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ON COTESIAN NUMBERS: THEIR HISTORY
COMPUTATION, AND VALUES TO n=20.

b

By W. WooLsey\Jornsox.

1. THE numbers which form the subject of this paper

arise in the problem of the Quadrature of Plane

Curves, that is, the expression of area in terms of base and

certain ordinates. They form a series of which 1 here present

an extension of the known values, prefaced by some account
of their history and modes of computation,

Concerning the problem of guadrature, George Atwood,
in his “ Disquisition on the Stability of Ships,”* says: “The
methods of approximation to be used for the quadrature of
curvilinear spaces are founded on Sir Isaac I%ewton’s dis-
covery of a theorem by which, from baving given any
number of points in the same plane, he conld ascertain the
equation of the curve which would pass through them all,
and by means of this equation was enabled to express the
ordinate of the curve, corresponding to any abscissa of any
given length, as well as the area intercepted by any two of
the ordinates.  This discovery the author himself considered
amongst his happiest inventions.” "

James Stirling says that Newton in a letter to Oldenburg,
dated October 24, 1676, refers to his “expeditions method of
passing a parabolic curve through given points,”t and that
1t was first published as Lemma V., Book IIL., of the
Principia.  This lemma, which is entitled * Invenire lineam
curvam, generi parabolici, quae per data quotcunque puncta
transibit,” was according to Boole (Flinite Differences, 2nd ed.,
p- 01} *“the first attempt at finding an interpolation’ formula,
and gives a complete solution of the problem.”

In the lemma two cases are considered; first, that in
which the abscissae of the given points are in arithmetical
progression, the result, or general value of y, being equivalent
to the usnal interpolation formula in terms of the differences
of the given ordinates; in the second or general case, a kind
of modified differences are used in a similar manner. Of the
areas under the carve, it is only remarked that they can be

¥ Phil. Trans, vol. 88 (1798), p. 260,

T ‘This letter will Le found in the Commereinm Epistolicum. Newton’s exact
words are: ]2

¢ fundumentam est commoda, expedita, generalis solutio hujus

ﬁl[‘ﬁ‘;]ifﬁil)fis, Curvam Geometricam describere guae per data quotcunque Puncta
A1 .
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found because the quadrature of a parabolic curve can be
effected.

2. Among the “opusculae ” published with the Hurmonia
Mensuraram of Roger Cotes is one entitled **De Methodo
differentiali Newtoniana.” In the iutroductory paragraph,
Cotes refers to Newton’s Lemma V., and proposes to supply
the demonstrations and to make some additions, which he
proceeds to do in a series of propositions. In a postscript
he tells us that he gave these propositions in lectures in 1709,
not being at the time aware that Newton Lad given equivalent
propositions, as he had since learned from a tract sent to him
in 1711 by the editor, William Jones®. Cotes mentions that
in this tract Newton refers to the utility of the method in
finding aveas, and gives in particular the area included be-
tween the extremes of four given equidistant ordinates,

443

B .
namely, —5 R, where 4 is the sum of the extreme and

B that of the mean ordinates, B being the basc of the area.
This Cotes calls “ pulcherrima et utilissima visa regula.” He
then proceeds to give similar rules for the areas included
between the extremes of equidistant given ordinates up to the
case of eleven ordinates. : guai o

¢

3. If now n+1is the number of points (z,, y.) r=0,1,
«eey #] given in rectangular coordinates, the “parabolic” form
assumed by Newton for the equation of the curve is

y=atazxt+ari+...+aaz” ............(1),

the conditions are sufficient to determine the cocfficients
g oeny @, linearly in terins of the known coordinates, and
therefore also to determine any area in the form

(4
fydx:(Aoyo+Alyl+...+ Ay)R..... (2),
» . -

where £ denotes the base g—p, and the cocflicients A, ..., 4,
depend on the abscissae. Restricting ourselves however, with
Cotes, to the case in which the limits are the extreme abscissae
@, and z,, and the abscissie are in arithmetical progression,

* This tract is the Methodus Differentialis reprinted in vol. i. of Horseley's
edition of Newton’s Works.
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ot Prof. Johuson, On Cotesian muwmbers : their history,

the quantity in parentheses becomes a mean value of the
ordi]nute tndependent of the base. Denoting this mean by 7,
we liave

y=dy,+dy vt Ay +.+ Ay, .......(3),

where the cocflicient of y_is a function of n and =, which,
when it is desired to put the value of n in evidence, may be
written "A . Since the given points may be reversed in
order, we wust have "4 ="4__; and, from the nature of a
mean value, tor each value of n, we must have

=1

="d =1,

r=0
The numbers "4 are properly called Cotes’s numbers, since
lie first recognized their existence as a series, and gave their
values for all values of n up to n=10.

The values for n=1 are of course embodied in the
“Trapezoidal Rule” and those for n=2 in the * Parabolic
Rule,” usually called Simpson’s Rule, laving been, as
Atwood says, ‘““‘demonstrated by Simpson from the pro-
perties of the Conic Parabola.” This rule was, howerver,
given in effect by James Gregory in his Exercitationes
Geometricae, published in 1668.

4. In the subsequent listory of these numbers, Cotes’s
work was for many years lost sight of. The Harmonia
Mensurarum was not published until 1722, (six years after
Cotes’s death), by Robert Smith, Cotes’s successor as Plamian
Professor at Cambridge. _

Meantime, James Stirling in 1718 presented to the Royal
Society a paper entitled: “Methodus differentialis Newtoniana
Hlustrata,”  Phid. Trans,, vol. xxx. (1719), pp. 1050—1070.
Tu this paper, Stirling refers to the areas when the given
ordinates are equidistant, and says, p. 1063, “ Sed quoniam
laborosum nimis esset semper recurrere ad Parabolam, compu-
tavi Tabulam sequentem, qui Areae directe exhibentur ex
datis Ordinatis,”  He then gives the areas for even values
of 7 up to n=10, that is to the case of eleven ordinates.
His reason for ignoring the cases of uneven values of n is
curious.  He says: “Tabulam pro pare numero Ordinatorum
non apposui, guoniam Area, ceteris paribus, ex impare earum
numero accuratius® definitur”” - Other passages also indicate

—_——

oy Theacearacy of the rules naturally increasee with the number of ordinates used.
Fhus it is not trag iat e rule for n=2 will give a more accurate result than that
for =38, when applici to a given aren as a whole. Dut when the same ordinates
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that Stirling was interested in the rules rather from the
practical point of view than from the mathiematical interest of
thie coeflicients as a series of related numbers.

In 1730, Stirling published a separate treatise entitled
Methodus Differentialis which is a considerable expansion of
the Phil. Trans. paper. In repeating his table of areas,
however, lie curiously enongh omits the case of n =10, so

that subsequent writers have usually referred to his table as

corresponding to even values of n up to n=8.

5. Thomas Simpson, in his Mathematical Dissertations on
a Variety of Physical and Analytical suljeets published in
17438, gives the rules up to n=6%. He was ignorant of the
work of Cotes in this line, though lhe elsewhere refers to
Cotes’s Property of the Circle.

Simpson seems to have been the first to suggest using, on
account of their simplicity, a repetition of the coefficients for
n=2, in the case of any even number of intervals. This
extension in fact constitutes what is usually known as
Simpson’s First Rule, I have not seen, however, any
evidence that he recommended the similar extension of .the
rule for n=3, which has generally been called Simpson’s

Second Rule.

6. Atwood again had no knowledge of Cotes’s work.
In the disquisition quoted from at the beginning of tLis paper
he gives Stirling’s l'able of Areas up to n =8, and supplies
from his own computation the entries for uneven values of a.
It is curious that in his values for n =7 he fails to remove the
common factor 49 from the numerators and the common

are uscd, as for example, when the base is divided into six parts and three partial
aveas arve computed by the first rule, and again two partial arens are computed by
the second rule, then the former or rule for 2 =2 does give a more accurate result
than the latter or rule for n=8. Vlis was proved by C. W. Mexvifield in 1863 ( Trans.
of the Naval Institute, vol. vi., p.10), the contrary imvlng presiously been supposed
to be the case.  Merrifield later fonnd the same advautage of the even number to
liold in the comparison of the yules for n=4 and 1=5, and he conjectured the
same thing to be generally true (Report of the British Assocation Jar 1830, p. 338
and p. 340). Tt follows that, if in the passage guoted we could hold that
“ ceteris puribus” requires the samce ordinates to be used, whilepare ™ and “impare”
refer only to the numbers used in the rules employed, we should have to credit
Stirling with having auticipated Merrifield in this discovery.

* Merrifield, in the paper quoted in the preceding footnake, Leing at the time
unacquainted with Cotes’s work, speaks of the *true rule for six intervals™ as
‘“given by Stirling first and afterward appropriated by Simpson” 'L'his is abso-
Intely unjust to Simpson, who in his prefuce gives dne eelit to Stirling and
others In fact, in lus text, he gives the interpolation fermula in d.fferences,
and integrates it, exactly in the snme manmer, fur example, by Boole, and then
proceeds to give the vesults of substitution in terms of the ordinates, as far as
u =0, by way of examples.
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denominator.  Tn Merrifield’s report on the subject of Inter-
polation and Quadrature (British Association Report for 1880,
p- 321) anote oceurs (p. 337) in which, having previously stated
that Simpson had given values to n =8, Merrifield refers to
this error of Atwood’s, and adds “he is endeavoring to correct
Simpson.” 1 have not, however, fouud that Simpson
gave values beyond n=6; and it seems, morcover, very
unlikely that Atwood should not have detected his error if he
had had before lim any previous computation of the values
tor n=17, :

Merrificld in this report gives all the values up to n =10,
as taken from Cotes's Harmonia Mensurarum, and this is in
fact the earliest reference which I have found to Cotes’s
numerical work.

7. With regard to methods of computation, the most
obvious one is to integrate, equation (1), and then eliminate
the coefficients a,, a,, ..., a, by means of the n 41 conditions
expressing that the curve passes through the given points.
‘This is done in many text bocks for the cases n=2 and n=3;
and Merrifield, in the report mentioned above, using unde-
termined multipliers, applies the method to the general case,
using separate treatments for even and .uneven values of n,
since it Is convenient to place the origin at the middle point
of the base. No general expressions for "4, result from this
method. :

8. Since the numbers are independent of the base, the

commnon interval between consecutive abscissae, as well as
the origin, may be assumed at pleasure. The usual method
of computation employs the interpolation formula in terms of
differences of the ordinates, thus placing the origin at the
left-hand extremity of the base, and taking the common
mterval as the unit, By integrating this from 0 to n, we
have a general expression for the area, in which the differences
beyoud the nth must be assumed to vanish. It remains, for
each value of n, to climinate the differences Ay, Ay, ..., Ay
by means of their values in terms of Yoo Yo -oos Yoo Lhe
general expression in terms of differences is given in Buole’s
Finite Differences as far as Ay, and in Weddle's paper in
the Cumbridye and Dublin Mathematical Journal, vol. ix.,
P- 79, a3 far as A%, This wethod is probably equivalent
to that employed by Cotes himself. It again fails to give a
general expression for "4
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9. Such general expressions, however, result from the
integration of Lagrange’s Interpolation Formula, by which
the equation of the curve is given directly in terms of the
ordinates. In its general form this is

=’§" —z)(x—2).. (-2 ) (z—2 ) (2—2)
Y @2 (em) o (@7, r—,) (=) V"

r=n

X .
= 32 ry¥ ...(4),
1=0M y'r (4)

r

where M represents what the numerator becomes when
x=x,. 'The cocfficient of y, in the expression for any area

is therefore
X -
—rdx.
J: M,

Bertrand in lis Calcul Intégral, 1870, p. 333, gives the
value of "4 in the form of a definite integral whose limits
are 0 and 1. Since the base is thus made unity, the coefficient
of y, in the expression for the area serves also for the mean
ordinate ; whence

1
"A, =j %dx, where m,_=£.
: o M, n
Bertrand proceeds to give the numerical valaes up to n =10
in the form of fractions each reduced to its lowest terms.
Although this section of the Calcul Intégral is headed
“Méthode d'interpolation de Cotes,” it seems certain that
Bertrand was not aware that Cotes had given numerical
results. Carr in his Synopsis of Mathematics gives Bertrand’s
formula, and.quotes the numerical results which he expressly
states that he has verified by independent caleulation,
correcting two misprints. He certainly was not acquainted
with Cotes’s work, otherwise Lie would have mentioned that
the values were all correctly given in the Harmonia
Menswrarum.

10. In computing the values of "4 from n=11 to n=20,

I have found it more convenient to take the origin at the

middle of the base, so that in the integration of the expansion
: . SR

of X even powers of & only uced be considered. This, like

* This is verified at sight as the equation of the parabolie curve of the nth
degree which passes through the given points (zg, 7,); wovy {%ay 9a}-

.,_,,._..._.__.___.--_..._-..__
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Merrifield’s method, requires the use of separate formulae for
even and uneven values of 7. Those 1 Lave cmployed are
developed below, that for even values is given in a slightly
different form in Boole’s Finite D{fferences, 2nd cdition, p- 50.

Puatting in this case n=2m, we take unity for the common
interval, so that the base is n.  The abscissac corresponding to

r=0, 1, ey T, M1, L0, 2m,

are &,==m, —(m—=1), ..., 0, 1, .., m;

and our general formula for even values of = is

1 m X .
Y = — RN £
T 2m _mM’_dx. \5)

The series of values of 4, for a given value of n were
computed in conjunction, and verified by the formula=4 =1.

Consider first the denominators M . Referring to equation
(4), these are .

JUO:(Qm)!:’IZ!, ﬂfl=—(n—1)!,
M =(n-2)!2!, M,=—(n—3)! 3!, ete.

Hence, if we reduce the series to the common denominator a!,
these denominators contribute to the numnerators, or values of

1 ™
7_1_[ X, dz, the factors

n(n—1) n{n—1)(n—2)
’ 2 0 T 2.3 ’

1, —n etc.,

that is to say, the coefficients of the expansion of (1—=2)".
These binomial coefficients were placed at the feet of the
columns in which were collected the terms of the expanded
numerators for the several values of 7.

11. The integrand X, from wlich the factor x—zx, is
absent, may be written

=" —w) {o' = (m~1)Y ... (x+z)... («"=2%) (&*—1%) ... [6),

in which all the factors, except 2’ —zx , are pure quadratics
(except in the casc of 7=m, when z is the omitted factor
fmd thiere is no complementary factor w4 7).
mtegrals of wueven powers of & vanish for the given limits,

Since the

e ..JF__«.’_; :

compulation, and values to n= 20, ' J

we may drop the term zaz, and use a modified integrand
derived from the expression

(&° —m*) {.u’t— (m—1)} ... (2" =2°) (2" = 1") &,

by omitting, for cach value of », one quadratic factor, z* being
the omitted factor in the middle case #=um, and the inte-
grands for r=m+gand r=m —gq being the same,

Thus, for the middle case, the expanded value of the
integrand is

x!m_ Slxim—! + S’xim-l_‘“+ (_ l)mSm,

where S, denotes the sum of the elements 1% 27, 37, ..., m?,
S, the sum of the products of pairs, S, the sum of the
products of triads, and so ou; S, being the product of all the
elements.

For any other value of 7, tle modified integrand in

expanded form is the similar expression
2m s i3 !, 2= Qe z
@ — 8" S =~ (= 1)"8 2,

where the accents refer to the omission of one element

in forming the 87, and §' _ is the product of the m—1
g ? m~1

elements used.

12. Integrating this expression, and dividing by the base
2m=n, we have, for the nuerators mentioned i § 10,
. . , iR

4

1™ m” , m? ]
Sl = -8 —+...
2m)_, 7 2m+1 2m—1
. .
wor M "
— (= "8, e (= 1) pen(T),

the last term vanishing except when r=m. Tliese expressions,
corresponding to the several values of », must be multiplied by
the binomial coefficients, veferred to as foot-numbers in § 10,
in order to produce the numerators of A when reduced to
the common denominator 7!,

13. The first step in the computation of the numbers for
a given value of m was the formation of a table of the values
of S, in which the rows corresponded to values of s and the
columns to values of », the top row, for s=0, being a row of

T




n=10.
Ao 1 9 3 4 5 1
S\ I |
i . ' ‘ .
0+ P [+ r v 11 |* o[+ Tt 25
1)\~ 3% |- 4) |- 8§ |- BF |- 6 |- 6y 25
2‘-+ 39" |4+ 57 |+ 87 |+ 117 |+ 1383 |4 1467 l25
3| _164 |-252} |-432% |- 8733 | -1335f | -1528 |25
4 4192 1+300  |+533) |+1200 | +4800 [+7025% i 1
5'& - 576 | 1
| -
“ +1 -10 +45 -120 +210 - 9252 1

60 Prof. Joknson, On Cotesian numbers: their history,

anits. A second table, in which the entries for the sevel'.al
rows were divided by the odd numbers whic'h appear in
equation (7), was then formed, so that its entries were the
cocfficients of sucessive powers of =2’

An example of this “divided table ” constructed for the
value n=10 is subjoined. [The factor m'=25 has been
removed from the powers of m* on the right, except in the
case of the last row, where it could be removed from the
single tabular entry as well as from the common denominator],

By the aid of these divided tables, the stinmations for El)e
several columns could now be made by alternate multiplicatton
by m* and addition of a tabular entry, and final multiplication
by the foot-number.

14. The results thus found were in the form of mixed
numbers, whose algebraic saum  should equal the common
denominator at this stage. It remained to reduce ﬂ\e_mh.les
of 4, now in the form of complex fractions, by multiplication
by such of the odd denominators as had not disappeared in
the process.

Tt is noteworthy, liowever, that with the exception of the
greatest, n+ 1, every other denominator greater than én-{—l
(or at least a factor of it) invariably disappeared. This was
due to the fact that, in the table of S8”s, the values of 8 in
any row were all divisible by this denominator (2m + 1—2s),
or a factor of it, until we reached the point where it bec:un_e
a factor of the foot-numbers, generally remaining such until
the end of the row. For instance, in the table given above,
the absence of fiactions in the row for s =2 shows that the

]
=1
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corresponding S"’s were all divisible by 7, except in the last
two columns where the foot number is divisible by 7. So in
the next row the S”s in the first and last columns were
divisible by 5, and the foot numbers in the other columns are
divisible by 5. Thus 11 and 3 were the only denominators,

in this case, which appeared in the mixed numbers. It was -

further found that in every case after clearing of these
denominators a high power of 2 could be removed. Again
m or one of its factors could in many cases be divided out.
Thus the denominators are considerably smaller than might
have been expected. .

15. In the case of uneven values of n, the common interval
H L. ny .
between the abscissae was taken as two units. "The abscissae
corresponding (o
r=0, 1, 2,

are therefore

vy 3(n=1), (n+1), vy n—=1, 1,
w=—n,—(n—2),—(n—4), ..., —1, 41, ..,n-2,n,

and the base is 2n.  We have now for the general expression,
when n is uneven,

n 1 " Xr ; .
Ar_Q_n _“—ﬂzd.t.v.................(S),

and for the denominators )
M==-2m!, M=2"(n—1)|, M=—2"(n— 2)12], ete.,

so that, reducing to the common denominator 2"a!, they
contribute to the numerators the factors

n(n—1) n(n—1)(n-—2)
-1, n, — 2 , 23

, etc.

The value of X, equation (4), is now
X =@ =)@ = (n—2)"} (o + 1) (87— 37) (¥ = 17)...(9).

In this case, the fact that uneven powers of @ disappear in
the integration allows us to reject the term « from the factor
@+, The remaining factors x, were united with the
binomial coefficients above, thus giving [after removing the
common factor n, which reduces the denominator to 2" (n —1)!]
the foot-numbers

(n—1)(n—4) —(n-1)(n—2)(n—6)
’ 2 i 2.3

1, —(n—2) , elc.

- Tt
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1 n .Nr
16. In the values of the numerators 2—] X, dr, we may VALUES PF THE COTRESIAN NUMBERS "4 = D 2176
I
- 3 . - v -n . : ® [
now use a modified integrand, derived from the expression Values of "er and D, from n=1 to n=20. i
2 EANE Pt 2 ] 2 2 2
=n ) —=(n=2).. (2= 8 (-1
._( ) (=2 (@ 80 )’_ -~ r |0 1 2 3 4 5 6 | 7| D,
by omitting, for cach value of r, one of the quadratic factors. . |
Tlie expanded value of any integrand is thus of the form . ) , C g
n=
ST 8 8 (=1 POy n=§ 1 g 1 6
i which the §”s are formed from the elements 17, 3% 5% ...,n’ = ! : 3 ! 8
by the omission, in each case, of one element n=4 ! 32 12 52 ! ' 90
' Lutegrating, and dividing by tl e base 2n, we have ' R N B 50 50 i 19 288
grating, and dividing by the base 2n, we Lave n=6| 41| 216| 27| 272| 27| 216| 41 840
1 , n , 't ' =7 |751| 3577 | 1323 | 2989 | 2989 | 1323 | 3577 | 751 7
fz_nf ]\jﬂ::n""_ S, n 5 + S, 4_“- n [ ' 17280
o n— 0 — :
+(—1)§("_1) 8'yn-1)e0rre.(10). n=8. n=9,
To form the numerdtors of *4,, as reduced to the common _ N,=N =+ 989 N
denominator 2" (n—1)!, these expressions must be multiplied ’ N =N =+ 5888 N
by the foot-numbers given in §15. N,=N=— 928 N
' N, =N, =+10496 N,
17. The computation took the same form as before, and N, =— 4540 N
again it was remarkable that, of the odd divisors n—2,n—4, D = 28350
ete., all the greater ones, in fact all primes greater than ‘> ' A
+(n+1), disappeared by virtue of the divisibility of the n=10
corresponding S"’s, except when the foot-number was itself so . T :
divisible; and this exception held even when the divisibility of N=N —1+ 18067 N =
the foot-number was due to the factor «, carried into the foot- ] 0_1\7’°_+ 106300 N
number as noticed in §15, so that the sequence of divisible I N =N =2 4g595 N =
heys 3 ! 8 H o 8 2
pumbers in the §' table was an interrupted one. : _N:=N7 — 4 279400 ! N =
: . . | N,=N, =—260550 No=
18. With respect to the whole series of Cotesian numbers N, st — . 433268 N
given below, 1t is noteworthy that no negative numbers occur ! 5 PO i
: . . . | D = 598752
for even values of n until n=8; and nooe for odd values \
until n=11. But, from these points on, the first two numbers
are invariably positive, and then the values alternate in sign 7 n=12,
up to the middle number or middle pair of numbers. o ( Vo X =
Asnincreases, the denominators increase, but not uniformly; b i\Yo = Nr"’ =+ 13 63651 I ‘\70 = "\'Tus =+ 6137698213
composite values of n tending to diminish them.  The i ]\‘T|=J\7|1:+ 99 0:’168 | ‘\Tn=~’7)==+ 321“? 38652
numerical values of the numerators tend to increase toward i I A7,=1\|0=— 75 878064 | - *7::.‘\7112“ ~"§61') 40993
the middle values of 75 80 much so that the numerical value - N=N, =+35725120 | 'Z\;a:'z\+m=+ 1167782 74403
of "A_ for the most part exceeds unity and in one case rises N, =N, =—51491295 l *\,¢="\79 == 1}3219? 77650
as bigh as 90 N, =N, =+ 87516288 | N, =N, =+1544245 90209
’ .. - 7N
It may also be noticed that the value of N, is in every i ¢ = 87797136 i Ne=N, =— 320979 78834
case an odd number, | D = 63063000 | D = 301771008000
- i
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n=14, n=15, n=18.
. T No=N =+ 203732352169
|| N=N =+ 90241897 N,=N,=+ 105930069 N =N_ =+ 1818730221900
N =N, =+ 710986864 Ny=N, =+ 796661595 <= N, = N =— 3212744374395
N,=N, =— 770720057 N,=N,,=— 6988 08195 [ N, _N =+ 155298303 12096
N,=N, =+ 3501442784 N, =N, =+ 3143332755 N, =N, =— 423686306 85840 ~
N,=N,=— 060625093363 N, =N, = — 46885 22055 : N= N, =+10368 05634 65808
N, =N, =+12630121616 N, =N, =+ 73856 54007 ! ' N N ,=— 19864 84298 67720
N,= N, =—16802270373 NG=N,, =—60009 98415 1\ =N =+ 31903 57844 79840
N, =+195344 38464 N, =N, =4 3056422815 : N N o =—4191279511 14198
D = 5003856000 D = 6199345152 N =+ 46132 73443 40680
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