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AN ASYMPTOTIC FORMULA FOR THE NUMBER
OF COMPLETE PROPOSITIONAL CONNECTIVES

by Rocer F. WHEELER in Leicester, England

The present article is really a continuation of the author’s earlier paper [1] on
this subject. The line of investigation described previously is rounded off by deri-
ving some further numerical results, which include, in particular, an asymptotic
formula for the number of complete propositional connectives of n variables in
2-valued logic.
~ In conformity with nomenclature used by other writers, a function f(py, .. -» Pa)
will be called a d-function if f(p, . .., p) = — p. Also, the function ¥ (Dys e v s Pn) =
= = f(—1 Py,---, 1 Py) will be called the dual of f. and f will be called self-dual
if f* = f. With these definitions, Pos1’s 2 necessary and sufficient conditions for
f(pys .- -» Pn) to be a complete connective in 2-valued logic are

(1) f is a A-function. (2) f'is not self-dual (f* = f).

We shall write
22" — N = 4 M=

Then N is the total number of propositional connectives of n variables (when all
permutational variants are counted separately), and 2 M (= V N) is the total number
of self-dual functions. o

Similarly, M2(= } N) is the total number of d-functions, and M (= %VN) is
the total number of self-dual o-functions.

We note, in particular, that this means that, as n increases, the proportion of
sclf-dual functions becomes progressively less, or, putting it another way, Posr’s
second condition becomes increasingly unimportant for purposes of enumeration.
Expressing this informally, it can be said that, for large n, roughly % of all functions,
(virtually all the d-functions), are complete connecetives.

But our real interest is the number of essentially distinct connectives and it will
be convenient to define the following 3 numerical functions:

{(n) the total number of distinct d-functions of » variables, ~ {ort ‘fjv
s(n) the number of distinct sclf-dual d-funetions, — -

¢(n) the number of complete propositional conncctives of n variables.— ‘""‘““rﬁf-ﬁ

Then
c(n) = t(n) — s(n).

These functions were evalualed iu wur previeas paper for 2 £ 5, and their values
are incorporated in table 1 below, for comparison purposes.
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Two other functions which will oceur are
2 e
T(n) = ﬂ:-; and  ¢(n) E
In fact, we shall prove that
c(n) ~t(n) ~T(n)
and
s(n) ~o(n)
We shall establish first that

s(n)ft(n) >0 as n - co.

Since the fréquenc‘y of every distribution is at least 1 and at most 2!, it follows that
, .

ar < t(n) < M?

and
| X <sm<
therefore =)
s(n n!
t(n) <Mu M

which obviously tends very strongly to zero as n —» co. Hence,
cln) ~ l,(n)

The other [OLEssaty siep iu deriving the asymptotic formula is also prompted by
the evidence accumulated in our previous paper. For gereral %, @ will be used to
denote a partition ala,l ... |a, (frequency nl), of typu {1"}, in which all the »
letters are distinguishable. [In the particular notations vzad lefore, this type was e
when n = 4 and 7 when n = 5.] The proportion of distriizutions of type w increases
strikingly as 7 increases. Thus, taking all the d-functious,

when 7 -= 4, 10752 out of 16384 (66%) arc of type wle];
when 7 == 5, 1030172160 out of 1073741824 (96%) are of type w(n].

Indeed, it would be surprising if connectives which leave the a; with any kind of
symmetry did not become rapidly rarer. since each unit Increase in 7 squares the
total number of functions, and yet provides only one extra letter to help to ‘accom-
modate’ them a]l.

Any function not of type o must have at least 2 svmbols which are indistinguish-
able. For the sake of definiteness, let us enumerate first those functions in which a,
and «, arc indistinguishable. This means that every pait of products like a, a; ;... ay
and @y a; ;. . .oy must have identical properties. Since an unrestricted selection
@ dj. .. apis made from ay, o, . . @, , the number of such products is 22 Tlence,
instead of the usnal 2% choices which have to be made in assigning the sequence of
digits in the truth table valuation of the function, there are only (2" — 272 (hoices
when a, and a, are indistinguishable. Therefore, the total number of functions with
this property is

2= Nty

which we choose to leave in this form.
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Now the frequency of a distribution with a, and a, indistinguishable is at most $n!

“(and less, of course, if @, and «, belong to a group of 3 or more symmetrically occurring

symbols, or, if there are other groups besides «,, a,). Hence, when the indistinguish-
able pair is allowed to range over all possible selections, instead of being confined
to a,. a,, the total number of functions obtained will certainly be less than

(1n! N7%- N,

and this total will include at least once every function which is not of type w.
By an exactly similar argument, the total number of §-functions which are not
of type w is less than .
(3n! N7”3) - M2

‘Now the multiplier 1n! N"% tends (strongly) to zero as n — 0o, and this proves
that the proportion of d-functions (and also of general functions) which are of type w
tends to 1. ‘

But the frequency of type w is !, and the total number of all §-functions is M2,
of which only t(n) are really distinct. Hence,

‘ t(n) ~M?n! = t(n),
and so, using our earlier result,
c(n) ~7(n).
In a similar way, it can be shown that the number of self-dual d-functions which
are not of type w is less than

Gnl N=H - M = o(3).

Hence

s(n) ~Mn! =o(n).

[Note that the evidence from small valués of n tends to be misleading in this case.
When # = 3 and n = 4, there are, in fact, no self-dual d-functions of type @, and
when n = 5, only 44 % are of this type. But, bevond this point, the proportion of
type o will increase rapidly. These accidential circumstances explain why, for small
values of n, s(n) and ¢ (n) in table 1 do not agree as closely as {(n) and 7(n).]

h c(n) T(n) s(n) ‘ t(n) [ c(n)

1 1 1 1 1 0
2 1 2 1 3 2
3 1 11 4 20 16
4 5 683 16 996 980
5 273 8947840 | 5d4 93331}12 9332768
62-9826-10° | 6-4053 .10 \
71183001011 6879103

8

4-2198-10%%| 7 - 179(5'1071’ 2 5 .
2957 75
Table 1 : ? ! C
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Tn table 1, o(n) and 7(n) are given to the nearest integer for n» = 5, and to 5
significant digits for » = 6. Note that

no(n)=2t(n — 1).

[Tt is the writer's guess that substantially correct values will be obtained by
taking o(n) as an estimate for s(n) for n = 7, and 7(n) as an estimate for ¢(n) or
c(n) for n = 6.]

Once calculated, the functions we have introduced have various other appli-
cations, which are worth mentioning briefly, before leaving this subject. For ex-
ample, the answer to the following query might be wanted. Of the total of N pro-
positional functions of n variables. how many are essentially distinct? To take a

trivial example, only 12 of the 16 connectives of 2 propositions p and ¢ are really

“different, because although 8 of the connectives involve p and g symmetrically, the

following 4 pairs are mere alphabetic variants of each other:

p mp p>q¢ p&g

¢ =9 ¢g—>p ¢&=p.
The answer to the question in the general case is 4/(n), and other similar results
(which hold for # = 1) are summarized in table 2. For any of the 12 enumerative
nroblems eonsidered in this tahle. it is also a simple matter (using table 1 when
ficcessary ] o decide now anany of Hhe propositional funclione which criee are ze
nuinely dependent on all » variables, and how many arce really gratuitous reappearan-
ces of functions of less than z variables. In addition, the asymptotic formulae which
are obtainable for these and other numerical functions can often be expressed in
terms of ¢(n) and 7(n), and so on.

Type of function to be
enumerated

Total when all permutational
variants are counted

Total when mere permuta-
tional variants are not

separately counted separately
All possible connectives 4? =N 4t(n)
Self-dual functions 2M 2s(n)
Non-sclf-dual functions QM (2M — 1) 4i(n) — 2s(n)
All ¢-functions M t(n)
Seif-dual o-functions M s(n)
Complete connectives MM -1 t(n) — s(n) = c(n)

Table 2
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