[go: up one dir, main page]

login
A002123
a(1) = 0, a(2) = 0; for n > 2, a(n) - a(n-3) - a(n-5) - ... - a(n-p) = n if n is prime, otherwise = 0, where p = largest prime < n.
(Formerly M2198 N0876)
1
0, 0, 3, 0, 5, -3, 7, -8, 3, -15, 22, -15, 39, -35, 38, -72, 85, -111, 152, -175, 241, -308, 414, -551, 655, -897, 1164, -1463, 2001, -2538, 3286, -4296, 5503, -7259, 9357, -12147, 15910, -20406, 26640, -34703, 44854, -58481, 75809, -98340
OFFSET
1,3
COMMENTS
Arises in studying the Goldbach conjecture.
REFERENCES
P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. [Coll. Papers, Vol. II, pp. 354-382] [The sequence f_n]
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
PROG
(Haskell)
import Data.List (genericIndex)
a002123 n = genericIndex a002123_list (n - 1)
a002123_list = 0 : 0 : f 3 where
f x = y : f (x + 1) where
y = a061397 x -
sum (map (a002123 . (x -)) $ takeWhile (< x) a065091_list)
-- Reinhard Zumkeller, Mar 21 2014
CROSSREFS
Sequence in context: A326990 A037284 A225058 * A276408 A225744 A275393
KEYWORD
sign
EXTENSIONS
Extended with signs by T. D. Noe, Dec 05 2006
STATUS
approved