[go: up one dir, main page]

login
A002540
Increasing gaps between prime-powers.
(Formerly M1431 N0565)
8
1, 5, 13, 19, 32, 53, 89, 139, 199, 293, 887, 1129, 1331, 5591, 8467, 9551, 15683, 19609, 31397, 155921, 360653, 370261, 492113, 1349533, 1357201, 2010733, 4652353, 17051707, 20831323, 47326693, 122164747, 189695659, 191912783, 387096133, 436273009, 1294268491
OFFSET
1,2
COMMENTS
List of prime-powers where A057820 increases.
The entry K=a(k) is the start of the smallest chain of m=A121492(k) consecutive numbers such that lcm(1,2,...,K) = lcm(1,2,...,K,K+1) = lcm(1,2,...,K,K+1,K+2) = ... = lcm(1,2,...,K,...,K+m-1). See A121493. - Lekraj Beedassy, Aug 03 2006
REFERENCES
J. P. Gram, Undersoegelser angaaende maengden af primtal under en given graense, Det Kongelige Danskevidenskabernes Selskabs Skrifter, series 6, vol. 2 (1884), 183-288; see p. 255.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jan Kristian Haugland, Table of n, a(n) for n = 1..87 (terms 1..79 from Donovan Johnson). The extra terms are copied from A002386 as the associated prime gaps do not contain any prime powers.
J. P. Gram, Undersoegelser angaaende maengden af primtal under en given graense (1884) [Scanned copy of page 255 with annotations by Victor Meally and N. J. A. Sloane]
Des MacHale and Joseph Manning, Maximal runs of strictly composite integers, The Mathematical Gazette, Vol. 99, No. 545 (2015), pp. 213-219.
MATHEMATICA
s = {}; gap = 0; p1 = 1; Do[If[PrimePowerQ[p2], If[(d = p2 - p1) > gap, gap = d; AppendTo[s, p1]]; p1 = p2], {p2, 2, 10^6}]; s (* Amiram Eldar, Dec 12 2022 *)
Join[{1}, Rest[Module[{nn=5*10^6, pps}, pps=Select[Range[nn], PrimePowerQ]; DeleteDuplicates[ Thread[{Most[ pps], Differences[ pps]}], GreaterEqual[ #1[[2]], #2[[2]]]&]][[;; , 1]]]] (* The program generates the first 27 terms of the sequence. *) (* Harvey P. Dale, Aug 20 2024 *)
PROG
(PARI) /* calculates smaller terms - see Donovan Johnson link for larger terms */
isA000961(n) = (omega(n) == 1 || n == 1)
d_max=0; n_prev=1; for(n=2, 1e6, if(isA000961(n), d=n-n_prev; if(d>d_max, print(n_prev); d_max=d); n_prev=n)) \\ Michael B. Porter, Oct 31 2009
CROSSREFS
Cf. A000961 (prime-powers), A057820 (gaps), A002386 (prime equivalent), A094158, A121493.
Sequence in context: A166575 A265808 A265790 * A290515 A082093 A045455
KEYWORD
nonn,nice
EXTENSIONS
Second term corrected by Donovan Johnson, Nov 13 2008 (cf. A094158)
a(28)-a(79) from Donovan Johnson, Nov 14 2008
STATUS
approved