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Let () denote the vector space of weight  cusp forms on Γ0() with trivial

character; see [1] for background. There are two circumstances under which  ∈
() might fail to be primitive [2]:

•  ∈ () for some divisor   1 of 

• () = ( ) and  ∈ () for some divisor   1 of  .

For example, let 11 denote the (unique) level 11 weight 2 cusp form, then both

11() and 11(2) are level 22 cusp forms. Similarly, both 14() and 14(2) are

level 28 cusp forms, and both 15() and 15(2) are level 30 cusp forms. None of

these are “new” at  = 22, 28 or 30 since they arise from lower levels.

Define 
#
 () to be the vector space of weight  primitive cusp forms (or Hecke

newforms) on Γ0() with trivial character. We restrict attention to the case  = 2

henceforth. The dimension 
#
0 () of 

#
2 () over C possesses the following formula

[3, 4, 5]:


#
0 () = () +

()

12
− 2()

4
− 3()

3
− ()

2

where , , 2, 3 are multiplicative functions with

 () =

⎧⎨⎩ − 1 if  = 1

2 − − 1 if  = 2

−3(+ 1)(− 1)2 if  ≥ 3

 () =

⎧⎨⎩ 0 if  ≡ 1mod 2
− 2 if  = 2

2−2(− 1)2 if 4 ≤  ≡ 0mod 2

2 (
) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if  = 2 and  ≤ 2
1 if  = 2 and  = 3

0 if  = 2 and  ≥ 4¡−4


¢− 1 if  6= 2 and  = 1

−¡−4


¢
if  6= 2 and  = 2

0 if  6= 2 and  ≥ 3
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3 (
) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if  = 3 and  ≤ 2
1 if  = 3 and  = 3

0 if  = 3 and  ≥ 4¡−3


¢− 1 if  6= 3 and  = 1

−¡−3


¢
if  6= 3 and  = 2

0 if  6= 3 and  ≥ 3
() is the Möbius mu function [6], and (−4), (−3) are Kronecker-Jacobi-
Legendre symbols [7]. We have asymptotic extreme results [4]

1
12
(03739558136) = 1

12

Y


³
1− 1

(−1)

´
= liminf

→∞

#
0 ()

()
 limsup

→∞


#
0 ()

()
= 1

12

and average behavior X
≤


#
0 () =

45

26
2 + 

¡
2
¢

as  → ∞, where () is the Euler totient function [8] and the infinite product is
Artin’s constant [9].

For concreteness’ sake, here is a list of basis elements of 
#
2 () for 1 ≤  ≤ 32

[10, 11, 12, 13]:

11() = ()2(11)2

14() = ()(2)(7)(14)

15() = ()(3)(5)(15)

17() =
()(4)2(34)5

(2)(17)(68)2
− (2)5(17)(68)2

()(4)2(34)


19() =

µ
(8)2(76)5

(4)(38)2(152)2
− (2)2(38)2

()(19)
+

(4)5(152)2

(2)2(8)2(76)

¶2


20() = (2)2(10)2

21() =
(7) [3()2(7)2(9)3 − (3)5(7)(21) + 7()(3)2(21)4]

2()2(3)(21)
+

3(7)(63) [()2(7)(9)3 − (3)5(21)]

2()(3)(9)(21)
+
3()2(7)(9)(63)2

2(3)(21)


23() =  − 1−√5
2

2 −
√
53 − 1+

√
5

2
4 − (1−

√
5)5 − 5−√5

2
6 + · · · 

23() =  − 1+
√
5

2
2 +

√
53 − 1−√5

2
4 − (1 +

√
5)5 − 5+

√
5

2
6 + · · · 
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24() = (2)(4)(6)(12)

26() =  − 2 + 3 + 4 − 35 − 6 − 7 − 8 − 29 + 310 + 611 + 12 + · · · 
26() =  + 2 − 33 + 4 − 5 − 36 + 7 + 8 + 69 − 10 − 211 − 312 + · · · 

27() = (3)2(9)2

29() =  − (1−
√
2)2 + (1−

√
2)3 + (1− 2

√
2)4 − 5 − (3− 2

√
2)6 + · · · 

29() =  − (1 +
√
2)2 + (1 +

√
2)3 + (1 + 2

√
2)4 − 5 − (3 + 2

√
2)6 + · · · 

30() = (3)(5)(6)(10)− ()(2)(15)(30)

31() =  + 1−√5
2

2 − (1−
√
5)3 − 1+

√
5

2
4 + 5 − (3−

√
5)6 + · · · 

31() =  + 1+
√
5

2
2 − (1 +

√
5)3 − 1−√5

2
4 + 5 − (3 +

√
5)6 + · · · 

32() = (4)2(8)2

where () = 124
Q∞

=1 (1− ) is the Dedekind eta function and  = 2 [14].

It is natural to ask whether basis elements possessing integer coefficients necessarily

have an eta expression. Counterexamples might include 26() and 26(). Another

counterexample might be 49(), which evidently can be represented via Ramanu-

jan’s two-variable theta function [15].

What can be said about the relative number of newforms to cusp forms in Γ0()?

Martin [4] proved that

lim
→∞

1



X
≤


#
0 ()

0()
=
Y


µ
1 +

1



¶−1µ
1− 1



¶µ
1 +

2


− 1

4
− 1

5

¶
= 0444301

A parallel theory can be developed for weight 2 primitive cusp forms on Γ1() with

trivial character [5]. The answer to the same question over Γ1() is [4]

lim
→∞

1



X
≤


#
1 ()

1()
=
Y


µ
1 +

1



¶−1µ
1 +

1


− 2

3
− 2

4
− 2

5
+
1

6
+
1

7
+
1

8

¶
= 0652036

Given a weight  primitive cusp form () =
P∞

=1 
 on Γ0(), define

() =

∞X
=1


− Re()  ( + 1)2

This admits analytic continuation to all of C. What can be said about L-series

moments over all such  at  = 12? Conrey [16, 17] proved that, for  = 2,

1


#
0 ()

X
∈#2 ()

(12) ∼ (2)
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1


#
0 ()

X
∈#2 ()

2(12) ∼ 2(2)2
Y


³
1 + 1

2

´
· ln
³√


´


1


#
0 ()

X
∈#2 ()

3(12) ∼ 8(2)3
Y


³
1− 1



´³
1 + 1


+ 4

2
+ 1

3
+ 1

4

´
· ln(

√
)

3

3!


1


#
0 ()

X
∈#2 ()

4(12) ∼ 128(2)5
Y


³
1− 1



´3 ³
1 + 3


+ 11

2
+ 10

3
+ 11

4
+ 3

5
+ 1

6

´
· ln(

√
)

6

6!

as  → ∞ passes through the prime numbers. Is it necessary that  be prime?

Compare and contrast with [18, 19]. What is the Γ1()-analog of the first four

moments? It would be illustrative to perform the same calculations for weight 4

newforms as well.

0.1. Half-Integer Weights. Let  ≥ 1 be an odd integer and  ≥ 4 be a

multiple of 4. Amodular form of weight 2 and level  is an analytic function

 defined on the complex upper half plane that transforms under the action of Γ0()

according to [2, 20, 21]



µ
 + 

 + 

¶
=

µ




¶

− ( + )2() for all

µ
 

 

¶
∈ Γ0()

and whose Fourier series () =
P∞

=−∞ 
2 satisfies  = 0 for all   0. For

the preceding relation, define

 =

½
1 if  ≡ 1mod 4
 if  ≡ 3mod 4

Note that  must be odd since otherwise − would be divisible by 2, contradicting
−  = 1. For negative odd  or zero , let

µ




¶
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ


||
¶

if   0 and   0

−
µ


||
¶

if   0 and   0

1 if  = ±1 and  = 0

If, additionally, we have 0 = 0, then  is a cusp form of weight 2 and level  .

The space 2() of modular forms and the space 2() of cusp forms satisfy

dim(2(4)) =

¹


4

º
+ 1
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and dim(2(4)) = dim(2(4))−2 if  ≥ 9. Straightforward formulas for dim(12())
and dim(32()) have not yet been found, but we know that [22, 23, 24, 25]

dim(52()) =
1

8
()− 1

2()
()()

where

() = 
Y
|

µ
1 +

1



¶
 () =

X
|



µ
gcd

µ





¶¶


() =

½
3 · 22()2−1 if 2() is even,

2(2()+1)2 if 2() is odd,

() is the largest exponent  such that 
 divides  for prime , and

() =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
() if 2() ≥ 4
3 if 2() = 3

2
if 2() = 2 and there exists  ≡ 3mod 4
such that | and () is odd,

32 otherwise.

There are slightly different formulas for dim(2()) for larger  as well. The proof,

due to Cohen & Oesterlé [22], has never been published.

In the following, we will need one of the two basis elements of 2(4):

 () =

∞X
=0

(2+ 1)2+1

where () is the sum of all divisors of . It can be shown that [2, 23]

 () =
(4)8

(2)4


The simplest half-integer weight modular form has weight 12 and level 4:

() =

∞X
=−∞


2

=
(2)5

()2(4)2


(It turns out that ()4 is the other basis element of 2(4).) Let us focus on cusp

forms henceforth [26]. The first nonzero cusp form of weight 12 occurs at level 1728:

1

2

∞X
=−∞

µ
12



¶
3

2

= (72)
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and the first nonzero cusp form of weight 32 occurs at level 28:

()(4)(14)4

(2)(7)(28)


The first nonzero cusp form of level 4 has weight 92:

() ()
¡
()4 − 16 ()¢ = (2)12

()3
;

the first nonzero cusp form of level 8 has weight 72:

()2(4)6

(2)
;

the first nonzero cusp form of level 12 has weight 52:

(2)3(6)3

(3)


A prominent example is one of the two basis elements of 132(4):

() ()
¡
()4 − 16 ()¢ ¡()4 − 2 ()¢

which is the image of ∆() ∈ 12(1) under what is called the Shimura correspondence

[2, 27]. Further discussion of this topic, with application to Tunnell’s solution of the

congruent number problem, is beyond our scope. We have not mentioned newforms

of half-integer weight thus far — in fact, two distinct definitions are commonly used,

one due to Serre & Stark [28] and the other due to Kohnen [29] — more details and

examples are forthcoming.

0.2. Complex Multiplication. A cusp form () =
P∞

=1 
 ∈ () has

complex multiplication (CM) by a nontrivial Dirichlet character  if [30]

() =

∞X
=1

()
;

equivalently, () = 1 or  = 0 for each prime . It can be shown that  is necessarily

a quadratic character, thus we often refer to CM by the corresponding quadratic

field. There is a one-to-one correspondence between imaginary quadratic fields of

class number one: [31]

Q(
√−1) Q(√−2) Q(√−3) Q(√−7) Q(√−11)
Q(
√−19) Q(√−43) Q(√−67) Q(√−163)
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and CM-newforms of weight 2 (elliptic curves with CM) up to twisting: [32]

644 2561 273 491 1211 3611 18491 44891 265691

with rational coefficients. Schütt [33] classified similarly CM-newforms of weight 3

and 4.

0.3. Singular K3 Surfaces. We merely mention a class of projective varieties,

called K3 surfaces, that are two-dimensional analogs of elliptic curves [34]. The

name K3 is given in honor of Kummer, Kahler & Kodaira and also refers to the

mountain K2 [35]. Existence of rational points is one theme; canonical heights of

such points can be computed [36, 37] as with elliptic curves.

A K3 surface over Q is not modular, in general [38]. If we restrict attention to

what are called singular (or extremal) K3 surfaces, however, then modularity holds

with associated newform of weight 3 and possibly nontrivial Nebentypus character

[39, 40, 41]. Further, the newform is CM.

For example, the Fermat quartic surface in fC3 :
40 + 41 + 42 + 43 = 0

has corresponding unique CM-newform of weight 3 and level 16: [34]

(4)6

which has character (−4·). There are unique CM-newforms of weight 3 and levels
7, 8, 11 and 15: [33, 42, 43]

()3(7)3

()2(2)(4)(8)2¡
()2 + 4(2)2 + 8(4)2

¢
()2(2)

(3)3(5)3 − ()3(15)3

where

() = ()(11)

and we wonder if algebraic expressions for geometric realizations of these (for example,

as intersections of varieties) can be found.

0.4. Acknowledgements. I am grateful to Michael Somos for his computations

of eta expressions and Hung Bui, Jeremy Rouse, Matthias Schütt, Kevin James,

Gonzalo Tornaria & William Stein for answers to many questions.
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