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double poles at these points. For n = 1, the inequality (33) quickly reduces to a
homogeneous form of the known inequality (u — 1)® = u(logu)?. For n = 2, if we
divide (33) by (x; — x,)* and take the limit as x, — x; we obtain the (unproved)
statement

[(t = Du' — tu'~1]log?u + 2(u’ — u'~*)logu — u?*=V(y — 1)2
(34) 1 1
< (Lt L t—1 _ (4 _ ¢ 1\2
= (12 + = 1)2) (tu (t—Du' —1)2

Note that (34) is unchanged if u and ¢ are replaced by u~! and 1 — t. If we denote
the left hand side of (33) by ¢ = o(xy, -+-, X, 4+ ;¢) then

. 2(n—1 - -
O(Xg, 5 Xppg 3 ) = (Xg Xppy) - )a(xl 1"")xn+11 yn—1-—1).

It is easy to see that (33) is true for | t| large; we also mention that

lim o(x;,x,,x3;1) =0
10

and hence also lim,,, 6 = 0 when n = 2.

6. Comment. We note that the mean u(x, y;o) bears some resemblance to the
functions denoted by G,(x,y) and A,(x, y) in Carlson’s paper ([3], p. 616); note
especially his remark there that ‘“1/G, is log convex in ¢>°.
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AN EXTENSION OF TRIGG’S TABLE
SIDNEY KRAVITZ, Dover, N.J. and DAVID E. PENNEY, University of Georgia

In a recent issue of this MAGAZINE, Charles W. Trigg asks in [1] some interesting
questions about the prime factorization of

Q(py) = (P1P2P3 - Py) + 1

where p, denotes the ith prime. He tabulated the prime factorization of Q(p) for
2 £ p=<19; we include and extend his work as summarized in Table 1, page 93.
We also show data on the closely related

R(py) = (p1P2p3- P — 1.
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We conjecture that
(26) xyz - Ug(x,y,2) S Ug(xy, Xz, yz);

if U, is replaced by the arithmetic mean in (26), a known inequality is obtained
(see, e.g., [1], p. 11, inequality (6)).

At this point we attempt to generalize u(«) as far as possible. Let x;, -, X, be
positive numbers and set

’

27 a(t) = xi (e = %)

1Sj<ksEn+1
where the prime mark indicates that every factor involving x; is deleted. Let (o),
= o — 1) -~ (¢ — n + 1). Define

W, B) = uCki, %1 )
(2& ([0.% v a@]f[@n % - o))

It is easy to see that this reduces to the earlier definitions when n = 1 or 2. Our main
problem is to show that u(a, §) cannot decrease if either « or § is increased. Once
again we have (15) where now

29) logu(t,t) = %G,,(t) and
n+1
T (=D a)
(30) Ga(t) = log|"~*

(O

Conjecture. The function G,(1) is convex.
I have not been able to resolve this conjecture; the second derivative of G,(f) is
unwieldy. I can, however, manipulate

(31) G, (20

into a sort of ‘‘standard form’’ with the aid of the identity
. n n n 2
i=1 S \j=1 " i=1 i<j

The result is that (31) is equivalent to
n+1 - 2 n—1 1
S (=1 ag) (X o |
(i:1( ) ® ji=o (t—J))?

+ X (=) a(ta;()(logx; — logx;)* = 0.

i<j

(33)

The inequality (33) has a ‘‘vague reasonableness’ to it. The double sum can be
positive or negative, but the other terms are clearly nonnegative. The first sum on
the left vanishes when ¢t = 0,1,---,n — 1 but the second sum compensates by having
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Ni62K

,D%\ TABLE 1
1 5ss

P (p) R(p)

2 37 1

3 7 5

5 317 29

7 211 11-19
11 2311 ; 2309

13 59-509 / 30029
17 19:97-277 618369

19 347-27953 53-197-929
23 317- 703’763 // 37-131-46027
29 331-571- 34&231 79 - 81894851
31 200560490131 7~ 228737876817
37 181-60611- 6764217 2295411549 - 38669
41 61-450451-1107)27017 ‘ 304250263527209
43 167-78339%88} 3593 141269 - 92608862041
47 953- 46727138 Js 181~ 191 - 53835557 - 59799107
53 73-139-173-185 8%0301/ 87337326257 - 1143707681
59 277- 3467 - 105229 19026377261 C,
61 223 - 525956867082542470777 1193-C,
67 Cs 163 - 2682037 - 17975352936245519
7 1063 - 303049 - 598841 - 2892214489673 C,
73 2521-P, 313-130126775077472920609013813
79 22093-C, 163-2843-C,

265739 P, 139-26417- P,
g; 131-1039- 2719 - 64225891884294373371806141
23768741896345550770650537601358309

97 2336993-C, 66683 - P,

In Table 1, all entries for Q(p) and R(p) are primes or 1, except that C, denotes a
composite number with no more than n prime factors and P, denotes a number,
possibly prime, with no more than n prime factors. None of the C, and P, in Table 1
has a prime factor less than 107, and all were checked for divisors sufficiently large
to establish the validity of the subscript. The P, satisfy the congruence

2" =1 (mod m)

and thus are quite likely prime; indeed, we were able to establish some of the larger
factors prime by an application of a version of a theorem of Lehmer [2]:

THEOREM. Let b and n be integers exceeding 1. Suppose that b"~' = 1 (mod n),
and let p be a prime factor of n—1. Let a = """ (modn). If (n,a—1)=1,
then every prime factor q of n satisfies ¢ = 1 (mod p).
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We owe special thanks to Dr. Carl Pomerance of the University of Georgia,
who designed an eminently programmable version of this test.

We also obtained data on Q(p) and R(p) for larger values of the prime p, and
we obtained coincident results although at the time we were working independently,
with different programs, on different computers, each of us unaware of the other’s
work. With the aid of Table 1, special-purpose programs, and some recent results
in the literature, we can answer most of Trigg’s questions.

1. Are any Q(p) prime for p > 19?

This question was answered by Kraitchik [3], and his results extended by Borning
[4], who found that in the range 23 < p = 307, only Q(31) is prime. Borning also
found that for p < 307, R(p) is prime only for p = 3, 5, 11, 13, 41, and 89. We
have confirmed these results for p < 97, and Table 1 also gives complete or partial
factorizations not given by Kraitchik or Borning.

2. The prime p; = 17 and the least prime factor pg = 19 of Q(17) are twin primes.
Does this case of twin primes, or even of consecutive primes, occur again?

Yes; Q(1459) is divisible by p,3; = 1471, but the latter and p,;, = 1459 are
not twin primes. In the range 19 < p < pgooo = 59359, there is only one other
such example: Q(2999) is divisible by p,3; = 3001, and the latter and psa = 2999
do form a twin prime pair.

The same question for R(p) leads to the obvious examples for p = 3 and p = 7;
there are no other examples for which p, . , is a divisor of R(p,) in the abovementioned
range. There are a few cases in which the second or third prime after p divides
O(p) or R(p)—specifically, 7|Q(3), 37|R(23), 271|Q(263), 307 |0(283), and 4
673|Q(659). There are no additional examples in the range p < 59359. |

3. Are there more cases in which the least prime factor of Q(p) does not exceed
2p?

This holds for p = 2 and for p = 17, as observed by Trigg. We found it to hold
for exactly 32 values of p in the range 2 < p < 1987, and the same holds true for
R(p) for 24 such values. These are shown in Table 2, together with the divisor or
divisors less than 2p.

4. What is the smallest value of p for which Q(p) has four prime factors? Five
prime factors?

Q(53) is the least value of Q(p) with four prime factors, and has exactly four.
We found none with five prime factors, and Q(97) is the least candidate for this
property. R(37) has exactly four prime factors, and is the least value of R(p) with
at least four; R(79) mjght have as many as five.

In the course of these investigations some additional facts were noted. We
mention three here:
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TABLE 2
Prime divisors of Q(p) Prime divisors of R(p)
not exceeding 2p P not exceeding 2p
2 3 3 5
17 19 7 11
41 61 23 37
53 73 83 139
89 131 167 331
107 149 239 349
239 313 241 389
263 271 397 599
283 307 421 761
443 463 463 631 and 647
499 827 499 569
587 1033 523 563
659 673 571 1093
677 809 and 877 641 881
739 1051 797 953
769 997 and 1297 877 911
811 1279 907 983
839 1109 919 1181
907 1259 941 1433
937 1031 1069 1327
1061 2029 1103 1283
0097 1381 1289 1811
1181 1667 1871 3467
1237 1663 1877 2531
1259 1867
1423 2609
1459 1471
1481 1619
1657 3203
1663 2383
1669 3041
1987 3581

First, some primes—for example, 13, 17, 23, and 41 —divide none of the
Q(p) and none of the R(p).

Second, several primes may divide two values of Q(p), two values of R(p), or
one of each. All such between 2 and p,o9, = 7927 are shown in Table 3, together
with the Q(p) and R(p) they divide for p < 7919.
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TABLE 3
p What p divides P What p divides

19 Q(17)and R(7) 1051 Q(211) and Q(739)

61 Q(41) and R(17) 1069 0(523) and R(359)
131 Q(89) and R(23) 1283 Q(509) and R(1103)
139 Q(53) and R(83) 1291 0(439) and R(163)
163 R(67) and R(79) 1381 Q(157) and Q(1097)
2711 Q(17) and Q(59) 1657 Q(137) and Q(557)
313 Q(239) and R(73) 1867 Q(157) and Q(1259)
331 0(29) and R(167) 2609 0(1423) and R(479)
673 0(659),R(149), and R(193) 3041 0(1277) and Q(1669)
881 Q(137) and R(641) 3373 Q(521) and Q(1103)
953 Q(47) and R(797) 3467 Q(59) and R(1871)
983 Q(463) and R(907) 4871 Q(613) and R(139)

Finally, we checked Q(p) and R(p) for prime factors less than 107 for2 £ p £ 97,
for prime factors less than 10° for 101 < p < 541 = pj00, and for prime factors
Jess than 7930 for 547 < p < 1987. As a result we know that Q(p) is prime for six
values of p, composite for 106 values of p, and unknown to us for the remaining
188 values of p. Similarly, R(p) is a unit for p = 2, prime for six values of p, com-
posite for 96 values of p, and unknown to us for the remaining 197 values of p.
The largest number we actually computed was

0(59359) = 62970292 --- 375361614691 ,
a number of 25706 digits.

Questions inevitably remain. What is the least value of Q(p) having exactly (or
at least) five prime factors? Or, six, or seven? Are any more of the Q(p) prime?
What are the answers to these questions for the R(p)? Note that R(p) and Q(p) form
a twin prime pair for p = 3,5, 11, and for no other prime p < 307. Is there another
such twin prime pair? Are there infinitely many primes dividing none of the Q(p)
and none of the R(p)? It is easy to show that none of the Q(p) and none of the R(p)
can be perfect squares other than R(2). We know all are square-free for p = 61.
Does this hold for all p?
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