[go: up one dir, main page]

login
A002738
Coefficients for extrapolation.
(Formerly M3165 N1283)
3
3, 60, 630, 5040, 34650, 216216, 1261260, 7001280, 37413090, 193993800, 981608628, 4867480800, 23728968900, 114011377200, 540972351000, 2538963567360, 11802213457650, 54396360988200, 248812984520100, 1130341536324000, 5103492036502860, 22913637714910800
OFFSET
0,1
COMMENTS
Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n-2 of B equals a(n-3). - T. D. Noe, May 01 2011
REFERENCES
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
FORMULA
From Alois P. Heinz, May 02 2011: (Start)
a(n) = 3*binomial(2*n+3,n)*binomial(n+3,n).
G.f.: 3*(1 + 6*x)/(1-4*x)^(7/2). (End)
a(n) = binomial(2*n+3,n)*(n^3 + 6*n^2 + 11*n+6)/2. - Charles R Greathouse IV, May 02 2011
a(n) = 3*A007744(n). - R. J. Mathar, Jan 21 2020
a(n) = (3/2)*( 5*A020918(n) - 3*A002802(n)). - G. C. Greubel, Mar 21 2022
MATHEMATICA
Table[Total[Inverse[HilbertMatrix[n]][[n - 2]]], {n, 3, 25}] (* T. D. Noe, May 02 2011 *)
PROG
(Magma) [3*Binomial(2*n+3, n)*Binomial(n+3, 3): n in [0..30]]; // G. C. Greubel, Mar 21 2022
(Sage) [3*binomial(2*n+3, 3)*binomial(2*n, n) for n in (0..30)] # G. C. Greubel, Mar 21 2022
CROSSREFS
A diagonal of A331431.
Sequence in context: A195560 A229749 A283381 * A006432 A360577 A195550
KEYWORD
nonn
EXTENSIONS
Extended by T. D. Noe, May 01 2011
STATUS
approved