[go: up one dir, main page]

login
A001530
NPN-equivalence classes of threshold functions of exactly n variables.
(Formerly M2825 N1138)
1
1, 1, 1, 3, 9, 48, 504, 14188, 1351563
OFFSET
0,4
REFERENCES
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 20.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Goto, Eiichi, and Hidetosi Takahasi, Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
S. Muroga, I. Toda and M. Kondo, Majority decision functions of up to six variables, Math. Comp., 16 (1962), 459-472.
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
S. Muroga, I. Toda and M. Kondo, Majority decision functions of up to six variables, Math. Comp., 16 (1962), 459-472. [Annotated partially scanned copy]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
CROSSREFS
Cf. A001529.
Sequence in context: A298308 A370426 A141051 * A316449 A356270 A190009
KEYWORD
nonn,more
STATUS
approved