[go: up one dir, main page]

login
Denominators of continued fraction convergents to cube root of 6.
(Formerly M3815 N1561)
3

%I M3815 N1561 #36 Jul 05 2024 10:07:29

%S 1,1,5,11,82,257,130638,130895,785113,4056460,4841573,8898033,

%T 13739606,36377245,50116851,86494096,2125975155,2212469251,4338444406,

%U 6550913657,23991185377,78524469788,2379725279017,9597425585856,98353981137577

%N Denominators of continued fraction convergents to cube root of 6.

%D D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.

%D P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A002359/b002359.txt">Table of n, a(n) for n = 0..999</a>

%t Denominator[Convergents[Power[6, (3)^-1],30]] (* _Harvey P. Dale_, Nov 26 2011 *)

%o (PARI) a(n) = contfracpnqn(contfrac(6^(1/3), n))[2, 1]; \\ _Michel Marcus_, Aug 23 2013

%Y Cf. A002360 (numerators), A002949, A005486.

%K nonn,easy,frac

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _Herman P. Robinson_

%E More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004

%E Definition clarified by _Harvey P. Dale_, Nov 26 2011

%E Offset changed by _Andrew Howroyd_, Jul 05 2024