[go: up one dir, main page]

login
A001978
Number of partitions of 3n-1 into n nonnegative integers each no more than 6.
(Formerly M2725 N1092)
1
0, 1, 3, 8, 16, 32, 55, 94, 147, 227, 332, 480, 668, 920, 1232, 1635, 2124, 2738, 3470, 4368, 5424, 6695, 8172, 9922, 11934, 14287, 16968, 20068, 23572, 27584, 32087, 37199, 42901, 49325, 56450, 64424, 73223, 83012, 93764, 105661, 118674, 133003, 148616
OFFSET
0,3
COMMENTS
In Cayley's terminology, this is the number of literal terms of degree n and of weight 3n-1 involving the letters a, b, c, d, e, f, g, having weights 0, 1, 2, 3, 4, 5, 6 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
REFERENCES
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -4, 1, 3, -1, -1, 3, 1, -4, -2, 3, 1, -1).
FORMULA
Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)), where w=3n-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: (x^6 +2*x^5 +2*x^4 +x^3 +2*x^2 +2*x+1)*x / ((x^2+x+1) *(x^4+x^3+x^2+x+1) *(x+1)^3 *(x-1)^6). - Alois P. Heinz, Jul 25 2015
PROG
(PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)); n=400; p=subst(subst(f, x, x+x*O(x^n)), z, z+z*O(z^n)); for(d=0, 60, w=3*d-1; print1(polcoeff(polcoeff(p, w), d)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
CROSSREFS
Cf. A001977.
Sequence in context: A188123 A081661 A005103 * A173283 A077552 A171497
KEYWORD
nonn,easy
EXTENSIONS
Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
a(0)=0 inserted by Alois P. Heinz, Jul 25 2015
STATUS
approved