S - it

PR S S S —

e e i A

e yla Joceef 264 Lre3
- RST W 1 J}ﬁlfz Uﬂ:.r/f o |Mille, :
) \4

This is combined with the congruence ending with ind p, menticned above, and inft
is moved to the right-hand side; the remaining steps follow as above.

Cases occasionally occur where g i$ composite but has more than two prime factg
or includes a repeated prime factor; these are dealt with in a similar manner.

The values of ind p,, ind ps, ..., ind p, are then calculated in succession. The values's
the residue-indices

v, =(indp,P—1) (r=1,2,...,n)

are finally found; this completes the calculations for P. : e 33
The reader is recommended to read the worked out example given below in Part IV, ll ?7

§ 17, which will make the process above described more intelligible. C? ( ?
In the remainder of this introduction, the indices are sometimes expressed in the

form in which they were obtained during the original hand computations, namely as /\

x + €A .
where -N<agiA €=0 or I

This may be written as x or x4, but x + A will be used in this introduction, except in
§17.4. In the tables each index is given as a positive integer between o and P.

In Table 1 either g, or —g" if g’ < g, is chosen as the primitive root to which the
indices refer. In Tables 2 to 4, P = 1 (mod 4) always, and g = g’

ParT II. INVESTIGATIONS ON PRIMES FOR WHICH THE LEAST
@-1C NON-RESIDUE IS RELATIVELY LARGE
8. General vemarks

In §5 it was shown that for a prescribed modulus P there exists a p, for each prime g
such that ¢find p,, and that this p, < J/P + 1. This provides an upper bound for #, the
number of primes to be used in forming A4, -numbers, if success is to be guaranteed.
This bound, given by p, = p,, is too large to be practical. It is thus of interest to
examine the special cases, ¢ = 2, ¢ = 3, etc., to obtain better upper bounds for 7 in
terms of P. In fact, the following paragraphs exhibit short tables which give the least
primes P, (m) for which all primes up to p,, are g-ic residues, so that # = m in all cases
where P < P, (m). '

The results show that, for primes P < 36.10° the Value of n that suffices for each
q < 17 is as follows:

' q 2 3 5 7 I1 13 17

N : = n 17 12 8 7 6 5 4

Cases where g > 17 are dealt with in § 16 and Table 7.

9. The case of ¢ = 2

Let P(n), P'(n), written for Py(n) and Py(n), denote the smallest primes, P, of the
forms 8% — 1 and 8% + 1 respectively which are such that all the primes p,, p,, ..., p, are
quadratic residues {mod P). .
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Using the law of quadratic reciprocity, the values to n = 14 listed in the following
table were found. These values were checked, and the list extended to # = 16 by means
of a program constructed by J. Lindley for EDSAC 2. It is interesting that, for each
n < 13, P, < P,, but for n = 14 to 16, P, > P,.

n Pn PAn) P(n)
I 2 7 17
2 3 23 73
3 5 71 241
4 Vi 311 1009
5 I 479 2689
6 13 1559 8089
7 17 5711 33249
8 19 10559 53881
9 23 1819: 87481

IO 29 31391 4 83289

I 31 3 66791 5 15761

12 37 3 66791 10 83289

13 41 3 66791 38 18929

14 43 40 80359 38 18929

15 47 125 37719 92 57329

16 53 307 c6079 220 00801

23 Ny

We may note also that Lehmer 1954 gives
P'(17) = P'(18) = 48473881 P'(19) = 175244281 P'(20) = P'(21) = 427733329
and P’(22) = 898716289

10. The case of ¢ = 3
In this section P(n) = Py(n) denotes the smallest prime P such that p;, ps, ..., p, are

Here 3|P — 1, and it is known that P can be expressed in the quadratic form
' P = (L2 + 27M2)

Cunningham (1927, pages 128, 132) has given criteria in terms of L and M, showing
for each prime < 47 when it is a cubic residue modulo P. These are derived from
Gauss’s law of cubic reciprocity.

When 2z is a cubic residue, 2|L and consequently 2|3, and when 3 is a cubic residue,
3|M. Hence, putting L = 2/ and M = 6m, both 2 and 3 are cubic residues when

P'= 14 243m?

"The cases m = 1, | = 2 or 4 make P composite, whilst = 8, m = 1 gives P, = 307.

When 5 is a cubic residue, 5}/ or 5|m, and the case [ = 20, m =1 gives Py = 643.
When 7 is a cubic residue, 7|/ or 77|m, and there are now four cases to be considered:

_ ORI P =5+ 3(315k)*
T (2) qllandslm P =(7)+ 3(45k)?
- (3) s|land 7|m P = (57)* + 3(63k)*
@ 5.7l P = (35))* + 3(9%)°

L3
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Cases (1) and (3) give no P < 10% and case (2) gives P > 6075. Case (4) for j = 1 and
k = 4 gives Py = 5113. '

The next stage is to list all values of j and % satisfying the criteria for 11 and 13 for
P < 10% to calculate the corresponding values of P, to exclude composite values of P,
and to list the remaining values of P in order of magnitude, and then to apply the
criteria for 17, 19, 23, 29, 31, 37 and 41. The calculations are too long to be given in
full; the results were checked to 36.10% on EDSAC 2 by means of a program compiled
by P. Becker. They are, including the values given above:

n Px - Py(n) n Pn . Py(n)

2 3 307 8 19 3 60007 |
3 5 643 9 23 4775569

4 7 5113 10 29 103 18249

5 11 21787 11 31 103 18249

6 13 39199 12 37 651 39031

7 17 3 60007 13 41 > 108

11. The case of ¢ =

This is treated fully as the criteria developed (by A. E. W.) do not seem to have been
published previously. In this section we are concerned with primes P such that
Py P2 -+, P, are residues of sth powers, and 3|P — 1.

11.1. Notation and prelininary theory

Let { = exp %im be a primitive s5th root of unity, satisfying the equation
O+P++l+1=0

N =&+ & m=E+&*

so that N+ =—1 ' NoTy = — I

The Gaussian periods are

It is known that the class-number of the field of ¢, called k({),1s 1, and that 7, is the
fundamental unit (see Smith 1894, pages 95 and gg).

v , 7o = 3(— 1 +4/5)
Let m=n(0)=ay{+a, 5+ a, "+ a;

denote a prime factor of P. Its conjugates are
my =57 =u(£?) Ty = ' = m({T) 7y = s = 7({?)

Here s is the substitution ({: {*); the application of s permutes the coefficients of 7
cyclically. Also '

A - ¢ =nm, and ¢, =mm,
are factors of P of the form x +¥4/5. Then
P= PPy = mm 7y 7y

The multiplication of # by any unit, say ¥, gives an associated form of 7; in order
to select one of the infinite number of associated forms, x is so chosen as to make 7 sewi-

primary, that is to satisfy (&) = 7(1) (modw?) '

A
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11.8. The case of = 13. Here

(x3lm) = (] 13) = =D = 739D = (2 (mod 13) (11.81)
and the congruence y=1 (modi13) (11.82)
must be solved.
The cube of (11.82) is yt=1 (modij3)
So y=7"= ¥ (modi3)
Now by (11.32) ¥ =y, (modi3)
so that y=vs (modi3)
and, applying s, we have 7, =7 vo=7v}=y"® (modi13)
and finally yv.=y7=1 (modi3) (11.83)
If we write y—at b+l dl
and seek a solution " of yys =1 (modi3)

we find by trial that a solution with b = o0 is
a=—5 b=o c=2 d=6 (modi13)
This gives, however, , ysy't =t |
so that ¥ = {~%' is one solution of (11.82). The 17 solutions of (11.82) are thus
LYeYeve and i (k=o, 1,2,3)}

where y=2+6f— 58

The test for (13]|7) = 1 is then
7y = + Mnr (mod13)

(11.84)

where M is one of the 17 solutions (11.84).
Alternatively, as there are few cases for which this test is needed, it is simpler to use

mns = + myn* (mod13) (11.85)
which is readily obtained from (11.81), for .

a7 = 730t = myn?

12. Results for ¢ = 5

Here P(n) = Py(n) is the least prime for which py, pg, .-+, P, are residues of 5ih powers.
The values of P(n) for n = 1, 2, and 3 are found by examining Cunningham, Woodall &
Creak 19224 (pages 1, 3,-and 22). ' .

A list was then made of all values of a,, @;, 5, and @ satisfying the inequalities proved
in §11.2, and the congruential conditions proved in §§11.4 and 11.5. The corresponding
values of 4, B, and P were then calculated, the cases where P was composite deleted,
and the rest arranged in order of magnitude of P. The remaining conditions given in
§§11.6 to 11.8 were then applied, and the values of P(4) and P(5) found, and the fact
that P(6) > 2.10°.
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As a check, and to extend the search, a program was constructed by D. Fairburn,
then a student at the University Mathematical Laboratory, Cambridge, and run on
EDSAC 1.

This tested each prime 57+ 1 for py, py, ... s quintic residues, until one failed;
every such prime from 2.10% to 5.10° was tested in this way, and the values of P(6) and
P(7) emerged, and the fact that P(8) > 5.10% A similar program was compiled by
P. Becker for EDSAC 2, and run to 36.10% thus modifying the last inequality to

.P(8) > 36.10%
The complete list obtained is.

n Dn Py(n)

1 2 151

2 3 431

3 5 6581

4 7 67651

5 11 2 41681

6 13 20 81921

7 17 3395921

8 19 > 360 00000 Q

~ 11l

13. The cases of ¢ = 7, 1T, 13, 17

In this section P,(z) means the least prime of which py, ps, -.., P, are residues of kth
powers (& = 7, 11, 13, 17).

It is possible to obtain inequalities in the case of & = 7 similar to those of §11.2, and
tests for 7 being a residue of a 7th power (mod P) similar to those of §11. It was,
however, found impracticable to proceed further with this method.

- From Cunningham, Woodall & Creak 19224 (pages 3 and 19) we derive P;(1) and
Py(2) and Table 1 in the present work shows that P(3) > 50000.

By calculation of 2~/ (mod P) for all P = 1 (mod~) between 5.10* and 10,
a list was made of all primes P for which 2 is a residue of a 7th power; then by calcula-
tion of 3¥-214 (mod P), those P for which 3 is also a residue of a 7th power were found;
then by calculation of ¥~ (mod P), those P for which 3 is also a residue of a
=th power were found. This gave Pq(3) and showed that P.(4) > 10°.

Finally, as for quintic residues, an extended search on EDSAC 1 was made with
another program compiled by D. Fairburn (this extended to 5.10%), and P. Becker’s
program for EDSAC 2 was used to check these results and to extend the search to
36.10%; F(0) emerged.

The complete list obtained is

n P" P.(n)
I 2 - 631
e A 2 "3 5531
z 3 5 < 72661 )
2 4 7 _ 865957 T
5 11 2375059 e /L g%
g’ 6 13 323 53609
7 17 > 360 00000 '

¢ < WEMQ
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Programs for EDSAC 1 and 2 were also made by D. Fairburn and P. Becker for
testing primes p, as residues of r1th, 13th, and 17th powers; these were run on the
machines for P > 10000, and earlier values were extracted from Cunningham, Woodall
& Creak 19224.

Results are of course rather few, and are listed below.

n 2% Pyy(n) Pyy(n) Pyy(n)
1 2 331 4421 1429
2 3 39139 44851 6563
3 5 2 53243 11 94661 14 58601
4 7 43 97207 23 67691 > 360 00000
5 11 215 87171 > 360 0ocoo

6 13 > 360 00000

\']_,f),"l,g

Mention should also be made of previous tables of residue-indices. Kraitchik 1924
(Table I) gives residue-indices of 2 for P < 300000. This table contains many errors.
It has all been checked; errors for P < 100000 are listed in Lehmer 1941, in which
other tables are also hsted the range 100000 < P < 300000 has been recomputed, partly
by F. Gruenberger on an IBM card-programmed calculator, and partly by means of a
program prepared by D. B. Gillies, and used on the Elliott 401 computer belonging
to the N.R.D.C., which was also used to extend the table. The checking was completed
by R. H. Meraon on the Pegasus machine at R.A.E., Farnborough.

Kraitchik 1924 ("Table IV) gives a primitive root and indices of primes not exceeding
100 for prime moduli P < 10000. Cunringham, Woodall & Creak (19224, b) give
least primitive roots, g and —g’, and residue-indices of 2, 3,5, 6,7, 10, 11, 12 for

14. Previous tables

. P < 25409. These were extended and tables made for other bases by means of Gillies’s

program on the Elliott 401 computer, and later by means of a program prepared by
M. J. Ecclestone for EDSAC 2. These tables give all residue-indices with base 2 up to
P = 1048571, with bases 3(primes)47 for P to 1000000, and also for bases 6(composite)so,
excluding exact powers, to the same limit.

These tables were useful in determining values of P, (n). From the list for base 2,
primes P were extracted, mainly by W. Barrett, for which the residue-index has a
factor p > 7. Then the 11st for base 3 was examined to see if the corresponding v has
the same factor p,; if so the list for base 5 was examined, and so on. This provided a
valuable check on results obtained by other methods, and was a vital link durmg the
preparation of the EDSAC 1 program; it brought to light an obscure error in the
orlgmal version. :

. Parr III. ENUMERATION OF A,-NUMBERS
15. Recurrence relations
Denote by f,(x) the number of A,-numbers a, such that o < a, < «.
THEOREM 3. Jo®) = fra(x) + f(x[pr) (15.1)

This is obvious since, if @, contains p, as a factor, a,/p, is an 4,-number, while if a, is
prime to p, it is an A4, ;-number. .
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28. The maxima of g, the leasi positive primitive voot

Let G(x) denote max g(P), P < x, and restricted as indicated in each table below.
From Tables 1 to 4 we extract the results tabulated.

G(x) for unrestricted P

P P—1 G p P—1 G
7 2.3 3 5881 23.3.5.7° 31
23 2.11 5 36721 2%.43.5.17 37
41 2%.5 6 55441 2%.3%.5.7.11 38
71 2.5.7 7 71761 2%.3.5.13.23 44
191 2.5.19 19 110881 2%.3%.5.7.11 69 ‘
409 28.3.17 21 760321 2%.3%. 5. 11 73 _
2161 28.3%.5 23 — 12 ra 7

This list is complete for P < 2000000, as has been verified by R. H. Merson on a
egasus computer, and with the help of a program by M. J. Ecclestone for EDSAC 2.
Table 1 shows that for 10® < P < 5.10% we have

P = 3(mod§) P = 5(mod8) P = 7(mod38)
P G, P G, p G,
8or1 14 1021 10 9439 22
19843 19 1597 11 10559 23
21757 23" 6581 14 12391 26
24181 17 15791 29

26701 22 31391 31

Thus, G for P = 3, 5 or 7 (mod 8) is less than G for P = 1 (mod 8) for all values
of P between 10% and 5.10% It seems therefore to be probable that G for unrestricted
primes exceeding 5.10% will be found among primes congruent to 1 (mod 8).

Table 1 also shows that G for P = 1 {(mod 8) = —1 (mod 3) is less than G for
P = 1 (mod 24): G for the former set is 15, for P = 8681.

Lastly, consider the primes P = 1 (mod 24) with respect to their residue modulo 5.
Table ¥ shows that G for P = + 2 (mod 5) is less than G for P = + 1 (5) for all
values of P between 10° and 5.10%; for the former set G = 19 for P = 5113. Again
Tables 1 and 2 show that for P = 1 (mod 24) and —1 (mod 5), that is for P = 49
(mod 120) G is less than it is for P = 1 (mod 120) for all values of P between 10° and
10° with one exception, namely G = 31 for P = 23209, which is equal to G for
5881 < P < 36721 when P = 1 (mod 120).

ConjeCTURE B. From these facts, it seems probable that max g for P > 5.10* will
be found in general among primes P = 1 (mod 120).

These results are to be expected, for if P = 1 (mod 8), and ¢ is any odd prime factor
of P — 1, g is a quadratic residue modulo P; so if P = 1 (mod 24), not only are 2 and 3
quadratic residues and therefore also 6, but there is also the possibility that 5 may be
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either a quadratic residue or a cubic residue. On the other hand if P = - 1(8), either
3|P — 1, in which case 3 is not a quadratic residue, or 3/ P — 1, in which case there is no
question of cubic residues.

29. The maxima of h, the least positive prime primitive root ,
Denote by H{(x) the max A(P), P < x. Tables 1 to 4 give the following values for H.

P P—gx H P P—1 H
3 2 2 . 271 2.3%5 43
7 2.3 3 2791 2.3%5.31 53
23 - 2.11 5 11971 2.3%.5.7.19 79
41 s 7 31771 24-32-5-3536 107
109 .2.59 77 ar 190321 24.3.5.13.61 149 ,
191 2.5.19 19 \____,—«22' 3/
132 |

.. . . 109
It is interesting that all these values of P exceeding 4¥ and less than 5.10? are
congruent to — 1 (mod 4). The last case in this list is the only one in which & > 107,
in Tables 2 to 4; that no entry is omitted has been demonstrated by R. H. Merson.

30. Conjectures as to the order of még7zz'tude of G and H

The following tables give the values of G/In P, G/(InP)%, G/(In P)?, and of H/ln P,
H|(InP)? and H/(InP)2. The logarithms are to base e.

ConjecTUure C G = O{(ln P)%
‘and H=0{nP)

'All that has been proved about the order of G is Vinogradoff’s theorem (Landau
1927, page 178) that o(P) = Opt+)

for every & > o.

G G G
P InP (In P)2 (In Py
3 1-8 166 1-508
7 s 079 0407
23 16 051 0162
= 41 1-6 044 0117
siEsaEn & 71 16 039 0090
M 191 36 069 0131
: . 409 3’5 058 0097
o o 2161 30 039 0°051
- = 5881 36 041 0047
- i 36721 35 033 0032
s Lot bopsersctl 55441 35 032 0029
1 71761 39 0'35 0031
- 110881 59 o'5¥ 0°044
760321 54 040 0029

T
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H H H

P InP (In P)? (InPpP

3 1-8 1-66 1-508

7 I'5 o079 0407

23 16 051 0162

41 19 0'51 0'137
109 23 050 0107
191 36 069 0131
271 77 137 0245
2791 6-7 084 0-106
11971 84 0°go 0'095
31771 103 1-00 0096
190321 12°3 101 0-083

ParTt VI. DESCRIPTION OF THE TABLES WITH HINTS ON THE USE OF THE
" MAIN TABLES I TO 4

31. Contents of Tables 1108

Tables 1 to 4 are similar. For each prime P there are listed: (i) The complete
factorization of P — 1. (ii) g, the least positive primitive root, g’, where — g’ is the least
negative primitive root, and &, the least positive prime primitive root: g’ is given
in Table 1 only, in other tables g" = g always. (iii) For each of several numbers a there
is given the index, ind a, such that

ginde=a (modP)

" and on the. right of the index, the residue-index v given by
y = (P - 1,inda)

which is such that aP-Uv =1 (modP)

~and (P —1)/v is the least index with this property.

The particular integers @ in the tables are as follows:

Tables 1, 2 a = 2,3, 5, 0,7, 10, 11, 12, 13, 17, 19, 23, 29, 31, 37

Table 3 a=123,5 7 11, 13, 17, 19, 23, 29, 31, 37

Table 4 @ =2,3,5 7 1T, 13, 17, 19, 23, 29, 3, 37, 41, 43, 47 ,

Table 1 covers all values of P to 50021; Table 2 extends the range to all values of
P = 1 (mod 24) lcss than 1000C0; Table 3 to all values of P = 1 or 49 (mod 120) less
than 250000; and Table 4 to all values of P = 1 (mod 120) less than 1000000.

Indices for values of @ not in the tables can be found from the basic relations

I

inda = indb (modP—1) if a=b (mod P)

«

indab = inda+indb (mod P — 1)

and indices for higher prime values of @ can be found readily by the method described
in §18. However, Table 5 lists those indices for 37 < p < hin Tables 1 to 3, and those
indices 47 <p < hin Table 4, in cases where £ is large.



INTRODUCTION xlvii
Table 6 gives counts of 4,-numbers, that is of numbers with their largest prime
factor < p,, for various upper limits N. In fact for each IV there is a list for

Pn = 2(primes)233, or # = 1(1)5I
of counts of numbers with largest prime factor at most p,. The values of N are
N = 103 (10%)2.10%(10%) 2. 10% (2. 10%) 10° (10%) 2. 10% (2. 10%) 107 (10°) 2. 107 (2. 10°) 5. 107 (5. 10%) 10°

Table 7 gives the results of the application of Theorem 4, see §16.
Table 8 lists counts of primitive roots and compares these counts with estimates
based on the conjectures of Part V, §§23, 24.

32. Use of the tables of indices with examples

The main use of the major Tables 1 to 4 is similar to that of the Canon Arithmeticus
of Jacobi 1839. This well-known work gives, for each prime P, or prime power P, less
than 1000, a complete table of indices, with respect to some primitive root G, for all
a < P—1,or forall @ < P*—1 and prime to P, and also a complete inverse table of
residues G (mod P) for n = 1(1)P -1, or of G*(mod P¥) for n = 1(1)g(P*). The
primitive root, G, used is not always the least, but may be another convenient one,
such as 10. .

These tables have been completely revised and extended by W. Patz in Jacobi 1956.
Here the least positive primitive root, g, is always used, and tables are also given for
modulus 2P* < 1000, as well as for modulus P, while two further tables are given for
each prime modulus P. These last give for each index x the indices of g* + 1 and of
g°— 1, and correspond to addition and subtraction logarithms for ordinary numbers,
in the same way that ordinary indices play the part of logarithms.

The tables now given here are, like those of Kraitchik 1924, much more restricted
in what they give for each P; they give only the indices for a few small numbers,
almost all primes. Kraitchik’s list extends to p, = g7, ours only to p, = 37 or 47.
Nevertheless, by use of ingenuity and some quite simple devices, and a little extra
work, it is possible to achieve results nearly as easily as by use of Jacobi’s Canon. The
range of P is, of course, enormously extended both in Kraitchik 1924 (to P < 10000)
and in our tables.

We shall use an example to illustrate, albeit inadequately, some of these devices.

Example. Obtain the solutions, if any, to the congruences

(i) ## =95 (modg933) (i) ¥ =97 (mod4933)
(1) From the tables on page 26 for P = 4933
. indgszind‘5+ind19

= 3385+ 1709 | (mod4932)

= 162

But 162 +4932k cannot be a multiple of 4; thus (i) has no solution.
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(ii) Here 97.51 = 14 (mod4923)
so that indg7 =ind2 +ind7 —ind 3 — ind 17
=1 + 4401 — 1800 — 1951 (mod 4932)
= 6351

Now 651 +4932k is a multiple of 15 when & = 2 +5m.

651 + 4932k
1 (mod4932)

5
=701, 2345 or 3989 for k=2,7,o0r12

Hence indx =

» The solutions required are thus

x = 2701, 22345 or 23989 (mod 4933)

These values of ¥ have now to be simplified.

We may, with a desk machine available, compute the residues directly by involution,
mainly squaring. Thus

2" =2z097152 = 627 =@ ‘
28 =2a2= 786258= 1911 =10
28 =2b*= 7303842= 3002=c¢
215 = 2¢2 = 18024008 = — 1174 =d ¢ (mod 4933)
280 = @2 =" 1378276 = 1969 = e
X, =2 =2¢2 = 77530922 = 4179
=— 754

which gives the first solution. ‘
We may, however, use the table on page 26 to provide short cuts, thus

28237 = 6% = 13
sos — I _ 1+2.4933
or TERT T
= 759 ¢ (mod 4933)
and’ 2 =64.759
= —754 )

(To find 1/13, note that 4933 = 6 (mod 13)and 1 +2.6 = o (mod 13), hence 1 +2.4933
is a multiple of 13.) B
Again, for the second solution, with A = (P — 1) as in (2.3),
A 2345 = — 121 4+ A (mod 4932)
Hence K | 2245 = — 2-121  (mod 4933)
Now | ind11 4 ind 5 = 1444 + 3385 = — 103 (mod 4932)

and so 288 = — {‘18-55 (mod 4933)
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so that

and

and

ind7 —ind 17 = 4401 — 1951 = — 16 + A (mod 4932)
6= 7 7784933
17 17 (mod 4933)
= — 2321
2% = 55.(—2321).%
= —4330/4 = — 2165/2 (mod 4933)
= 2768/2
xy = 1384
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This is a little longer than for the first solution, though it is all ‘pencil and paper’
work, whereas the involution method needs a desk machine. Possibly it is better to
combine both methods, first supplementing the printed table by some extra entries.
For example, with g = 2, as here, the first ten powers made be assumed known, and
used directly. Also, by direct multiplication

Then, from page 26,

and

Lastly

and so

Altefnatively

220

230

il

— 2153
=+ 379
= — 1611

= — 2042

=+ 584

zind 29 + ind7

22345 = 841.7.2%

= 841.7.563.64

210 = 4 1123
280 = + 563
290 = _ 649L (mod 4933)
2% = + 1379 |
220 = 4 2436
7722 + 4401
12123 (mod 4932)
+ 2259
(mod 4933)

3989 = — 943 = 1444 — 2383 — 4 (mod 4932)

x, = 1384

3989 — _}_ i

2 _11'23'16
_ Ir—4933 1
- 23 16
= —214/16

X3

(— 107 — 4933)/8

— 630

2-943 = 2—1022 R 279

= —11.27.2°

1l

— 630

— II.I123.512

W .

r (mod 4933)

(mod 4933)

from the auxiliary table made for the second solution.
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To check the results is simpler. We have
x;: ind —754=A+indz +ind13 + ind.zgl
(mod 4932)
= 701

%1 1nd1384 = 3ind2 +ind173 (mod4932)

But 29.173 = 5017 = 84 (mod 4933)
. 80 ind173 = 2ind2 + ind 3 + ind7 — ind 29
and ind 1384 = 5ind 2 + ind 3 + ind 7 — ind 29]

- (mod4932)
= 2345 J

Xy ind—63oz/\+ind2+2ind3+ind5+ind7l (mod 4932)
32

= 3989
In each case 15 ind x = 651, as it should.

Alternatively, we may check directly by computing, for example, x}° (mod 4933).

We find: (—7540= 1837 |

1837 = 397

(mod 4933)
397° = — 247
—247.1837= 97

- This example has been treated at length to illustrate the kind of short cuts that can
be devised.

Part VII. THE CHECKING OF THE PROOFS

33. Many tables in Number-Theory, by reason of relatively unsystematic entries,
cannot be differenced, and are correspondingly difficult to render free from error.

"Tables 1 to 4 in this volume were set up in type from printer’s copy prepared from

punched cards. These cards were punched from the original manuscript in order to
cope with a major change of layout decided on for printing, which meant that the
original manuscript was not in the best form for the printer.

Since the cards were punched it was decided to prepare a program for an automatic
computer, which could read these cards and check that each value of g"?¢ did in fact
reduce modulo P to a. A further change in plan rendered the original manuscript even
more remote from the printed work, so that, in fact, the cards already punched were
further processed when producing printer’s copy, and it was eventually decided to
punch a further set of cards from the first proofs from the printer, and to check these
by automatic computer. This was done on the ACE at the National Physical Laboratory,
and formed the ultimate check of all stages of preparation of the tables.

It seems worthwhile to record these stages in some detail:

(i) The original calculations were made and checked by hand or desk machines by
A.E.W. and collaborators. The results were all finally expressed in the form described
at the end of §7 in Part I.

(ii) These calculations were transcribed by A.E.W. on to the manuscript sheets
originally intended for the printer.



