%I #29 May 04 2023 15:32:38
%S 1,10,56,230,771,2232,5776,13672,30086,62292,122464,230252,416394,
%T 727672,1233584,2035176,3276559,5159726,7963384,12066626,17978389,
%U 26373776,38138464,54422576,76705564
%N Expansion of 1/((1+x)(1-x)^11).
%H Vincenzo Librandi, <a href="/A001786/b001786.txt">Table of n, a(n) for n = 0..1000</a>
%H Jia Huang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Huang/huang8.html">Partially Palindromic Compositions</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 17.
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (10,-44,110,-165,132,0,-132,165,-110,44,-10,1).
%F Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (11 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A046521 (here for the unsigned column k = 5 with offset 0). - _Wolfdieter Lang_, Aug 10 2017
%t CoefficientList[Series[1/((1+x)(1-x)^11),{x,0,1003}],x] (* _Vincenzo Librandi_, Feb 24 2012 *)
%t LinearRecurrence[{10,-44,110,-165,132,0,-132,165,-110,44,-10,1},{1,10,56,230,771,2232,5776,13672,30086,62292,122464,230252},30] (* _Harvey P. Dale_, Oct 22 2015 *)
%Y Cf, A001780, A158454 (signed column k=5).
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_