OFFSET
0,2
COMMENTS
From Peter Bala, Jul 15 2016: (Start)
This sequence occurs as the right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^(k)*binomial(n,k)*binomial(2*n + k,n)*binomial(3*n - k,n) = (-1)^m*a(m) for n = 2*m. The sum vanishes for n odd. Cf. A273628 and A273629.
Note the similar results:
Sum_{k = 0..n} (-1)^k*binomial(n,k)* binomial(2*n + k,n)*binomial(3*n + k,n) = (-1)^n*(3*n)!/n!^3 = (-1)^n*A006480(n);
Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(2*n - k,n)*binomial(3*n - k,n) = binomial(2*n,n)^2 = A002894(n);
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(2*n + k,n)*binomial(3*n + k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(2*n - k,n)*binomial(3*n - k,n) = binomial(2*n,n) = A000984(n);
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(2*n + k,n)*binomial(3*n - k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(2*n - k,n)*binomial(3*n + k,n) = (-1)^n*binomial(2*n,n) = (-1)^n*A000984(n). (End)
Choose three noncollinear step vectors to satisfy the zero sum, 3*v_1 + v_2 + v_3 = 0. Then a(n) is the number of loop plane walks of length 5*n which depart from and return to the origin. Equivalently, a(n) counts distinct permutations of a (5*n)-digit integer with digits 1,2,3 of multiplicity 3*n,n,n respectively. - Bradley Klee, Aug 12 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n) = binomial(4*n,n)*binomial(5*n,n) = ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ) = [x^n](F(x)^(20*n)), where F(x) = 1 + x + 12*x^2 + 390*x^3 + 16984*x^4 + 867042*x^5 + 48848541*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977, A186420 and A188662. - Peter Bala, Jul 14 2016
a(n) ~ 3^(-3*n-1/2)*5^(5*n+1/2)/(2*Pi*n). - Ilya Gutkovskiy, Jul 13 2016
G.f.: G(x) = 4F3(1/5,2/5,3/5,4/5;1/3,2/3,1;(5^5/3^3)*x). Let G^(n)(x) = d^n/dx^n G(x), and c = {120, 15000*x-6, 45000*x^2-114*x, 25000*x^3-135*x^2, 3125*x^4-27*x^3}, then Sum_{n=0..4} c_n*G^(n)(x) = 0. - Bradley Klee, Aug 12 2018
From Peter Bala, Mar 20 2022: (Start)
Right-hand side of the following identities valid for n >= 1:
Sum_{k = 0..3*n} 2*n*(2*n+k-1)!/(k!*n!^2) = (5*n)!/((3*n)!*n!^2);
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(4*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 12 2024
EXAMPLE
G.f. = 1 + 20*x + 1260*x^2 + 100100*x^3 + 8817900*x^4 + 823727520*x^5 + ... - Michael Somos, Aug 12 2018
MAPLE
f := n->(5*n)!/((3*n)!*n!*n!);
MATHEMATICA
Table[(5*n)!/((3*n)!*n!*n!), {n, 0, 20}] (* Vincenzo Librandi, Sep 04 2012 *)
PROG
(Magma) [Factorial(5*n)/(Factorial(3*n)*Factorial(n)*Factorial(n)): n in [0..30]]; // Vincenzo Librandi, May 22 2011
(GAP) List([0..15], n->Factorial(5*n)/(Factorial(3*n)*Fact0rial(n)*Factorial(n))); # Muniru A Asiru, Aug 12 2018
CROSSREFS
KEYWORD
nonn,easy,walk
AUTHOR
STATUS
approved