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of square matrices of order n of the form given below constitutes a field, where

the 7 independent arguments X1, Xz, © * ¥ of the generic matrix, range over Hence. if @
! the rational field. The element in the rth row and sth column is defined as '
\i x,_r (for r<s), as pxaiyr (for s= 1), as PXp_ris T qXn—rts-1 (for rzs>1). | ,
| 3709, Proposed by E. B. Escott, Oak Park, Il \ ;ectt" be fff
| . . . . (o) 1
i Determine the values of 4 in the trinomial 5o
1
i:l xIZ + Axﬁyﬁ + y‘.2 ( a)
1 : : ' h ; he
| so that it will have two polynomial factors of the sixth degree with rational co- ‘w ere ¢;h
; _efﬁcients.
.' 3710. Proposed by Harry Langman, Brooklyn, N.Y. There are
; If the C's represent binomial coefficients, show that whose sol/
| By the
; C: or R R o ot 5 ‘éf‘ique sol
| ’ 3 n—1 n n ! 1istinct v
'[ —n-1 G I R o o s
| 0 -2 G O cha O that each
1 0 0 (= 3) - Cii Caos | = (e * bers from
' | and henct
c | (p—2) ¢
1 0 0 6 ... 0 —1aG" l
‘ Follo|
] .4 SOLUTIONS | a; be div
; 272 [1917, 427], Proposed by C. C.\Yen, Tangshan, North China. \
i How many integers prime to 7 are there in each of the sets: i So then
| @ - 1.2, 23, 34, om0+ D); D
i () 1-2:3, 2:3:4, 3-4-5,-~-,n(n+1)(n+2); . , where ci
| 1.2 2:3.3:4 n(n + 1) ! for set (¢
{ (6) —_— —y T ) ;
| 3 2 2 2 2 ’ , i
? I .23 2:3-4 345 w(n + D+ 2, The
[ d) s s e | But if 7
{ - ' — . H to be p!
i Solution by E. P.!Starke, Rutgers University. 1 (1¢)
; This problem in exactly this form is given in Theory of Numbers by Car- i Nov
‘; michael (1914), page 36 l to 1 in
5 Let the numbers of set (a) be represented by i tegers ¢
| ¢ ) aj j=1)2137"';n~ ';
| . The necessary and sufficient condition that a; be divisible by a prime, P is where ;
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) j=p— lorpmodp.
Hence, if a; is prime to p, we must have
j=1,2,---,p— 2mod p.

Let n be represented as p\pa"ps™ - - - P where the p’s are the distinct prime

factors of #. If a; is prime to 7, j must satisfy a set of s congruences,

(1a) j=camod pi,i=1,2,--,5,

where ¢; has a value selected from the set

- 4 1,2, -, pi— 2.

There are (p1—2)(p2—2) - - - (p.—2) distinct systems of congruences (1a),

whose solutions, if less than #, give suitable values of j.

By the “Chinese Remainder Theorem’” there exists for each such system a
unique solution j < p1ps - - - ps. Hence thereare inall (pr—2)(p2=2) - -+ (p,—2)
distinct values of j, 1 <j<pips - - - bs, for which a; is prime to .

The numbers from 1 to # inclusive divide up into n/pip2 - - - p, sets such
that each number in any set is congruent, mod pipz - - - Ps, to one of the num-

‘bers from 1 to pip2 - - - ps and conversely. The total number of values of j

and hence the number of integers in set (a) prime toz, is then (py —2)(p;—2) - - -
(pa—2) times n/pips - - - ps, which reduces immediately to

n(1 — 2/p)(1 = 2/p2) -+ (1 = 2/pa).
Following the same line of argument, we have for set (b) the condition that
a; be divisible by p is
jEp—Zorp—lorpmodp.
So then cqngruen_ces (1a) become here
(1b) j=cmod pi,i=1,2,---,59,
where ¢; now has a value selécted from the set 1, 2, - - -, p—3. Continuing as
for set (a), we find the number of integers in the set (b) prime to n is
(1 — 3/p)(1 = 3/p2) -+ - (1= 3/p0).

The solution for set (¢) when 7 is any odd number, is the same as for set (a).
But if # is even, 2 will divide a; if and only if j=3 or 4 mod 4. That is, for a;
to be prime to 7, j must satisfy, besides congruences {1a), the following,

(10.) j=1or2mod 4.

Now suppose 4 is a factor of #. Then congruence (1¢) behaves with respect
to 7 in the same way as the other congruences (1a), so that the number of in-
tegers a; in set (¢) prime to 7 is given by

a1l — 2/8)(1 — 2/p)(L — 2/p2) - - - (1 = 2/py),

where PJPz, . - -, p, are the distinct odd prime factors of ».
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But if n=2m, m odd, for a; to be prime to n, j must be an integer less than
2pipate - P which satisfies the congruences (1a) and (1¢). The Chinese
Remainder Theorem gives us the aumber of values of j between 1 and

4pipa - - bs for which a; is prime to 7, but as n=2p1pe" " p,re is not di-
visible by 4pip2 -+ - Ps the rest of the previous arguments cannot be followed
here.

We may show, however, that the number of integers prime to 2m (for
1<j<2m) is the same as the number of integers prime to 7 (for 1 £j=m).
Let us put

(2) E=2m—j— 1

Relation (2) establishes a one-to-one correspondence between the set of sub-

scripts 1£jsm—=2 and the set m+l§k§2m——2. Also, since ap=2m".

—(2j+1)mta; we have a one-to-one correspondence between the integers in
the two sets @; and @i which are prime to 7. Let us now separate into two classes
the integers prime to 7 in each set:

(A) _ j'=_-10r2mod4 (A") k=1 or2fnod4
(B) 7=3 or 4 mod 4 (B") r=3 or 4 mod 4.
To integers in class (4) correspond those in (B"); to the integers in (B) corre-
spond those in (A4"), since relation (2) implies jtk=1 mod 4. Thus the num-
ber of terms prime to 2m is the number of integers in (A) and (A7), which is the
same as the number of integers in (A) and (B). :
We have then the results for set (¢):
If nis odd, n(l — 2/p)(1 —2/p2) - (1 —2/p.);
If n is even, n(l — 2/p)(1 — 2/pe) - - (A — 2/p:)/2,
where pi, p2, © - o Ps2TE the distinct odd prime factors of n.
The solution for set (d) when n is any number prime to 6, is the same as for

set (b). Since @ is odd only when jis 1,5, 9, -~ > it follows that when 2isa
factor of 7, we must include with the congruences (1b) the following,

(1) j = 1mod 4.

Similarly 3 is not a divisor of a; unless the numerator contains a multiple of 9.
Hence if 3 is a factor of n we must include also the condition,’

- (1d") j=1,2,- , 6mod 9.

The cases where 7 is divisible by 4 but not 3, by 9 but not 2, or by both 4
and 9, are easily disposed of by the same arguments used in earlier cases. We
have, the number of integers in the set (d) prime to 7 is

a1 — 3/ = 3/9 = 3/ = 3/ps) - -+ (1= 3/p2)s

where only those factors are to be included which correspond to the distinct
prime factors of n, in the three cases above. :
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Suppose however n=2nt, Or 3m, or 6\9?:: \\'h-e:r.e j,:' 1§\Dﬂ11:e to\ 6. o) will be

rime to 7 if besides the congruences (1b) j satisfies (1d), or (137, or both, re-

: ) ot zpal L
S ectively. Unfortunately there seems to be no 1o.rmu13.. or simple st of formulae
pes R mber of solutions for 1 £j = of these congruences.

which will give the nu ‘ -

Formulae for certain special cases are simple enough to be of some interest.

Let y(n) represent the number of integers of et (¢} which are prime to 1.

-
t
1. By an extension of the method used under {¢), we can show that

, }p(ZM) = 1y (m), where 7 is prime to 6.

11. ¢(3p), where p is a prime greater than 3. willequal 2p—4, 253, 2p—6, -

2p—7T according as p is congruent, mod 9. to 8. 1 er 5, 2 or 4. T respectively.
A table follows, showing the values of ¥/ for the values of = from 1 to 109.

1l 8 2 10 2 5 & 1316

s 2 07 4 20 4 10 3 18 41 26

51 2 28 8 16 7 8 6 3 8 2

! 4 38 3 4 8 12 10 H 8 2

5 5 30 10 350 9 16 8 33 13 36

6 5 58 14 24 16 20 8 o+ 14 41

sl 4 68 12 70 17 19 16 32 10 76
gl g 54 190 8 6 28 20 52 16 86
ol 6 40 20 56 22 32 16 9+ 14 43

0! 10 98 13 100 20 17 25 104 18 106

Proofs for the two special cases above may be derived as follows,

1. Suppose a;, prime to 72, j1 <?m.‘1t is easy t? verify th:\t"a,',-_ i =234,
is divisible by m for Go=m—2—7, ‘]3=m+]1. Ji=2m—2—ji=m+js: so that
each a;, is also prime to 7. Since 7 is odd, we see that one and only vue of the
ji=1 mod 4. Call this one j;. For every a; therf: are three ai, for which j#£1
mod 4. Hence the a; separate into four se:ts:, cgntmmng FY(m) integers each, and
such that all integers in the first set satisfy j=1 mod 4. Therc are then Ly (m)
integers a@; (for j < 2m) prime to 2m. .

I1. Place the numbers 1 <j<3pin three rows of p Coh'mms cach. Consider
the values of j for which @, is prime to 3p. BY (1) the last three columns give no
such values of 7. The additional val.ues of j to be excluded by (1d’) are easily
reckoned as soon as we know the residue c-)f p mod 9.

Similar special results are easily o'btamed fqr 3p-2, for 3p%, cte, The results
for 3pip2 - - - depend upon the possible combinations of residues n.lod 9 of

b, D2 . ... The results for 6p, 642, etc. depend upon the t\\"clvc 90351ple resi-
dues of p mod 36. Results for 6pip2 - - - depend upon the possible combinations
of residues mod 36 of pi, P2, = -
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