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CLASSIFICATION AND ENUMERATION
OF PALINDROMIC SQUARES

MICHAEL KEITH
14 Quail Drive
Holland, Pennsylvania 18966

Introduction

In his interesting article, Rudolf Ondrejka presented a list of the first 151
integers whose squares, in base 10, are palindromes [1]. In this article, this list
is extended by exhibiting the next forty-two palindromic squares (in Tables 1
and 2), which completes the enumeration of all 193 such numbers less than 102,
Ashbacher, in the article immediately following this, also independently
extended Ondrejka’s list to include fifty-nine new entries beyond 10'? and a
larger sporadic member shown as the thirty-fifth entry in Table 1, However, I
also describe, in this article, a means of classifying all palindromic squares
into six classes: the four trivial solutions; four infinite families (which account
for the majority of such numbers); and “sporadic” solutions which do not fit
into any family. This is a useful classification due to the fact that most
palindromic squares belong to one of the four infinite families, which I
characterize (almost) completely below. For example, of the 253 palindromic
squares listed in Onjrejka’s article, here, and in Ashbacher’s article which
follows, only thrity-five are sporadic (see Table 1). In a sense, the sporadic
solutions are the only really “interesting” ones, although one of the four families
contains an unsolved problem.

This classification scheme for palindromic squares is loosely analogous to the
classification of the finite simple groups (see [2], for example), in which every
finite simple group is either a member of one of seventeen infinite families or is
a sporadic solution. However, uslike the sporadic finite simple groups, which
number exactly twenty-six, I suspact that the number of sporadic palindromic
squares is infinite.
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Table 1. Complete List of Sporadic Palindromic Squares
with Roots <2 X 1012

Root (R) Square (S = R?)
26 676 \
264 69696 ,/"‘“«1
307 94249 Sy -
836 098895 (-
2285 5221225
2636 6948496
22865 522808225
24845 617323716
30693 942060249
798644 637832238736
1042151 1086078706801
1270869 1615108015161
2012748 4051154511504
2294675 5265533355625
3069307 0420645460249
11129631 123862676268321 |
12028229 144678292876441 »
12866669 165551171155561 .
30001253 900075181570009
64030648 4099923833299904
306930693 94206450305460249
2062386218 4253436912196343524
2481623254 6158453974793548516
10106064399 102132537636735231201
10207355549 104190107303701091401
13579355059 184398883818388893481 *
22865150135 522815090696090518225"
30101273647 906086675171576680609*
30693069807 942064503484305460249*
83163115486 6916103777337773016196"* “
101116809851 10224609234443290642201* wg
111283619361 12384043938083934048321° 51—
112247658961 12599536942224963599521 * ,
128817084669 16593841302620314839561
1349465117841 1821056104269624016501281*

* Found by the Author in 1989,
** Found by Graham Lyons in 1984.
*** Found by Charles Ashbacher in late 1989.

S/
o
S ™
— WA

0

L 2Lz



.26 / MICHAEL KEITH

Table 2. The Non-Sporadic Palindromic Squares
with Roots from 11101010111 to < 1012

Root (R)

Square (S = R?)

11101010111
11101110111
11110001111
11110101111
20000000002
20000100002

100000000001
100001100001
100010010001
100011110001
100100001001
100101101001
100110011001
100111111001
101000000101
101001100101
101010010101
101011110101
101100001101
101101101101
101110011101
110000000011
110001100011
110010010011
110011110011
110100001011
110101101011
110110011011
111000000111
111001100111
111010010111
111100001111
200000000002

123232425484524232321
123234645696546432321
123432124686421234321
123434346696643434321
400000000080000000004
400004000090000400004

10000000000200000000001
10000220001410002200001
100020021004001i 20020001
10002222123632122220001
10020010200400201002001
10020230421612403202001
10022014302620341022001
10022234545854543222001
10201000020402000010201
10201222221612222210201
10203022140604122030201
10203244363836344230201
10221210222622201212201
10221432643834623412201
10223234344844343232201
12100000002420000000121
12100242003630024200121
12102202302620320220121
12102444325852344420121
12122010222622201022121
12122252443834425222121
12124214524842541242121
12321000024642000012321
12321244225852244212321
12323222344844322232321
12343210246864201234321
40000000000800000000004

In what follows, the terms root and square refer to the number R and its
square S under discussion. The symbol &V is used for the number of digits in the

number R.
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There are but four trivial solutions. The roots and the squares are single digits:

To illustrate the four families, here is a list of palindromic squares with 6- or

7-digit roots:
Root

100001
101101
110011
111111
200002
798644

1000001
1001001
1002001
1010101
1012101
1042151
1100011
1101011
1102011
1109111
1110111
1111111
1270869
2000002
2001002
2012748
2294675
3069307

The Type designation identifies each one as a member of one of the four
families (B, T, E, or A) or as a sporadic solution (S). The four families of
palindromic squares will now be defined and described in detail.

The Trivial {Tr) Solutions

R S
0 0
1 1
2 4
3 9

The Four Families

Square

10000200001
10221412201
12102420121
12345654321
40000800004
637832238736

1000002000001
1002003002001
1004006004001
1020304030201
1024348434201
1086078706801
1210024200121
1212225222121
1214428244121
1230127210321
1232346432321
1234567654321
1615108015161
4000008000004
4004009004004
4051154511504
5265533355625
9420645460249

Type
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Some further notation is necessary. In the following, [d] , where d is a digit,
represents a string of zero or more d’s. The symbol (d) represents a string of one
or more d’s. In either case, the use of an “x” instead of a digit represents a string
of arbitrary (and not necessarily all the same) digits. A primed string, such as

[x]’, represents the same string as [x] but with the order of the digits reversed.

The Binary Root (B) Family

This family is defined for all even & > 2. R is of the form R = 1[x] [x] 1,
where all X’s - 0 or 1. The family name is due to the fact that all digits of the
root R are either O or 1. Note that R, as well as S, is a palindrome.

At first glance (in the above table for N = 6, for instance), it would appear
that all combinations of 0’s and 1’s are possible for the string [x] . If this were
so, the number of elements of the B family for N=2,4, 6, . .. ,would be I, 2,
4, 8, 16, 32, etc. However, a computer search reveals that in fact the number of
elements in the B family is 1, 2, 4, 8, 15, 26, etc. What is going on here?

To understand this, consider what happens when we square R with all x’s
equal to zero. The multiplication looks like:

10....01
10....01

10....01
00....00

00....00
etc.
00....00
10....01

10....020....01

S is, of course, a palindrome. Because R is palindromic, S will remain
palindromic if we change 0’s to 1’s in R subject to the condition that no carries
are generated when adding up the partial products. Now, note that each 0 we
change toa 1 in [x] will cause an increase of 2 in the middle column. Therefore,
we can change at most three O’s or 1’s (increasing the middle digit of the product
from 2 to0 8). It is easy to verify that this necessary condition is also sufficient;
therefore, the members of the B family are given by

R=1[x][x]"1, all X’s=0or 1, with at most three equal to 1.

The total number of B elements'fg‘r a given value of V is thus equal to the
number of binary strings of length'(V - 2)/2 with at most three ones. This can
be calculated by summing up the first four elements of row (V - 2)/2 of Pascal’s
triangle, or, more prosaically, by the formula

Bl = (V - 6M? + 327)/48.
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The Ternary Root (T) Family

This family, so called because all the digits of R are 0, 1, or 2, is defined for
all odd V> 3. R is of the form R = 1[x]y[x]'1, where all x’s=0or l and y = 0,
1, or 2. Note that R is again palindromic.

By a similar analysis as above, we can establish the following additional
necessary and sufficient conditions for S to be palindromic:

(a) if y = 2, then [x] contains at most one 1; and
(b) if y <2, then [x] contains at most three 1’s.

Condition (b) had been noted much earlier by Simmons, who stated that if
R is a palindrome with 9 or fewer 1’s and the remainder of its digits are 0, then
S is necessarily a palindrome since a carry cannot be generated [3].

The total number of T family members for a given value of NV is

ITl= (V3 - 9N? + 59N -51)/24.

The Even Root (E) Family

This is the only family in which the R values are even. They are of the form
2[0] 2 if NV is even, or 2[0] x[0] 2, where x is either O or 1, if ¥ is odd. Therefore,
the total number of E family members is simply:

[El = 1if NV iseven.
=72 if Vis odd.

The Asymmetric Root (A) Family

This family, defined for all odd N > 7, is by far the most interesting of the
four. R is of the form 1(x)0[9]9[0] 1(x)'1, where all x’s = 0 or 1, and where the
[9] and [O] strings are the same length. This family gets its name from the fact
that all its R values are asymmetric (that is, non-palindromic). Note that there
are two independent parameters which can be varied: the length of the (x) string,
which we denote by x, and the total number of 9’s in R (equivalently, the
length of the [9] and [0] strings plus 1), which we denote by z. The question is:
for each choice of x and z, which (x) strings generate palindromic squares?

This appears to be a very difficult question, and we only have a partial
answer. By actually doing the multiplication, it is easy to see that if (x) is all
zeros, the square is not palindromic. Therefore, (x) must contain at least one 1
digit. But the middle digit of the product, when (x) is all zeros, is a 4; therefore,
at most two (x) digits can be 1’s.

So (x) contains either one or two 1’s, but not, it turns out, in all
combinations. Here is a table of the number of (x) strings that actually generate
palindromic squares, for each choice of x, z, < 12, produced by computer search.
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Number of 9’s (z)

1 2 3 4 5 6 7 8 9 10111213 14

1 10000 O0O0O0GOO OO0 O 0

2 2100000000000 0

3 421 000000O0O0O0O0 0

4 4 3 210000000 UO0O0 0

5 541 21 00000U0UO0U0 0
Number 6 43 4212100000000
of x's 7 5552121000000 0
) 8 4 3 23 21 2100000 0
9 5 6 5 6 1 2 1 21000 0 0

10 4 3 4 3 41 21210000

11 5 6 4 45 212121000

12 4 3 4 3 4 3 21 2 12 100
13565 65 6 1 2121210

14 4 3 4 3 2 3 41 212 1 2 1

These numbers are quite mysterious, although we do have the following
theorems and-conjectures (where A(x,z) denotes an entry in the above array):

Theorem 1:  A(x,z}=0forx <z

Conjecture 1: Forz <x <2z,
Afx,z)=1 ifx+ziseven,
=2 ifx+zisodd.

Conjecture 2: Forx > 4z,

Afx,z)=3 ifxiseven and z is even,
=4 jifxisevenand zis odd,
=5 ifxisoddand zis odd, and
=6 if xisodd and z is even.

The boldface numbers in the above array correspond to Conjecture 1, and
the boldface italic numbers correspond to Conjecture 2. Even if both of these
conjectures are true, the wedge of underlined numbers in between is still

unexplained (although we conjecture that they are all between 1 and 6 inclusive).

Lacking a general formula, this table at least lets us compute the value of |A]
(t.ha_t is, the total number of A-family members) for the first few values of &, by
adding up along the minor diagonals (all entries with x + z = (V - 3)/2):

lAl=1,2,5,6,9,10,10, 15, 15, 16, 18, 24, 18, 26, . . . .

-
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These correspond, respectively, to
N=7,9,11,13,15,17,19,21,23,25,27,29,31,33,....
Some examples:
There is one A-family member with a 7-digit R:
11091117 = 1230127210321.
There are two A-family members with 9-digit R’s:

1100910112 = 1212003070300121
1110911112 = 12341234943214321.
There are nine A-family members with 15-digit R’s, one of which, for
example, is:

1110000910001112 = 12321020202032923020202012321.

Finding an exact formula for either A(x,z/ or [A]| remains an open problem.

Sporadic Solutions

Table 1 gives a complete list of all sporadic solutions with R <2 X 10'2,
including ten new ones not listed in [1]. They seem to be fairly evenly
distributed, so we conjecture that there are an infinite number of sporadics. We
also conjecture that there are no other infinite families other than the four
described above. Can someone supply a proof of either of these conjectures?

There is a nice example of a false conjecture contained in Table 1. It appears
that there is another infinite family—note the R values 307, 30693, 3069307,
306930693, 30693069307. There is one more solution in this series:

30693069306932 = 9420645034800084305460249,
but, in fact, the next one,
3069306930693072 = 94206450348005140084305460249,

is not palindromic! So this is not another infinite series, merely a very interesting
curiosity. Does it have anything to do with the fraction 31/101, which equals

30693069 ...7
Table 2 extends Ondrejka’s list of non-sporadic palindromic squares.

Summary

Shown on the next page is a list of the number of palindromic squares of
each type for each value of V.
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N Tr B T E A S Total
1 4 4
2 1 1 1 1 3
3 3 2 3 8
4 2 1 2 5
5 6 2 3 11
6 4 1 1 6
7 11 2 1 5 19
8 8 1 S 14
9 20 2 2 1 25

10 15 1 2 18

11 35 2 S 7 49

12 26 1 4 31

13 58 2 6 1+? 67+

14 42 1 ? 43+

15 91 2 9 ? 102+

16 64 1 ? 65+

Totals: 4 162 224 22 23 35+ 470+

Ondrejka mentions the eighty-year-old conjecture that
10101010101010101 is the smallest integer that generates a palindromic square
that is also pandigital. In searching up to 12-digit R’s, we have not discovered a
counterexample. To finally answer this question, “only™ the four question
marks in the above tabulation need to be resolved.
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MORE ON PALINDROMIC SQUARES

CHARLES ASHBACHER
Box 121
Hiawatha, lowa 52233

In a recent article, Rudolph Ondrejka presented a table of the first 151 positive
integers n, where n? is a palindromic number [1]. He noted that there are two
general types of these squares: those in which 7 is also palindromic and those
in which # is not. Simmons had demonstrated that there are infinitely many
members of the former set [2, 3], and Ondrejka demonstrated that there are
infinitely many members in the latter set. Keith, in the article immediately
preceding this one, classifies all palindromic squares into six classes [4]. He also
defines four infinite families which account for almost all palindromic squares.
The fifty-nine entries in Table 1 were found independently by me and all fall
into one of the families defined by Keith.

Ondrejka closed his paper by presenting three problems for computer search:

1. Palindromic squares with an even number of digits are rare. Only four are
known:
(836)2 = 698896;
(798644)% = 637832238736;
(64030648)2 = 4099923883299904; and
(8316115486)% = 6916103777337773016196.

Is there a fifth member of this set and are these squares members of an
infinite set? These are all members of the sporadic family of palindromic
squares mentioned by Keith. The list, on page 125 of this issue of JRM, of
the thirty-five known members of this family, includes the four members
of the above set. The search for this particular type of palindromic square
must include the fact that the leading digits of n must be greater than
3162277660 . . . to ensure that the square has 27 digits. Neither Keith nor
I have found any new members of this particular set.
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