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On Palindromic Squares of Non-Palindromic
Numbers
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Introduction

Numbers which are unaffected by reversal of the order of their digits, such as 141
and 15351, are called palindromes by analogy with words or sentences having this
property. These numbers have been the subject of a considerable recreational
problem literature [1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15] much of which is devoted
to an open conjecture that the operation of successively reversing and adding any
integer to itself a finite number of times will ultimately generate a palindrome
[1, 6, 10, 12].

This paper originated from the observation that although there are infinitely
many decimal numbers whose squares, cubes, and fourth powers are palindromes™
[1] a computer search showed that there was no instance of a decimal number n

“ with 1 < n* < 2.8 X 10™for4 < k < 11 such that n* was palindromic. Furthermore,
in the case of decimal numbers it is not known whether there are finitely or infinitely
many non-palindromic n for which n*, k = 2, 3, or 4, is palindromic, for example,
26° = 676, 307° = 94,249, and 2201° = 10,662,526,601. In fact, the magnitude of
the numbers which have already been examined suggests that for decimal numbers
there may be no palindromic kth powers for £ = 5 and no palindromic powers of
non-palindromic numbers for & = 4. This also raises the question of whether these
curious representational properties are restricted to decimal numbers or whether
similar behavior occurs in other bases.t In this paper it is shown that this is indeed
the case—by exhibiting several infinite sets of non-palindromic numbers in bases
3 and 4 whose powers are palindromic.

Property P
1
——
Since all decimal numbers of the form 10 --- 01 have palindromic squares,

cubes and fourth powers (but not a palindromic fifth or higher power), there are
infinitely many palindromic integers z" for z > 1 and n = 2, 3 or 4. As the examples

LS _
*10-.--01 is obviously such a number for every 7.

t The author is indebted to H. Hanani for suggesting this extension of earlier work [8].
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mentioned in the introduction illustrate, however, there are also examples of
palindromic powers of non-palindromic integers for at least squares and cubes.
Table 2 of reference [8] gives an exhaustive compilation computed to the limits
imposed by a CDC 6600 of the decimal palindromic squares and reveals that out
of the 55 such palindromes, 16 are the squares of non-palindromic integers. We
shall call this property of a palindromic integer being a power of a non-palindromic
integer-property P. In decimal notation instances of palindromes possessing prop-
erty P are apparently exceedingly rare for powers higher than the square. We have
proven [8] and C. W. Trigg has shown independently [11] and communicated to
the author the result that the only palindromic cube less than 1,953,125,000,000
whose cube root is not a palindrome is 10,662,526,601 = (2201)°. As was noted
above in this connection, an exhaustive computer examination of all of the palin-
dromes less than 2.8 X 10" has failed to discover even a single instance of a palin-
drome greater than 1 whose fifth, sixth, seventh, eighth, ninth or tenth root was
an integer [8] and no instance of a fourth power palindrome possessing property P.
Hence, for decimal integers (2201)° is the only known instance for a power higher
than a square of an integer possessing property P.

Decimal Palindromic Squares

The following four non-palindromic integers

3

307
30693
3069307

were all shown to have palindromic squares in [8]. Let N, represent the nth such
number and extend this list systematically by the recursion relation N, = N,-
10> 4 (—1)"-7. This procedure generates three new palindromic squares:

(306930693)* = 94206450305460249
(30693069307)" = 942064503484305460249
(3069306930693)° = 9420645034800084305460249

The square of the last number above, with twenty-five digits, is the largest palin-
drome possessing property P known to the author. The next such number,
(306930693069307)" = 94206450348005140084305460249 while almost a palin-
drome, fails in the two indicated digits, as do the other larger numbers generated
by this recursion. The magnitude of the task of direct computation and search
with numbers of this size makes it unlikely that this example of a twenty-five digit
palindrome with a non-palindromic square root will be improved upon by direct
calculation.

Binary Palindromic Powers

Table 1 gives the binary palindromic squares, N°, for 1 < N < 1,234,162. The
decimal value of the indicated number is given below its binary representation.
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For binary representations we have been unable to even show whether there
are infinitely many palindromic squares or not. It is worth noting that the only
value of N greater than 1 and less than 65,000 whose cube is a palindrome is

(11)* = 11011.

366
N39S

TABLE 1. Binary Palindromic Squares

11
3
1000110101011 1001110 0010100000111001
4523 //20457529
10111011010111 10001001000111 460010010001
11991 A\ 143784081
100011100010101 100111011119610100 110111001
18197 / 31130809
100010100101110011 10010101100100000100000100110101001
141683 20074072489
'
100001010101110001001 10001010111100100000100000100111101010001
1092489 1193532215121
Ternary Palindromic Squares N

In ternary representation there are several infinite classes of palindromic squares
possessing property P as we shall prove by forming the squares of the corresponding
base 3 power series and then using arithmetic in base 3 to reduce the coefficients
to normal form.

First consider the ternary integers of the form

32Ic+1'—-2 + 3k+i—1 - 3k—1 + 1 (1)
wherek =2 2and 1 <7 < k.
Simple manipulation shows the square of (1) to be of the form
34k+2|'—4 + 2'331\7-&-2{—3 _ 2‘33k+i~3 + 32k+2i*2 + 321:—2 + 2.3k+i—1 _ 2.310—1 + 1 (2>

There are two cases to be considered.

Case 1. If 1 <7 < k — 2 it is easy to verify that each of the exponents in the
seven variable terms are distinct and ordered (in magnitude as shown. The two
pairs of terms

2_33k+2i—3 _ 2_33k+1'—3 _— 1'33k+2i~3 + 2.33k+2i—4 + L. _l_ 2_33k+i-—2 + 1.33k+i—3
and

2.3k+i—1 . 2.3k—l _ l.3k+i—1 + 2‘3k+'i-—2 + - + 23k _|_ 1.310——1

each contributes 7 4+ 1 terms symmetric about the central term Q. 3%+ gttt

and 3%7* each contribute a 1 symmetrically located 7 spaces from the center also.
Therefore, expression (2) is a palindrome forall 1 < ¢ < k — 2.

On Palindromic Squares of Non-Palindromic Numbers 13



Case 2. If 2 = k — 1, then

3+ —3=2k+ 20— 2

and
k+72—1=2k—2
so that expression (2) becomes:
36k—6 + 2.35k—5 _ 34/.;—4 + 32k—1 _ 2_3k—1 + 1 (3)

Tor k = 2 the exponents in expression (3) are distinct and ordered as shown. The
two pairs of terms

2 . 35/0-5 _ 34}:—4 — 1 .35k—5 + 2 .351\:—6 + . _I_ 2 i 34k~3 + 2 _34!:-4
and
3?}0—1 _ 2'3k—1 — 2'32k—2 + 2.32k73 + L. + 23k + 1 3k~—1

each contributes k& terms symmetric about 3% °. Hence, expression (2) is also a
palindrome for 2 = & — 1. Expression (2) is not a palindrome for z = k. The follow-
ing examples illustrate the foregoing result:

k=4, 1 =1
(10002001)* = 100110101011001
k=4, <=2
(100022001)* = 10012110001121001
k=4, =3
(1000222001)* = 1001222000002221001

Using precisely the same method of proof, it is possible to show that expressions
(4), (5) and (6) below also have squares which possess property P.

3F+2.377 43 +2 k=7 (4)
and

3* 4+ 3 -1 k=2 (5)
and

2.32k+1 + 3k+1 + 3k + 2 ]C

v
Do
—~
=2]
~—

The square of expression (4) is

32k+32k—1+32k—2+32k—3+32k—4+2.3k+2+2.3k+1
(3k+2_3k—2+32+2)2: +2.3k
1+3+3+3 +3 2.3 2.3

which is a palindrome, i.e.,
(10200102) = 11111 22222 11111
(1020001()2)2 11111 0222220 11111 ete.
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N
1

2
11
101
102

202
211
1001
1021
2002

10001
10022
11012
12201

e

100001
100201
200002
201102
1000001

1000222
1002201
1011221
1101211
1211201

1212022
2000002
10000001
10002001
10200102

10201121
11011211
12212101
20000002
20011002

100000001
1000022272
100022001
102000102
102021021

102110021
110012011
122010022
200000002
202022112
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1
11
121

10201
11111

112211
122221
1002001
1120211
11022011

100020001
101212101
122111221
1012112101
1100220011

10000200001
10111011101
110002200011
111221122111
1000002000001

1001221221001
1012200022101
1101202021011
1221221221221
10101111110101

10110200201101
11000022000011
100000020000001
100110101011001
111112222211111

111212202212111
122110101011221
1021101221011201
1100000220000011
1101211111121011

10000000200000001
10001222122210001
10012110001121001
11111022222011111
11200222122200211

11212012021021211
12111121112111121
101212011110212101
110000002200000011
120021201102120021

N
1000000001
1000020001
1000222001
1020000102
1100112011

2000000002
2000110002
2002212102
2012102202
10000000001

10000022222
10000220001
10012011022
10122002102
10200000102

10200022121
11000120011
12100102001
12200112201
20000000002

20020122102
20200110202
100000000001
100000200001
100002220001

100010210001
100120011022
101000200101
101122011221
102000000102

102020121021
110111021211
200000000002
200001100002
200110011002

201221020202
1000000000001
1000000222222
1000002200001
1000022220001

1001112021201
1001200011022
1001202111201

TABLE 2. Palindromic Squares-—Base 3 For N < 575,571 (Base 10)

N?
1000000002000000001
1000110010100110001
1001222000002221001
1111100222220011111
1211102000002011121

11000000022000000011
11001210111101210011
11102202211220220111
11211211111111211211
100000000020000000001

100001222212222100001
100012101000101210001
101011221101122110101
111012100111001210111
111110002222200011111

111112100010001211111
121011111111111110121
1001121100220011211001
1012100011221100012101
1100000000220000000011

1110000101001010000111
1122200022002200022211
10000000000200000000001
10000110001010001100001
10001221100000112210001

1000211211222112112000k
10101102101010120110101
10201111121212111110201
11012010120202101021011
11111000022222000011111

11200102212021220100211
12210001111011110001221
110000000002200000000011
110001210011110012100011
110121101220022101121011

112201102002200201102211
1000000000002000000000001
1000001222221222221000001
1000012100100010012100001
1000122220000000222210001

1010010220112110220100101

1010110010010100100110101
1010122002222222002210101
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The square of expression (5) is
(32k + 370 _ 1)2 — 34k + 2.331‘: _ 32k _ 23k _I_ 1.

The difference 2-3% — 2-3* = 1.3% 4 2.3%" 4 ... 4+ 2.3 L+ 3* which upon
subtracting 3% gives a 1 in the central position to form a palindrome, i.e.,

(10022)* = 101212101
(1000222)* = 1001221221001 ete.

The square of expression (6) requires a slightly different argument to show that
it is a palindrome.

34k+3 + 34k+2 + 33k+3 + 2.33k+2 + 33k+1 + 32k+3
(2'32k+1 + 3k+1 + 3k + 2)2 — + 32k+2
1 + 3 + 3k + 2.3k+1 + 3k+2 + 32k + 32k+1 (7)

Case 1. For k& = 3: the exponents in expression (7) are all distinct and in the
order shown, hence (7) represents a palindromic square in these cases.
Case 2. For k = 2:

(201102)* = 111221122111

which is a palindromie square.
Note: When k& = 1, the square is not a palindrome;

(2112)* = 20100021
hence expression (6) is the best possible.
(20011002)* = 1101211111121011
(2000110002)* = 11001210111101210011 ete.

Il

Ternary Palindromic Cubes

The only value of 1 < N = 28,800 for which N° is palindromic in base 3 is 2° =
22, so that no table is shown for this case.

Base Four Palindromic Squares

In base four an even richer set of identities can be found which generate palin-
dromic squares from non-palindromic factors—and hence palindromic integers
which possess property P. Since the method of proof is identical to that used in
the previous paragraph, we shall merely state the results without proofs or examples.
The following infinite classes of non-palindromic polynomials all possess palindromic
squares.

42 + 4+ 4 3.4+1 +1 k=4 (8)
and

AT g4k ggF g k=3 (9)
and

AT g g gk 4y +1 k=2 (10)
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and

4% 9.4 — 1 k=1
and
4% 4 4F 2.4 11 k=2
and
4% gt L4t 24 4+ 1 k23
TABLE 3. Palindromic Squares—DBase 4 For N < 566,449 (Base 10)
N N2 N N?
1 1 100010001 10002000300020001
11 121 - 100012001 10003001010030001
101 10201 100103001 10021212021212001
111 12321 100301113 10121101210112101
1001 1002001 100332101 10200011011000201
1013 1032301 101002101 10202031013020201
1103 1223221 103231203 12010203030201021
10001 100020001 110002011 12101103030110121
10101 102030201 110003323 12102131013120121
10121 103101301 110012011 12103303230330121
10331 120202021 110033011 12121132223112121
100001 10000200001 110111211 12131212121213121
100133 10033233001 1000000001 1000000002000000001
1000001 1000002000001 1000013333 1000033332333300001
1001001 1002003002001 1000132001 1000330100010330001
1001201 1003010103001 1012211213 1031312213122131301
‘E 1010301 1021320231201 1033001203 1201210310130121021
1100211 1211130311121 1033020131 1201311320231131021
1100323 1212110112121 1100333011 1212132222222312121
1101211 1213332333121 1102013231 1221113300033111221
10000001 100000020000001
10001333 100033323330001
10013201 100331000133001
10031113 101231222132101
100000001 10000000200000001
TABLE 4. Palindromic Cubes—Base 4 For N < 28,800 (Base 10)
PJ:3
1 1
11 1331
101 1030301
1001 1003003001
10001 1000300030001
100001 1000030000300001
1000001 1000003000003000001
10000001 1000000300000030000001
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(11)

(12)

(13)
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TABLE 5. Palindromic Squares—Base 5 For N < 692,021 (Base 10)

N

2
11
101
111
231

1001
1111
10001
10101
11011

11204
100001
101101
110011
242204

1000001
1001001
1010101
1042214
1100011

2020303
2043122
2443304
10000001
10011001

10100101
11000011
100000001
100010001
100101001

101000101
110000011
111103411

N2
4
121
10201
12321
114411

1002001
1234321
100020001
102030201
121242121

131141131
10000200001
10221412201
12102420121

131441144131

1000002000001
1002003002001
1020304030201
1143442443411
1210024200121

4133144413314
4342230322434
13431400413431
100000020000001
100220141022001

102012040210201
121000242000121
10000000200000001
10002000300020001
10020210401202001

10201020402010201
12100002420000121
12400140104100421
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TABLE 6. Palindromic Cubes—Base 5 Tor N = 65,000 (Base 10)

N N3

11 1331

101 1030301
1001 1003003001
10001 1000300030001
100001 1000030000300001
1000001 1000003000003000001

Conclusion

Based on the several results given here and in spite of our failure to exhibit even
a single infinite class in either binary or decimal notation, we conjecture that,
independent of the base, there are infinitely many palindromic squares possessing
property P. Unfortunately we have been unable to construct an infinite class of
cubies with property P irrespective of the base, so that we cannot even conjecture
about the behavior to be expected for higher powers with respect to property I.
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