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Let Si(N) denote the vector space of weight & cusp forms on I'g(N) with trivial
character; see [1] for background. There are two circumstances under which f €
Sk(N) might fail to be primitive [2]:

o f € Sp(N/d) for some divisor d > 1 of N
e f(2) =g(dz) and g € Si(N/d) for some divisor d > 1 of N.

For example, let f1;4 denote the (unique) level 11 weight 2 cusp form, then both
f114(2) and f114(22) are level 22 cusp forms. Similarly, both fi44(2) and fi44(22) are
level 28 cusp forms, and both fi54(2) and fi54(22) are level 30 cusp forms. None of
these are “new” at N = 22, 28 or 30 since they arise from lower levels.

Define S (N) to be the vector space of weight k& primitive cusp forms (or Hecke
newforms) on I'o(N) with trivial character. We restrict attention to the case k = 2
henceforth. The dimension & (N) of S () over C possesses the following formula
3, 4, 5]:

AN) — wa(N) — ws(N) — K(N)
12 4 3 2
where \, K, wo, w3 are multiplicative functions with

05 (N) = n(N) +

p—1 ife=1,

Apf)=4q pP—p—1 if e = 2,

e+ 1)p—-1)?  ife>3,

0 if e = 1mod?2,

K(p)=< p—2 if e =2,

p? 2 (p—1)? if4<e=0mod2,

(—1 if p=2ande <2,

1 ifp=2ande=3,

. 0 ifp=2ande >4,

w2 (p°) = (*7—1 ifp#A2ande=1,

—(_74 if p#£2ande=2,

L 0 ifp#£2ande >3,
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[ —1 ifp=3ande <2

1 if p=3and e =3,

. 0 if p=3ande >4,

ws (p°) = (’73)—1 ifp#A3ande=1,
—(’73) if p#£3 and e =2,

[ 0 if p#£3ande >3,

pu(N) is the Mobius mu function [6], and (—4/p), (—3/p) are Kronecker-Jacobi-
Legendre symbols [7]. We have asymptotic extreme results [4]
Sy(N)

0 (V)
_ o 1 1 . 0 = —
£5(0.3739558136...) = 3 H <1 p(p*1)> - 1}\1;21?; ©(N) < 1N—S>oop p(N) 2

p

and average behavior

Z(S# x+0( %)

N<zx

as * — 00, where ¢(N) is the Euler totient function [8] and the infinite product is
Artin’s constant [9].
For concreteness’ sake, here is a list of basis elements of 5§ (N) for 1 < N < 32
10, 11, 12, 13]:
fua(z) = n(z)*n(112)%,

f1aa(2) = n(2)n(22)n(72)n(14z2),
fi54(2) = n(2)n(32)n(52)n(152),
froa(z) = A 0BA2)  n(22)°n(172)n(682)"
’ n(22)n(172)n(682)>  n(z)n(42)?n(34z)
B 1(82)°n(762) 1(22)%1(382)? n(42)%n(1522)%
froa(e) = <n<4z>n<38z>2n<152z> 1(2)n(192) +77(22)2n(82)277(762)> ’

(1
Faa(z) = 1(22)*n(102)?,

foalz) = n(72) [3n(=)*n(72)*n(92)° = n(32)°n(72)n(21z) + Tn(=)n(32)*n(212)T]
o 2n(2)*n(32)n(212)
3n(72)n(632) [n(2)*n(72)n(92)* — n(32)°n(212)] | 3n(2)*n(Tz)n(92)n(632)
2(2)n(32)n(92)n(212) 21(32)1(212) ’

fasa(z) = ¢ = 58¢% = V5q* — 158" — (1= VB)¢* — 258¢° +-
fasp(2) =~ HT\/qu +/5¢* - = Sqt — (1+5)¢° — 5+—2\/5q6 +
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faaa(z) = n(22)n(42)n(62)n(122),
f264(2) =0—- 4P+ 3" - —¢" - -2 + 3¢ + 6"+ 2+,
foe(2) =g+ =33 +¢* — " =3¢+ "+ +6¢° —¢** —2¢" — 3¢ +--- |
fora(z) = 1(32)°n(92)%,
fooa(2) =g = (1=V2)@P +(1=V2)@+ (1 -2v2)¢" —¢° = (3—-2V2)* +---,
faos(2) =q— (1+V2)P+1+V2)@+ (1 +2vV2)¢* —¢® — B3+2v2)* + -,
f30A< ) = n(32)n(52)n(62)n(10z) — n(z)n(22)n(152)n(302),
faa(z) =q+ 503 — (1 -V5)¢* =58 4+ ¢* — (3 VB)S +-- -,
fap(z) = g+ 52¢° — 1+ V5)g® —58¢* + ¢ = 3+ VE)¢* + -+,
fa2a(2) = n(42) 77(82)

where 7(z) = ¢"/*[22, (1 — ¢") is the Dedekind eta function and ¢ = €>™* [14].
It is natural to ask whether basis elements possessing integer coefficients necessarily
have an eta expression. Counterexamples might include faoga(2) and fosp(z). Another
counterexample might be fi94(z), which evidently can be represented via Ramanu-
jan’s two-variable theta function [15].

What can be said about the relative number of newforms to cusp forms in I'o(N)?
Martin [4] proved that

#(N) 1\ 1 2 1 1
E || 1+ - 1—- 1+-————| =0.444301....
n—>oo n &~ 60 N) ’ ( * p> ( p) ( * p pt p5) 044430

A parallel theory can be developed for weight 2 primitive cusp forms on I'; (N) with
trivial character [5]. The answer to the same question over I'y(N) is [4]

#(N) 1\ ! 1 2 2 2 1 1 1
1+ = 1+-— = 2 2 4 - 4 — 1 =) =0.652036...
n—)OO’]’L Z 51 N g ( +p) < +p p3 p4 p5 +p6 +p7 +p8>

Given a weight k primitive cusp form f(z) =>7° | a,,¢™ on I'o(NV), define

m=1

= i amm—*,  Re(z) > (k+1)/2.

This admits analytic continuation to all of C. What can be said about L-series
moments over all such f at z = 1/2? Conrey [16, 17] proved that, for k = 2,

e S L2~ ),

0
fesg(n)
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ren i L§(1/2)~2g(2)21"[(1+§>-m(\/ﬁ),

fesf P
1 3 3 1 1, 4 1 1 1“(”)3
T z#: L3(1/2) ~ 8¢(2) 1;[(1—5) (1+1+4+4+%) 25,
ST (N)
’ n(VN)*
1 4 5 1 3 11 10 11 3 1
F > LH1/2) ~128¢(2° [ [ (1—5) <1+5+?+F+F+F+F)'T
fesy () P

as N — oo passes through the prime numbers. Is it necessary that N be prime?
Compare and contrast with [18, 19]. What is the I';(/V)-analog of the first four
moments? It would be illustrative to perform the same calculations for weight 4
newforms as well.

0.1. Half-Integer Weights. Let £ > 1 be an odd integer and N > 4 be a
multiple of 4. A modular form of weight £/2 and level N is an analytic function
f defined on the complex upper half plane that transforms under the action of I'y(V)
according to [2, 20, 21]

f (“Z+b) - <§>k5;k(cz—l—d)k/2f(z) for all ( . 2 ) € To(N)

cz+d

and whose Fourier series f(z) = Y 00 ~,e*™"* satisfies ,, = 0 for all n < 0. For
the preceding relation, define

|1 ifd=1mod4,
f4=Y i  ifd=3mod4.

Note that d must be odd since otherwise ad —bc would be divisible by 2, contradicting
ad — bc = 1. For negative odd d or zero c, let

(]Tfl]) if d <0 and c >0,

Cc
(3)2 —(ﬁ) ifd <0 and ¢ <0,
1 if d==+1 and ¢ = 0.

If, additionally, we have v, = 0, then f is a cusp form of weight k/2 and level N.
The space Mj,/2(N) of modular forms and the space Si/2(/N) of cusp forms satisfy

k

dim(My»(4)) = M +1
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and dim(Sk/2(4)) = dim(My/2(4))—2if k > 9. Straightforward formulas for dim(S; /2(NV))
and dim(S3/2(/V)) have not yet been found, but we know that [22, 23, 24, 25]

1 1

dim(S5/2(N)) = (V) -

where

v(N)=N]] (H%), X(N) =Z<p<gcd (d,%»,

pIN dIN

3.2m2(N/2=1if ry(N) is even,
a(N) = { o (MD/2 it 1y(N) is odd,

rp(N) is the largest exponent e such that p© divides N for prime p, and
a(N) if ro(IN) > 4,

3 if ro(N) = 3,
B(N) = 5 if 72(N) = 2 and there exists p = 3mod 4
such that p|N and r,(N) is odd,
3/2 otherwise.

There are slightly different formulas for dim(Sy,2(N)) for larger & as well. The proof,
due to Cohen & Oesterlé [22], has never been published.
In the following, we will need one of the two basis elements of M(4):

F(z) = ZU(Qn + 1)
n=0
where o(m) is the sum of all divisors of m. It can be shown that [2, 23]
n(42)°
n(2z)*
The simplest half-integer weight modular form has weight 1/2 and level 4:

> n? n(2z)°
)= 2. 4" = e

F(z) =

n=—oo

(It turns out that 0(2)* is the other basis element of M(4).) Let us focus on cusp
forms henceforth [26]. The first nonzero cusp form of weight 1/2 occurs at level 1728:

(e o]

% > (%2) ¢ = n(722)

n=—oo
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and the first nonzero cusp form of weight 3/2 occurs at level 28:

n(2)n(42)n(142)*
n(22)n(72)n(282)°

The first nonzero cusp form of level 4 has weight 9/2:

0(2)F(2) (6(2)* — 16F(z)) = n(22)"

the first nonzero cusp form of level 8 has weight 7/2:

n(z)’n(42)°
n(2z) '

the first nonzero cusp form of level 12 has weight 5/2:

1(22)°n(62)°
0(32)

A prominent example is one of the two basis elements of Sy3/2(4):

0(2)F(2) (9(2)4 - 16F(z)) (9(2)4 — 2F(z))

which is the image of A(z) € Si2(1) under what is called the Shimura correspondence
2, 27]. Further discussion of this topic, with application to Tunnell’s solution of the
congruent number problem, is beyond our scope. We have not mentioned newforms
of half-integer weight thus far — in fact, two distinct definitions are commonly used,
one due to Serre & Stark [28] and the other due to Kohnen [29] — more details and
examples are forthcoming.

0.2. Complex Multiplication. A cusp form f(z) = > 2, 7,¢" € Si(N) has
complex multiplication (CM) by a nontrivial Dirichlet character ¢ if [30]

= &)y,
n=1

equivalently, {(p) = 1 or 7, = 0 for each prime p. It can be shown that £ is necessarily
a quadratic character, thus we often refer to CM by the corresponding quadratic
field. There is a one-to-one correspondence between imaginary quadratic fields of
class number one: [31]

Q(v-1), Q(v=2), Q(v-3), QW-T), Q(v-TI),
Q(V-19), Q(v-13), Q(v=67), Q(v~163)
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and CM-newforms of weight 2 (elliptic curves with CM) up to twisting: [32]
64A4, 256 A1, 27A3, 49A1, 12181, 361 A1, 1849A1, 4489 A1, 26569A1

with rational coefficients. Schiitt [33] classified similarly CM-newforms of weight 3
and 4.

0.3. Singular K3 Surfaces. We merely mention a class of projective varieties,
called K3 surfaces, that are two-dimensional analogs of elliptic curves [34]. The
name K3 is given in honor of Kummer, Kahler & Kodaira and also refers to the
mountain K2 [35]. Existence of rational points is one theme; canonical heights of
such points can be computed [36, 37] as with elliptic curves.

A K3 surface over Q is not modular, in general [38]. If we restrict attention to
what are called singular (or extremal) K3 surfaces, however, then modularity holds
with associated newform of weight 3 and possibly nontrivial Nebentypus character
[39, 40, 41]. Further, the newform is CM.

For example, the Fermat quartic surface in C3 .
Zo+ 72+ Zy+ 23 =0
has corresponding unique CM-newform of weight 3 and level 16: [34]
n(4z)°
which has character (—4/-). There are unique CM-newforms of weight 3 and levels

7,8, 11 and 15: [33, 42, 43]
n(z)*n(72)?,

)
n(2)*n(22)n(42)n(82)?,
(G(2)? +4G(22)* + 8G(42)*) G(2)*/

1(32)°n(52)* — (Z)gn(15Z)

3

where

G(z) = n(z)n(11z)
and we wonder if algebraic expressions for geometric realizations of these (for example,
as intersections of varieties) can be found.

0.4. Acknowledgements. I am grateful to Michael Somos for his computations
of eta expressions and Hung Bui, Jeremy Rouse, Matthias Schiitt, Kevin James,
Gonzalo Tornaria & William Stein for answers to many questions.
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