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1. Introduction

Ler Q be a closed region in §? bounded by a simple closed curve y. By
a triangulation T of Q of type [n,m] we shall mean a simplicial complex
(cf. (1) (3)) with polyhedron Q, having m + 3 0-cells in its boundary, and
n other O-cells (called respectively exterior and interior vertices). The
L-cells of T will be called respectively exterior and interior edges according
as they are or are not contained in y; 2-cells will be called faces. The
simplicial dissection induced in y by 7 will be denoted by 7._,. The
classes of i-cells of T and of 7}, will be called respectively 7% and 7,_,*
(t=0,1,2).

Let T and 7' be triangulations of two such regions Q and Q' respectively.
An isomorphkism ¢ :T—T’ is defined to be a one-to-one onto mapping
o CJT"—> sz T which carries i-cells onto i-cells, such that ga and gb

1=0 1=0 .
are incident in 7" if and only if @ and b are incident in 7'.

As a simplex is completely determined by its vertices, we may denote
the edge (face) incident with distinet vertices a,b (a,b,c) by {ab) ({abc)).
We shall denote the oriented edge directed from vertex a to vertex b
by <ab)*.

Lexya. Let T and T' be triangulations of Q and Q' respectively, and let
v : T =T be an isomorphism. Then
(1

1) g is determined by | T°;

(1.2) ¢ induces homeomorphisms of Q0 with Q' which carry i-cells of T
respectively onto i-cells of T' (i = 0,1,2); conversely, any homeo-
morphism of Q onto Q' induces a triangulation T" of Q' and an
tsomorphism " T =T";

(1.3) 'f'[Ts_‘.\:ti) = T/e.\‘ti (t=0,1);

(L4) if ‘ab, isan edge in T,, 2, then ¢ is determined by ga and b,

Progf. (1.1) and (1.2) arc standard properties of simplicial mappirl‘r’«*:

(1.4 follows from the fact that cdges incident with exactly one face in 7
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must be carried into edges of the same type in 7"; hence the vertices
incident with these edges must likewise correspond. (1.4) follows from
a more general theorem which states that an isomorphism between
non-separable maps on §? is completely determined by the images of
one face, an edge in the boundary of that face, and the ends of that edge

(@) (5.1)).

It is our aim, ultimately, to enumerate the isomorphism classes of
triangulations of type [n, 0].

We define a rooted triangulation to be an ordered pair (7, {pg>*), where
T is a triangulation of some region Q and {pg) is an exterior edge of 7.
Let {(pg>,{p'q"> be edges of triangulations T, T’ of regions Q, Q’ respec-
tively. An isomorphism o : (T, {pg>*)>(T",{p'q’>*) will be simply an
isomorphism ¢ : T 7"; & will be said to be a root-isomorphism if gp = p’
and pg = ¢’. By (1.4), if such an isomorphism exists it is unique. We shall,
henceforth, identify root-isomorphic rooted triangulations; by (1.2) it is
no longer necessary to specify the region triangulated.

We define a strong triangulation to be one in which no interior edge is
incident with fuo exterior vertices. In (7), Tutte has shown that the
number (up to root-isomorphisms) of rooted strong triangulations of type
[n,m] is

3(m—1)! (m+2)!
(3n+3m+3)!

min (m,n—1) (m—=3j)(m+j+2)(4n+3m—j+1)!
S : : : f 0
& IG+D T m—j+2) m—j) (n—j—1)1 °F ™>

' and

2(4n+1)!

@Gn+2) (niD)! OoF m=0.

We shall begin by enumerating (up to root-isomorphisms) rooted
triangulations of type [n,m] (all of which are strong for m = 0), showing
their number to be

2(2m +3)! (4n+ 2m + 1)!
(m+2)!m!n! (3n+2m+3)1

Then we shall enumerate (again up to root-isomorphisms) rooted
triangulations of type [n.m] which are invariant under various types
of isomorphisms, and finally compute the number of isomorphism classes
of triangulations of tvpe [n,0].
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WILLIAM G. BROWN
I. ROOTED TRIANGULATIONS

2. Rooted triangulations of type [, m])
Let D, ,, denote the number (up to root-isomorphisms

triangulations of type [n,m]. The corresponding

(tentatively defined as formal power series) are

A ) of roote
generating functiong

Dn(y) = E Z)n,m ym,

m=0

@

E '1)71,171 x”l,

n=0

(2.2) D,y(z) =

D(’t,y) = E X Dﬂ,nzxn

n=0m=0

@
yr= 3 D.m(x)ym
m=0

In the sequel we shall develop and solve an equation for D(x,y) in a
manner very similar to our treatment in (2) of the enumerating function
for rooted non-separable planar maps.

3. An equation for D(z,y)
| Let (Tj (p1p2>*) be any rooted triangulation of type [n, m], wherein
Py py> 1z the face incident with (p,p,>, and let U be the simplicial

complex‘ obtained from 7 by erasing {p, p,> and {ap,p,>. By considering
the possible forms of U we shal]l develop an equation for D(z,y)

a
Py
Firc. 1
Case 1. Suppose a€T ° (cf. Fig. 1). Then, provided {ap,> ¢ 7,1, the

simple arc ap; in y— Cp1pes can be completed by <ap;> to form a simple
closed curve enclosing a triangulated region with {ap;>* as root, sayv of
tvpe [n;.m;] (7 =1,2); when Cap;y € T, ! the triangulation degeneratés to
an criented edge, which ve shall classify as the ‘link-triangulation’ of tvpe
(0. =17(j =1,2). The following conditions must he satisfied -

(3.1) Myt my+2=m, n +n,=n.
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Conversely, any pair of rooted triangulations of type [n;,m,](j =1,2)
(allowing the link-triangulation) satisfying (3.1) yields a unique rooted
triangulation of this case. Thus these triangulations are enumerated by
the generating function

¥y +D(z,y)P* = [1+yD(=z,y)P
(a) (b) '

P Py pr==¥pa
F16. 2

Case 2. Supposea ¢ T, °. Then U is a triangulation of type [n—1,m + 1]
in which we may take {ap,>* as root (cf. Fig. 2a). Conversely, let
(T", {ap;>*) be any rooted triangulation of type [n—1,m+1] in which
P, and p, are the two external vertices joined to a by external edges.
Adjoining a new face {ap, p,> and a new edge {p,p,> to 7" will produce
a rooted triangulation (7, {p, p,>*) of type [n,m] if and only if there is
no edge {p,p,» in T’. We must therefore exclude from consideration

(1) triangulations 7" of type [#n—1,0], represented by the seriest
zD(z,0); and : ]

(i) triangulations 7" in which p, and p, are joined by an internal edge;
these are uniquely obtained by juxtaposing triangulations respec-
tively of types [n,,m] and [n,, 0] (see Fig. 2b), where

(3.2) n+n,=n—1,
and are therefore enumerated by the seriest
xyD(z,0) D(z, y).
Hence the triangulations in Case 2 are enumerated by
z{y[D(z.y) — D(x, 0)] - D(x, 0) D(z, y)}.

Combining our results we obtain

Diz.y) = [1+yD(x.y)F + 2y~ [D(x,y) — D(x, 0)] — D(x, 0) D(z, y)},
whence
(3.3) ¥ D(r.y)P+[2y*—y+x—2ayD(x,0)] D(x,y) + [y — xD(x,0)] = 0.

T The cacf Lot of u% 47 in these series is the number of triangulations T of type
[ae, 0 ] i whied ared o pre joined respeetively by an external or an internal edge.
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r\..
We could. of course, substitute our known value of D(z,0) (from (7)) in
(3.3) and attempt to solve for D(xz,y) directly. We shall show, however
that (3.3) determines D(r,y) uniquely as a formal series in non-negativé
powers of r and y.
By comparing coefficients of powers of x in (3.3) we obtain

(3.4) VDoY) + (24 —y) Dy (y) +y = 0,

(3.5) y(1-2y)D, (y) = yapgoDn—p.(y) D, (y)

=% Dy s ) D, (0)
[Py y) =D, 1 (0)]  (n>0).
Comparing coefficients of powers of y in (3.4) we obtain
(3.6) Dyy=1,
Dy, = 2D,

m—2
DO.m = 2D0,m—1+ E DO,SDO,m—s—Z (m> 1)
s=0

Hence Dy (y) is uniquely determined by (3.4). (The second root of the
quadratic equation has a pole at y = 0.) Adding 2y2 D, (y) to both sides
of (3.5) we see that D, (y) is uniquely determined provided D, (y) are
known for 7 <n. Hence, by induction, D(z,y) is uniquely determined by
(3.3) as that solution expressible as a series of products of non-negative
powers of z and y. Given any function K(x) which is analytic at x = 0,
we can solve the quadratic equation

3.7 ¥lL.y)P+[20—y+2-2yK(@)] L(z,y)+[y—2K(2)] = 0

in the usual way. If one solution is analytic at (x,y) = (0, 0) then it must
also satisfy
(3.5) L(z,0) = K(x)

(which 1= (3.7) with y =0), and its Taylor-series expansion about
(z.y) = (0.0) must, in fact, be D(z,y). In the next section we shall
conjecture that Dix, 0) is the function g(x) obtained by Tutte in (7), and
show that this can be extended to a function satisfying (3.3).

4. Solution of equation (3.3)

We set
(4.1) z = urd,
(4.2) v=1-u,
(4.3) K(r) = v73(1 — 2u),
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“and substitute in (3.7). The discriminant of the equation is
292 —y + ue® — u(1 — 2u) y I — 43y — u(1 — 2u)]
= (y?—2uv?y + u?ov?) (V2 — 4y).
Hence

(4.4) y*Llz,y) = (1/2) [~ 252+ yo(1 + 2u) —wv® & (y — w?) (v — dy)i].

Expanding by the binomial theorem, we obtain

z (29! e

N (192 — Ao\ — (9097 — ay253 _ _\ES) et 202
’ (y —uv?) (v2 — 4y) (vy — uv®) [1 2s§03!(s+1)!y v
d = —[2y*— yo(1 + 2u) + ur®)
{ oK
4 . (2m+4)! m+3 )—2m—3
; | | T ) Y
‘ _9 %O: (2m +2)! m+3 y—2m—3

moo (m+1)! (m+2)!
Hence, selecting the negative sign in (4.4), we find one root of (3.7) to be

Lizy) =2 % 2m+D)!

m! (m+3)! [(m+ 3) v~2m—3—2(2m + 3) zv—2m—C€] ym™,
m=0 7/t |

(4.5)

Clearly, L(z,y) is absolutely convergent in a neighbourhood of

(z,y) = (0,0);
hence the Taylor expansion of L(z,y) in powers of z and y about (0,0)
is D(z,y). Now, applying Lagrange’s Theorem ((9) 132) to

u=avs
we obtain ‘
® (4h+t—T1)!
= ok (>0
(4.6) v th§:]0 R Gh+1)! zh (t>0)
(cf. also {(2) 4.14) and ((7) 5.9)).
Hence, from (4.5),
D _2@2m+1)! (2m+3) & (4h+2m+2)!
nl®) = m! (m+2)!  yZeh! (Bk+2m+3)!
2 (4h+2m+5)!
A T Bhyomt6)”
_2@m+3) = (dn+2m+1)!
Tom! n+2)! . Zon! Bn+2m+3)17 7
and so
_2@2m+3)! (dn+2m+ 1)!
(.7) Duae = o1 (m+2)In! (3n+2m+3)!"
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as seen in (7). thus proving our conjecture. Also

2(2m +1)!

(4.9) _ Do = m!(m+2)!"

This latter result was first stated by Euler (4); its history is discussed in
(3) and (6). )
Applring Stirling’s formula to (4.7) we obtain for fized m, as n—>00,

2(2m + 3) ! e=Un+2Im+) (49 4 2y 4 1 )dn+2m1
non ™ ('772 + 2) V] e—n e—(8nt2m+3) nﬂ(3n+ 2m+ 3)3'n.+2m+8

y N/( dn+2m+1
27m(3n+ 2m+ 3)
2(2m + 3) | (4n)4n+2m+1 62l 4 (dn) 1 (1 4 29) ent2mi1
T (m+2)Im ! (3n)PFIm[1 + (30)1 (3 + 29m) Pr+2m+3

XJ( dn+2m+1
27n(3n+2m+ 8)

52 @ n+1J i
27 27)
In particular, for m = 0,

1 256\n+1 /3
5/2
(+11) Dra~ 16" ( 27) J(zw)

as shown in (7).

(4.10)

1 (2m+3)! /16y
48 (m+2)!m!\ 9

IT. TRTANGULATIONS WITH ROTATIONAL SYMMETRY

5. Automorphisms

An isomorphism of a triangulation with itself will be called an aufo-
morphism. We define an automorphism ¢,y : Ty — T, to be a one-to-one
mMapping @ext * Texs® U Tyl > T P U Tt carrymg vertices onto vertices,

such that g, a and ¢, b are incident if and only if @ and b are incident.

The choice of a root (pg>* in T induces an orientation in T, An
isomorphism ¢ : (T, < pg,*)— (17", (p' ¢'>*) will be said to be orientation-
preserving or -reversing according to its action on the induced orientation
of T.,,. Clearly a root-isomorphism is orientation-preserving. We state
without proof the following
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Lexya. Let T be a triangulation of type [n,m].

(8.1)  Each automorphism ¢ : T — T induces an automorphism
Pext + Text_':’T

(5.2) The automorphisms of T and T, respectively form groups, which we
denote by W(T), U o(T). Weno(T) is isomorphic to the (automorphism)
group of the (m+ 3)-gon, i.e. the dihedral group

m+3 {RI’R R12 R 2= R R m+3 — I}

(5.3) We can define a monomorphism ext : (T ) > Wi o(T) by @—> gy
Thus W(T) is isomorphic to a subgroup of D,, .

(5.4) The orientation-preserving automorphisms of T form an invariant
subgroup AH(T) of W(T).

(5.5) As the property of being orientation-preserving or -reversing 18
invariant under ext, and the orientation-preserving automorphisms of
the (m + 3)-gon form a cyclic subgroup €,,,5 = {R, R, : (R, R,)™+? = I}
of D, 45 UHT) is isomorphic to a subgroup of €, ,, and hence the
order of AH(T) divides m + 3.

6. Rooted triangulations of type [n,m; r]

A rooted triangulation (T, {pg>*) of type [n m] will be said to be of
type [n,m; r]if r divides the order of A+(T) 2) §6)). It follows that
m must be of the form rw—3, where w>8 ( r2 being the Kronecker
delta). Let ,E,, be the number, up to root 1somorph1sms of rooted
triangulations of type [n,m; 7).

If ,F, ., is the number, up to root-isomorphisms, of rooted triangula-
tions (T, {pg>*) of type [n,m] such that the order of A(T) is exactly r,
then it follows that

w
(6.1) rEn,m = kglkan'm
and hence, by the Mobius inversion theorem ((8) 36),
[ee] .
(62) rEz,m = kg f‘“(k) I.-rE'n,m’

where 4 is the Mabius function.

Let (T, {pg>*) be a rooted triangulation of type [n,n] such that A+(T)
has order 7. and let the orientation of 7. be given. Then there are
(m+3)'r different (up to orientation-preserving isomorphisms) possible
rootings of 7" which induce the given orientation. Hence the number,
7, of rooted triangulations of type (n,m] up to orientation-prescrving

B3BK T NT o —— —ip - — . _
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isomorphisms is given by

63) G, = SIrm+3)],F = [ +3)] 57 5 ulk) o By,
1

o1 r=1 k=
= [1/(171+3)] > E/-i(l‘) (S/k) sEn,m
shm+3) kis
= [l/(nl‘“‘*’ 3)] E 99(‘5') aE'n,m’
sl(m+3)

where ¢ is the Euler function ((8) 27). In particular,
(64) Gn,O = (1/3) [D71,0+23E71,0]'

Thus, if we define an oriented triangulation T' to be one in which 7, , is
oriented, then the number (up to isomorphisms which preserve the
orientation) of oriented triangulations of type [n,m] is G, .

The generating functions , E(z,y), ,E, (y). .E ,,(x) are defined analogously
to D(x.y). D, (y), D, (z). In the following two sections we shall develop
and solve an equation for E(z,y) (cf. ((2) §§7, 8)).

As in (2) we define for any mapping A : U U the mapping A, which
associates with each « in U the ordered set

Nu = {u, u, A2, Bu, ..., M lu) (r=1,2,..).

7. An equation for E(x,y)

Clearly ;E(z,y) = D(z,y). Assume now that r>1. Let (T, {p,p,>*) be
a rooted triangulation of type [n,m; r], wherein {ap,p,> is the face
incident with {p,p,>. Let A be the generator of AU*(T") which induces in
T... a rotation through w = (m+ 3)/r edges in the direction of the orienta-
tion. Let U be the simplicial complex obtained from 7' by removing the
edges of A.{p, p,> and the faces of A.{ap, p,>. By considering the possible
forms of U we shall develop an equation for E(z,y).

Case 1. Suppose a¢T,..°, and that two elements of A a coincide. Let b
be the smallest positive integer such that a = (A)’a. Then removal of
Py Poys APy peD, {apypy, and (A {ap, p,> from T leaves a simplicial
complex V which consists of two simply connected triangulated regions
(allowing either or both to be degenerate as the link-triangulation) with
{a} as their intersection (cf. Fig. 3a). Suppose, for the moment, that b>1,
and hence

(7.1) l<b<r—1.

Then Aa, (A 1a lie in different regions, but they must coincide; hence
Au = a, contrary to our hypothesis that 5 >1. Thus all elements of A, a
coincide. and [7 consists of a sequence of 7 identical rooted triangulations
of tvpe [0/ om'] (allowing the link-triangulation as type [0, — 1]) satisfying
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the conditions
™m'+1=mn,
(7.2)
r(m' +2)—3 = m.

Conversely, any triangulation of type [r',m'] (again allowing the link-
triangulation, provided 7> 2) satisfying (7.2) determines a triangulation

(a)

~=="p,

P

Fi1G. 3

of type [n,m; r] of this case (cf. Fig. 3b). Thus the generating function
for rooted triangulations of type [, ; r] of this form is

xer—S D(QTT, yr) + xyr—-a(l _ 8",2)_

(We cannot admit the degenerate link-triangulation when 7 = 2 as this
would allow two edges joining the same pair of vertices in 7'.)

. (r=3)
p2 Pi
pr- Fic. 4

“--“PZ

Case 2. Suppose a¢7,.°% but that all elements of Xa are distinct.
Then U is a rooted triangulation of type [n',m'; r], where

n'+r=mn,
(7.3) ,

m—-r=m _
(cf. Fig. fa). Conversely, let (1", {ap,>*) be any rooted triangulation of
type [n',m’; r] in which p, and p, are the external vertices joined to a by
an external cdge; let A" be the generator of A+(7") which induces in Ty
a rotation through (m’'+3)/r edges in the direction opposite to the
orientation.




e ——
(\

If p, and p, are not joined by an edge in T, then adjoining edges
A Py ()" py> and faces ((X) a, (X) p,, (A" D> (w=0,1,... r— 1) pro-
duces a triangulation of type [#,2: 7] in this case, subject only to condj.
tions (7.3). Triangulations 7" in which p, and P are joined by an externg]
edge must be of type [n',0; 2] and are excluded from consideration by
requiring m > 0. Triangulations 7 in which »; and p, are joined by B;'l
internal edge (cf. Fig. 4b) are

Z 2 rEn,,m Dﬂg,o

N ng
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in number. where summation is effected subject to the condition

(7.4) Ny +rn, =n—r,

and are therefore represented by the generating function

* < [n/r]—-1

E E EO rEn—r(1.+'nz),m Dnz,o xn ymﬁ: .’):",.E(x, ?/) D(xr, 0)

n=rm=0 ng=

Hence the generating funetion for triangulations in this case is

@€KX o
2 E rEn—r,m+r xn ym - .’,CrrE(.’E, ?/) D(xr’ 0)

n=rm=0
r—1

— oy [,E«c, y) - mgorE.mmym] — o E(z,y) D', 0)

=2y E@y) - (1-8,,) B, 4(z)y 3~ 8,228 () y]
— " Bz, y) D(a",0) - | -
by (5.5).

Case 3. Suppose aeT,,°. Then, as in §3, Case 1, removal of {p, p>
and {ap,p,) from T leaves two distinct triangulated regions (possibly
degenerate). We shall denote by 7 the residual triangulation having P;
as a vertex. Let k; be the number of elements in l(ap1p2>nf}2 and
assume, without limiting generality, that &, 3 ky. We prove that &, = 0,
ie. that &, = r—1. For suppose some face (A)?<ap, p,> lay in T}2. Then,
of the two triangulations which remain after (N pypyy and (A) {ap, po>
are erased from 7', one must lie entirely within 7}; hence, by symmetry,
either ko <k, or ky</k,, both of which are absurd. Thus k, =0, ie. all
clements of X Zap, p,) \{“ap, p,,} lie together in one or other of the residual
triangulations 7 (j = 1,2). Except for the sub-case where both Ty and Ty
are degencrate, which is enumerated by 8., there are two possible sub-
cases, according as k; or k, = 0. Hence U is of one of the forms shown i
Fig. 5, consisting of a central region triangulated of type [n',m: 7]
(postibly degencrate, but only when r = 2) and 7 copies of a triangulation

o
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of type [n”,m"] (possibly degenerate), subject only to
n'+rn" =n,

(7.5)
m’ +r(m” +2) = m.

Thus triangulations in this case are enumerated by
2y @, y) + 82 y] [y D", y7) + 1] +8, 5.

Combining our results we obtain
L(,y) = ey 2D, y) + (1= 8,,) zy™2

+ar y_r[rE(x’ ?/) - (1 - 81,2) rE.r—a(x) ?/'_3 - 81',2 2E_1(Z‘) 2/]

—:U'rE(x,y)D(x', 0)

2y B2, y) +38,,y] [y D(a",y) + 1] +8,
whence _
(7.6) ¥y~ +27y D", 0) - 2>y D(a” y) + 11}, E(z, )

= [2y* + 28,1 [y D, y") + 1] - (1-8,,) 27y B, _y(2)
— 0,2y [1 + 2, K (2)]+8, 595
In the next section we shall solve equation (7.6) directly; as in our

solution of equation (7.4) in (2), no preliminary conjecture is required in
this case. We shall make use of the fact that, since the power series
D(x,y) is absolutely convergent in some neighbourhood of (z, y) = (0,0),
and since for every r the power series . £(x,y) is majorized by D(z, ), both
D(z,y) and .E(x,y) represent analytic functions in some neighbourhood of

(z,y) = (0,0).

8. Solution of equation (7.6)
We set

(8.1)

and again define v to be 1—u. We shall henceforth assume y,2 (and
s ~mall enough to ensure that the various functions are analytie.

= uvd

henee
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By (4.4) (with the negative sign) the coefficient of [E(x,y) in (7.6) is
equal to —pAur®—y") (r2—4y")!. But, it follows from (4.4) (with the
negative sign) that D@ wr?) = v=3. Thus, setting y” = we? in (7.6) we
obtain

0 = (rut et 428, ,1308) (1 +ur™) — (1= 8,0) uP VP E,_4(x)

—u2ed 8 [+ urd B (1)) 4§, 5w vt
vielding

(8.2) LB () =204+ 2072,
JF o(2) = xv~2 407, _
B, s(x) = xv7? (r>3).
Substitution in (7.6) yields (again by (4.4))
— A (uet—y) (¢ — 4y") B (2, Y)
(e — ) {[(2)2) + 8,252 (02— 4y7) = 0]+ 8wy vt = B g,
whence
(83) 3 Ele.y) = (@/2)+8, .97 ol — 4y7) 4 =1]
=5, yayt v (vt — dyT) 4 8,5 (0 - 4y

But, by the binomial theorem,

(w2 —4y)t = 1Y (2P) V2P YD,
»=0 P

Hence

) g By) = (@2 48,9 S (2“’) oty
p=1 p

+ (83— 8,207 X (2;:) p2p—lyretl)
o\p.

n=

{%.5) Jley) = IL (2]]; 1) P21 Tt (r=3)

p=0

+ gjrzf S (27") gyl — g (QP) p2(+1) yzp—1}
’ 1 p

\’]_)Z p=0\

o
© 3 of) ;
40,3 2 ( ! ) pmB Ty,

e ¢
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Hence

(8.6) WE o 1) = (2;’) v—2p+x( 2p 1) p 204 (p>0),

87 Bt =8P )T o (>0)
Applying (4.6) with = replaced by 7 we obtain

o (2p\ & (4ht2p—1)! o
(8.8) oB o) = QP(I,)EO k! (3h+2p)! *

x2h +1

+2(p+1)( 2p ) ©  (4h+2p+1)!

p—1)2 kT (3h+2p+2)!

_ 2p) & _ (4ht2p)!
(8.9) Erprn-s®) = 3r‘,3(2p+ 1) ( p ),EO B! (3h+2p+ 1)!“’3 "

o 2p+1\ 2 (4h+2p+1)!
1 B St el L
At () E s
Thus all of the numbers ,E,, ,, are zero except the following:

2(2p)! (4s+2p+2j—1)!
o — —— " o . o\
(8.10) 3 Boqijop pl(p—1)!s! (3s +2p +29)!

5, - GprbltsEpt
3730 = plpls! (3s+2p+1)!

_ (2p+2)! (4s+2p+])!
(812) rErs+1,r(p+1)—3 - pq (p_+_ 1)| s! (38+2p+2)'

We note that B, ype1)—3 18 independent of 7.
In Table 1 values of G, computed by means of formula (6.3) are

tabulated for small n, m. 5’%7{ |
‘/ \/ TaBLE 1
: Values of G, ,, forn+m<9
q "
0

(j=0,1;p>0;520),
(8.11) (p>0;820),

(p=20;520;7r>2).

m 1 2 3 4 5 6 7 8
n

0 1/ 1\/1 4 6 19 49 | 150

1 1 2l 5 16 48| 164 | 599 | 1,952

2 | [T 1) ¢ 21 88| 830 1,302 | 5005 f—_

3 5|1 26l 119 538 | 2,310 | 9,882 — ?ﬁ(ff?
4 o4 || 147 735 |3,568 {16,500 S 4

5 133 || 892 || 4,830 | 24,596

6 846 || 5,876 |33,253 | |

s | 5,661 |[40,490

;139,556

N | I
1A T AN’ AN

m < Y6
407
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9. Asymptotic behaviour of E.

n,m
Applying Stirling’s formula to (8.10), (8.11), and (8.12) it can be show
that for fixed p and » and large s, ' !

(8.1) rEr.¢+1,r(p+l)—3~% Q}%Ll,‘—' o(s, p),
(9.2) | ety ~ g STt 8),
(9.3) A =T
(9.4) Foiss~ 15 oy ofe, ),

256\s+1 /16\» 3
where s.p) = —3/2(_;) e J 2
ols.p)=s 27 9 27 )"

Since (256/27)s'r < 256/27 for s <7, it follows that rEinlD,y 0> 0 a8 71— op
for fixed  and r> 1. Hence ’ '

2 ¢lr),E, ,

rl(m+3)
-——D~ -0 as nosoo,

nm

It follows from (6.3) that, for ixed m,

(9.5) Crp~ o as n>oo;

Le. almost all triangulations 7' of type [n,m] are rotationally asymmetrical
(A(T) = 1).

ITT. TRTIANGULATIONS WITH REFLECTIONAL SYMMETRY
10. Rooted triangulations of types [n.m]* and [n, m]-

Let T he a triangulation of type [n,7m]. We shall say that T is of type
L] or of type [1,91]= according as A (T) has index 1 or 2 in WT). A
tooted triangulation (7, {pgr*) of type [7,m]~ will be said to be a
K-rooting (L-rooting) of T if P4, (p)is invariant under the operation of
some clement of W(T) othicer than the identity.

We state without proof the following

(10.1)  Levva. Let T be o triagngulation of type [n, m]~. There exist, up to
@ulimorplisins. either tuwo K-rootings, tuo L-rootings, or one K-rooting an!!
ane Lorovting of T.
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Let K,,, and L, , respectively represent the numbers, up to root-
isomorphisms, of K- and L-rooted triangulations of type [n,m]~. Then
the number, up to root-isomorphisms, of rooted triangulations of type
[n,m]~ is (1/2) [Kyon + Ly 1] » _
Let H,, and R, respectively denote the number, up to root-

isomorphisms, of F80ted triangulations of type [n,m]* and the number,
up to all isomorphisms, of triangulations of type [n,m]. Then clearly

Gn,m = 2Hn,m + (1/ 2) [Kn,m + Ln,m]!
(10-2) , Rn,m = Hﬁ,m + (1/2) [Knm +Ln,m]
= (1/2) Gn,m + (1/4) [Kn,m + Ln,m]'

The generating functions K(z,y), L(z, y) and K, (z), L, (z) are defined
analogously to D(z,y) and D, (z).

If T is a triangulation of type [n,m]-, where m is even, then each
orientation-reversing automorphism of 7' leaves one vertex and one edge
of T, invariant: thus Kym =Ly, for even m. We define the common
y-even part of K(x,y) and L(z, y) to be J(z, 3?). )

In the following four sections we shall develop equations which relate
K(z,y), L(z,y), and J(z,0), and show how an equation uniquely determin-
ing J(z,0) can be obtained from them.

11. First equation for K(z,y) and Lz, y)

Let (T, {p,p,>*) be a K-rooted triangulation of type [n,m]~ wherein
{ap,p,y> is the face incident with ¢ P1Pz>, and consider the simplicial
complex U obtained from 7 by erasing {p, p,> and <{ap, p,>.

Case 1. aeT,.° (cf. Fig. 1). The dissection here obtained is similar to
that of §3, Case 1, except that the two triangulations obtained are mirror
images, say of type [n’,m'] (allowing the link-triangulation), where n’
and m’ satisfy the conditions

2n' = n,
(11.1)
2(m'+1) = m.
Conversely, any pair of mirror images of a triangulation of type [»',m']
(allowing the link-triangulation) yields a unique triangulation in this case
of type [n,m]~, subject only to (11.1). The generating function for these
triangulations is thus 1+ 42 D(22, 2).

Case 2. a¢T,.° (cf. Fig. 2). An argument analogous to that in §3,

Case 2, shows that the generating function for triangulations in this case is

‘I"r_d).' ][ f_(x ?/) - J(Tg 0)] - J(I> 0) K(x’ y)}
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Combining our results, we obtain as our first equation
K(r,y) = 1+ 42 D, ¥ +aly L, y)— J(x,0)]~ J(z, 0) K (z, )}
Le.
(11.2) [1+2J (2. 0)] K (2, y) —ay™ L{x, y)
Fley (@ 0) = 1-2 D2, 2] = o,
(a) ~(b)

FiGc. 6

‘2. Second equation for ]K’(a:,y) and L{z,y)

Let (T, “P1Dy,*) be an Lorooted triangulation of type [n,m]~, wherein
“Iypyods the face incident with PPy let = be the corresponding
'-:'r-:.-t;;‘rir)n»reversing automorphism. Consider the simplicial complex

tained by removing < p, p,’ Py EPe), (ap, py. and {pup; wp,> from T.

Caze 1. Suppose a = gp, (cf, Fig. 6a). U consists of the isolated vertex
1 and a K-rooted triangulation (possibly the degenerate link-triangula-
on) of type [n,m—1]". The gencrating function in this case is thus
~yK (. y).
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Case 2. Suppose that va=aand a¢T,.° (cf. Fig. 6b). Here {ap,) is
invariant under . U consists of the edge (ap,> and the vertex ; together
with an L-rooted (non-degenerate) triangulation of type [n— 1,m]~. The
generating function in this case is thus xL(z,y).

Case 3. Suppose that pa#aand a¢ T, (cf. Fig. 6c). By an argument
similar to that in §3, Case 2, it can be shown that the generating function
for this case is

xzy—Z[L(x’ y) - J(IL‘, 0) _yL.l(x)] _xZ_D(ZZ’ O) L(x: Z/)-

The term yL(z) is subtracted to ensure that U have at least five external
edges; the term z2D(z?, 0) L(z,y) is analogous to D(2,0) D(x,y) in §3
(cf. Fig. 6d).

Case 4. Suppose that a#pp, but aeT, O (cf. Fig. 6e). Here U consists

of a central L-rooted triangulation of type [n’, m']~ (possibly degenerate)
and a pair of identical rooted triangulations of type [n",m"] (possibly
degenerate), where n’, m',n",m" satisfy the conditions
n'+2n" =n,
(12.1)
m' +2m"+4 =m.

(b)

Fre. 7

Thus the generating function here is

Y1 +yL(z, y)]1[1 +y° D(a2, y2)].

Before collecting our above results we note that L,(x) is given by
(12.2) K(z,0) = 14 2[L,(x) - J(z, 0)2]
(cf. Figs. 7a, 7b). Thus
(12.3) L(x.y) = 1+ yK(z,y)+ 2L(z,9) + 22y~ L(z, ) — J (z, 0)]
—ay M (x, 002+ J (x,0) — 1] — 22 D(a2, 0) L(z,y)

+yll+yL(x,y)][1+y2 D(x?,y?)].
We define

(12.4) D(x,y) = 1 +yD(r.y).




('“:

(3.3) can now be rewritten as
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(125)  y[Dy) P+ 2 —y—ayD(z, 0] D(x,y)+ (y— ) = 0.

(12.3) and (12.5) together vield, after rearrangement, -

(12.6) yE () + [e+ @2y — 1) D, 42 L(z, )
+14+yD(? y?) —a2y2J(z,0)

+ay 2t (x,0)2+ J(x,0)—1] = 0.

13. Solution of equations (11.2), (12.6); an equation for J(z, 0)
Solving (11.2) and (12.6) for K(z,y) and L(z,y) in terms of z, y, and
J(z,0), we obtain

a(z,y) : Bz, y) :

(13.1) Kz, y): Lz,y) : 1 y(z,y),
where v
(13.2) a(v.y) = —a[y2 DA +2Jy)) + Jy( —22 D+ 22— ?)]

+yD[2 Jy(1 + xy) — y2),
(13.3)  Blr,y) = ¥? Dzl +ady) (xJ2 +Jy— 1) — 42 D(2 + zJ,)]

+y D[z Jy(1 + ) — 2],
(13.4) y(x,y) = yley* D+ (1 + /) (22 D + 2% — y?)],

and J, = J(z.0), D = D(x2 4?). It follows that
(13.5) [22J,(1+aJ))—y2]D =[xy D+ (1 + xJ,) (xy2 D+ 2% —

y)1J (2, y?).
For z and y sufficiently small, J(z,y?) # 0. If we set .

(13.6) y? =22 Jy(1 +2dy)
the equation
(13.7) 22D+ (1 +2dy) (xy? D+ 22—y?) = 0

must be satisfied; hence
(13.8) D2, y?) = 271 12 + ) [xd 2+ Jy— 1].

Substituting (13.6) and (13.8) into the equation obtained by replacing
z by 2% and y by y®in (12.5) we obtain

(19.9) [2J+J,=11{PYP =10+ 2:P— (P*— ) [1 +22 D(a2, )]} = 0,

where P is defined to be 1+2J,. But if we had »J2+.J;—1 = 0, then we
would have

(21&) -1
n! (n+1)!

X o

M

1

=0
which is inadmissible hy virtue of the presence of negative coefficients:
i s also inconsistent with the solution which could he obtained from

e

e

I B PR e

——

c
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(13.5) by comparing the coefficients of powers of z. The remaining factor
in (13.9) yields a quartic equation in P, which could, of course, be solved
for an explicit expression for the root which has value 1 at z = 0. For
ease of computation, however, we shall rewrite the equation obtained in

the form
(13.10) Jy = 1+ aJy+ a2 J[ 1+ (2Jy/2)][Jy2 — D(x?, 0)].
The coefficients in J, can be computed from (13.10) with relative ease. -
The first terms in the expansion are 27/ 2

13.11) J, = 1+x+¥ 22+ 323 + 8xt + 23x°% + 6828 + 21527 /é
0
4+ 68028 + 22262° + 73272104 ...

The expansions of K(z,y) and L(z,y) could now be obtained from (13.1).
As we are interested primarily in the numbers K, , = L, o, we shall not
perform this computation. :

The numbers R, , for n <9 were computed using (10.2), and are shown
in Table 2. For n < 5 the triangulations of type [n,0] are shown in Fig. 8.

TaBLE 2
Values of R, , for n<9
n 0 1 2 3 4 5 6 7 8
G, 1 1 1 5 24 | 133 | 846 | 5,661 | 39,556 =270 cuge
Kuy | 1 1 1 3| 8 | 23| e | 25| 680
¥R 1 1 | 71__;_4 T 18 | 78 | 457 | 2,938 20118’ ‘,;<,7/(Z .

N
X7/ 3
Let U = Z u,x" and V = Z v,z be arbitrary power series (having

n=0 n=0
real coefficients). We shall write U<V if v, <v, (n =0, 1,...).
We confine our attention to the root J; of (13.10) such that 1<J,.

For this root,

14. Asymptotlc behaviour of K, o = L,

Jo Ll +ady+ a2+ a3 Jpt/2.

Hence
(14.1) Jo2 <€ (1 + ady + 22 Jg3 + a3 Jy1[2) + Jy(ady+ 22 J® + 23 pf[2)
<1+ 202+ 222 Jpt + 23 J S < (1 +2J%)?
and
(14.2) M<l+xM3, where M =1+xJ?
Let ©
RO DL
on! (2n+ 1)!



)

n=0

A]

-

F@w&m& Lanal it

I At

P> B> > P

[

X

\

/

B BB B B D> >

[

e

® o 0 @
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Then, by Lagrange’s theorem,

(14.3) | N = 1+zNe,

Thus M — N <x(M — N)(M?+ MN +N2). It follows by induction on the
coefficients in M and N that M <N. Hence

©  (3n+3)!
2
O VN T
and ‘
1
(14.4) (3n+3)! (n=0,1,..).

0= (n4+1)! (204 3)!

By Stirling’s theorem,

V'l 27\ H1 3
< —t— =32 1= ! :
(14.5) K, < 4(4) n N/(W) as nm—>0o0.

Since 27/4<256/27, K, ,/D, ,—0 as n—>o0. Thus Rn-,0~Dn,0/6 as n—>o0;
L.e. almost all triangulations of type [n, 0] are asymmetrical.

IV. STRONG TRIANGULATIONS

15. Derivation of Tutte’s function y(z, y) from D(z,y)

The interior edges which join external vertices of a triangulation
uniquely decompose the triangulation into strong triangulations. Thus
we can think of any rooted triangulation as being obtained from a unique
rooted strong triangulation by adjoining to every external edge except
the root a unique rooted triangulation, possibly degenerate. It follows
that

(15.1) D(z,y) = [D(z,9)1* (=, yD(z,y))
or

(15.2) 2(z,2) = 2—y,

where y is the solution of

(15.3) y = zD(x,y)?

which vanishes when z = 0. Substituting (15.3) in (12.5) we obtain

Y2+ (22— (1 +aD(x,0))z—x]y+ 2z = 0,
whence

(15.4)  y=-22+4[1+aD(z,0)]z+ 2+ }(z —ur) [(v2— 2)2 — 4urz]t,

where « and v are defined as in §1. Selecting the negative sign in (15.4)

ee 0 &

Lo (1
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we obtain, after expanding by the binomial theorem,

X m (m+s)!
15.5 =z—z2_:2 © e T St = Cmietl) o,
1s9) o 25T 6+ 1) (m a1 :

< m+1 2 !
422 E e (m+s+ l) . U2 y—(2m+g+2) zm,

m=0 s=0 s! (S+1)' (m—8+1)'

By substituting in (15.2) and applying (4.6), it is Ppossible to obtajy

expressions for the numbers bnm- G

In the same way, the numbers of rooted strong triangulations of types
[n.m; 7] and [n, n]~ could be derived from the functions Ex,y), K(z,y),
and L(r,y). The author first computed the functions s&(z,0) and J(z,0)
from equations developed for the purpose of énumerating the varioug
types of strong triangulations; the development of those equations wasg, o
however, considerably more complicated than that followed in this Paper. -
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