[go: up one dir, main page]

login
A001708
Generalized Stirling numbers.
(Formerly M5095 N2206)
3
1, 20, 295, 4025, 54649, 761166, 11028590, 167310220, 2664929476, 44601786944, 784146622896, 14469012689040, 279870212258064, 5667093514231200, 119958395537083104, 2650594302549806976, 61049697873641191296, 1463708634867162093312, 36482312832434713195776
OFFSET
0,2
COMMENTS
The asymptotic expansion of the higher order exponential integral E(x,m=5,n=2) ~ exp(-x)/x^5*(1 - 20/x + 295/x^2 - 4025/x^3 + 54649/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
FORMULA
E.g.f.: ( log ( 1 - x ))^4 / 24 ( 1 - x )^2.
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+4, 4)*2^k*Stirling1(n+4, k+4). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a - j), then a(n-4) = |f(n,4,2)| for n >= 4. - Milan Janjic, Dec 21 2008
MATHEMATICA
With[{nn=20}, Drop[CoefficientList[Series[Log[1-x]^4/(24(1-x)^2), {x, 0, nn}], x]Range[0, nn]!, 4]] (* Harvey P. Dale, Oct 24 2011 *)
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace((log(1-x))^4/(24*(1-x)^2))) \\ Michel Marcus, Feb 04 2022
CROSSREFS
Sequence in context: A223956 A132168 A069326 * A016255 A322052 A250014
KEYWORD
nonn
EXTENSIONS
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
STATUS
approved