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ABSTRACT. An integer sequence (an),~; is a linear divisibility sequence of
order k if the sequence satisfies a linear recurrence of order k and if a,, divides
a., whenever n divides m and a,, # 0. Examples include the 2-parameter
family of Lucas sequences of the first kind of order 2, the 2-parameter family
of Lehmer sequences of order 4 and a 3-parameter family of fourth order linear
divisibility sequences due to Williams and Guy [1]. We add to this list by
constructing two families of linear divisibility sequences of order 6, both
families depending on two integer parameters P and Q.

Our purpose in these notes is to prove the following result.

Theorem. Let f(x) = +1+ Pz + Q2 + 23 be a monic cubic polynomial with

integer coefficients. Let f(x) =1+ Qx + Px? & 23 denote the reciprocal

polynomial of f(z). Then the rational function x% (log(}ié?)) generates a
x

linear divisibility sequence of order 6.

Remark. There are corresponding results for monic quartic polynomials -
see my notes uploaded to |A327541.

We outline the proof of the theorem when the constant term of the
polynomial f is +1 - the proof when constant term of the polynomial f is —1
being exactly similar. Suppose then

f(z) =1+ Pz +Qx* + 23 € Z[2]
and suppose f factorises over C as

f(@)=(z—a1) (- a2) (z —as). (1)

Then the reciprocal polynomial f(z) =1+ Qz + Px? + 23 factorises over C as

flz)=(1—-za1) (1 —zaz) (1 —zas). (2)

We define a 2-parameter family of sequences U,, = U, (P, @) by means of the
rational function expansion

d f(x)
r— | log| == = U,z". 3
dw( g(ﬂx))) 2 ¥


https://oeis.org/A327541

Calculation gives

(z* =223 — (P4 Q)z? — 22 + 1)

ZUnm” = (P_Q)x(1+Px+Qx2+$3)(1+Q37+P$2+$3)7

n>1

(4)

showing U, is an integer sequence satisfying a linear recurrence of order 6.
Our aim is to show that U, (P, Q) is a divisibility sequence: that is, U,, divides
U,, whenever n divides m and U, # 0.

Suppose P = @. In this case U,, = 0 for all n, a trivial divisibility sequence.
However, we note that there is a non-trivial divisibility sequence hidden in (4).
If we remove the factor of P — @ from the right side of (4) before setting

@ = P, the result is the rational function

x(m4—2x3—2Pm—2x+1)

(1+ Px + Pa? 4 23)°
= 2-2(P+1)2* +3P%2® —4(P +1)(P —1)%z*
+5(P? — P —1)%2° —6P*(P +1)(P — 2)%2% +--- .

F(z) =

We claim the coefficients of F'(x) form a divisibility sequence. It is easy to
verify that
dG(x)

dz ’

F(z)==x (5)

where
x (1 — ;v2)

Gla) = 1+ P+ 1)z +2P2%+ (P+ 1)ad + a2t

Williams and Guy [1] found a family of linear divisibility sequences
U, (P1, P2,Q) of order four, depending on three integer parameters P1, P2
and @, and with the rational generating function

_ z(1 - Qz?)
11— Pla+ (P2 +2Q)r2 — P1Qz + Q2z*

> U.(P1,P2,Q)z"

n>1

We see that the rational function G(x) is of this type with P1 = —P — 1,
P2=2P —2, and @ = 1. It follows from (5) that F'(x) is the generating
function for the divisibility sequence nU,(—P —1,2P — 2, 1), proving the claim.

Suppose now P # (). We will show that U, (P, Q) is a divisibility sequence.
The normalised sequence U, (P, Q)/(P — Q) will then be a divisibility sequence
with initial term equal to 1.



From (3), the generating function for the sequence U, is given by

. (f® Fw
2 U = <ﬂm F )

n>1 f(CL')

i=1

3
1 (67}
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using (1) and (2). Here the prime ’ indicates differentiation with respect to z.

Expanding the right side of (6) into geometric series yields

Un=af +0f +af = —— —— —. (7)

We shall recast (7) into a form more suitable for proving divisibility
properties of the numbers U,,. It is straightforward to verify that if A, B,C are
complex numbers such that ABC' = —1 then

while if ABC =1 then
A+B+C 1 ! 1—A HB-1)(C-1 9
$B4C— - z— o= (A-1(EB-1C-1). )

Now a4, as and a3 were defined in (1) as the zeros of the polynomial
f(x) =1+ Px + Q2* + 23. Hence ajazas = —1. Therefore afafaf = —1 for
odd n and afayaf =1 for even n. Thus setting A =o', B=af, C =af in
(8) and (9) puts (7) into the form
i { (@@ +1)(af +1) (a2 +1)  nodd (10
(o = 1) (af — 1) (af — 1) n even.

The proof that U, is a divisibility sequence is an easy consequence of (10)
and proceeds on a case-by-case basis depending on the parities of n and m.
For example, let us prove that U, divides U,,, when n is odd and m is even.
In this case we define

" —1

T T gnlmel) _pn(m=2) o g
"+ 1

P(z) =



and put S(x,y,2) = P(z)P(y)P(z), a symmetric polynomial function in z,y
and z. Then the quotient

U’I’L m
Un

is a symmetric polynomial function of the roots «; of the cubic equation

f(x) =0 and so is an integer by the fundamental theorem of symmetric
polynomials. Thus we have shown that U,, divides U,,,, when n is odd and m
is even. The remaining cases can be proven in a similar manner. This
concludes the proof of the theorem for the case when the polynomial f(z) has
constant term +1.

= S (a17a23 Ckg)

In the other case, where the polynomial
f(x) = =1+ Pr+ Qa* + 2% € Z[x]
has constant term —1, the three roots ay, s and ag of f(z) = 0 satisfy
arasasz =1 and so by (7) and (9)
Un=(af =1) (a3 —1) (a3 — 1)
for all n. The divisibility property of U, follows easily from this

representation. In fact, up to signs, U, is the Lehmer-Pierce sequence
associated to the cubic polynomial f(z). The generating function is

(2 4 22° + (Q — P)a® + 2z + 1)
(1—Pzx—Qz?—2%)(1+ Qu+ P2 —23)’

Z Uz = —(P+Q)x

n>1

(11)

O

Example 1. Let f(x) = 2 — 22 — 1. Then
d
z— | log @ =z +3z%+ 2%+ 3z +112° + 92% + -+
dz f(x)

is the generating function for the sequence of associated Mersenne numbers
A001351, which was shown to be a divisibility sequence by Haselgrove - see the
link in [AO01351L

Example 2. Let f(z) = 2% — 2 — 1. Then
d
x— | log @ =x+a®+ad +52t a2 7t 4
dx f(x)
is the generating function for A001945.
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