24 2014
%t A001035 = DeleteCases[Import["https://oeis.org/A001035/b001035.txt", "Table"], b_ /; ! MatchQ[b, {_Integer, _Integer}] ][[All, 2]];
%t a[n_] := Binomial[n, 2] * A001035[[n - 1]];
%t Table[a[n], {n, 2, Length[A001035] + 1}] (* _Jean-François Alcover_, May 11 2019 *)
%Y Cf. A001035.
%K nonn
%O 2,2
%A _N. J. A. Sloane_
%E More terms from _Alois P. Heinz_, Jun 02 2017