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space vehicle. Whether such tactics will ever be economic for
terrestrial communication is another matter. But the mathe-
matical interest is great and involves very varied topics. Fo_r
example, the code discussed in Chapter 2 is presented graph_l-
cally as a rectangular matrix of black and white squares: this is
particularly appropriate since its construction is based on }he
Hadamard matrix which was first described in connection
with the design of tessellated pavements.* The *Fast Fou_rler
Transform’, which is a product of computer programming,
hasgseved invaluable in the de-coding of certain types of code.
T} struction of error correcting codes may be based on
IS torial algebra or on topology. If some British mathe-
maticians can be persuaded to read this book, and if as @
result they become interested in the mathematical problems of
error correcting codes, this may help to bring Britain forw'ard
in a subject in which we lag suadly behind the space-inspired
Americans and Russians.

D. A. Berw (Hull)

*SyLvesTer. J. J.. ‘Thoughts on inverse orthogonal matrices,
simultancous sign successions, and tessellated pavements in two of
more colours, with applications to Newion's rule, ornamental tile-
work and the theory or numbers.”

Phil. Mag. (ser.4), 34,461-475 (1867).
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A postage stamp problem

By W. F. Lunnon*

LU pvo N

= 2l

The postage stamp problem consists of choosing. for a given n and 1, a set of n integers such that

(a) sums of m (or fewer) of these integers can realise the numbers 1, 2, 3, ...

, N—1,

(b) the value of V in (a) above is as large as possible.
This paper discusses a computational approach to the problem.

(Received February 1969)

Nhat is the next number in the sequence 23456789...7
see Table 1 for n = 3, second column. Hard luck.
“he answer is nine.

To comprehend—or at least assimilate—this gross
nductive anomaly it is necessary to familiarise oneself
vith the problems of a Post Office in a distant land.
This body issues stamps in sets of # denominations and
‘orbids customers to stick more than m on one letter.
Chey wish to choose, for given # and m, a set which will
rive the greatest consecutive range of postal rates from
me cent upwards. For example, if n =4 and m = 3,
he best set is (1, 4, 7, 8) cents: with up to 3 of these
.tamps any rate less than 25 cents may be obtained.

Formally. let n, m be numbers (i.e. non-negative
ntegers). Let S= S(1), S(2), . . . . S(») be a set of
listinct numbers (stamp denominations) such that
(1) < S(2) << ... << S(n). r (a postal rate) is ‘obtain-
able’ from S if there exists another set 7" (a choice of
stamps) such that

r=3 TH)SE) and % TG < m. N
=1 B i=1

I'he ‘value’ yal(S, n, m). or just va/(S). of S is the lcast
number not obtainable from S. A ‘best set” (of which
there may be more than one) for given n, m is one whose
value is the maximum, V(n. m).

E.g,suppose n=4and m=3. IfS=( 4,7, 8
then 22 is obtainable from S since

22 =0x1 -0x4 -4 2x7+ 1x8
and 0+0L2-+~1-3.

25 is the least number not so obtainable, so va/(S) -- 25.
S is best since all other sets have lower values: e.g.,
val(1. 4, 5. 16) == 18.

In this paper we investigate the best sets (Table 1) and
their values ¥(n, m) (Table 2). We must confess to
being interested more in the computation than in the
possibility of a theoretical solution: in fact, the appear-
ance of the latter would now be a positive embarrassment.

Study of the tables suggests no imminent danger.
They display irritating features: witness the perverse
behaviour of S(2) when n == 3, noted above. which
caused the author to cry Eureka for a happy hour pending
computation of (n -3, m =9). Still kceping n - 3,
observe how the best set for m 10, (1. 10. 26), is also
a best set for m + 1 == 11: for m < 36 this happens at

* Deparimeris of Compuier Science, University of Manchester

m = 10, 14, 17, 20, 24, 27, 29, 33 (the rest of which do
not appear in Table 2). Whenm = 2andn = 10o0r 11,
the first two best sets differ only in S(3) being 3 in the
first and 5 in the second. For fixed m, as one might
expect, a best set is often a subset of another for larger n:
but more often it isn't. 'We now review the efforts made
to explain these phenomena.

History

The earliest references to the problem seem to be in
Sprague (1960) and Legard (1962). These ask for the
minimum » for which some set exists with value greater
than 100. where m = 2 and 3 respectively. If m =2
one can construct by hand such a set with n =16
stamps; to show whether this is minimal might involve
computing ¥(n. 2) up to n =15, which is currently
beyond us. If m =3 a set with » =9 can be con-
structed and, since V(8, 3) = 94 < 100. this is minimal.

Complete solutions are trivial for (n = 1, any m)
and (any n, m = 1). For (n =2, any m) it is easy
to prove that the best sets are—taking nearest integers—
(1, Yon -+ 3)), with value (4(m + 3))> — L.

Several people have worked on the further computa-
tional and theoretical aspects, mainly at Cambridge
University with the inspiration of J. C. P. Miller and
without. unfortunately, publication. Among these J. A.
Grant computed ¥(8, 3) and B. Landy ¥(9. 3) around
1963 (since confirmed by M. L. V. Pitteway): since our
own program would take 40 hours to repeat the feat. we
have used Landy’s value for (9, 3) in the tables. Most
of the rest of our results are confirmed independently by
M. F. Challis.

A. Henrici (and independently Hofmeister, 1968) has
investigated (# -= 3, any /n) and is said to have a complete
solution. For this reason, although we have not seen
his work. we have not extended our table for # == 3 any
further. Henrici has also looked at (any 4, m = 2); the
solution of an altered form of this case, where the best
set for n is required to be a subset of the best sct for
n + 1. would for example show how dense an infinite
set must be to satisty Goldbach's hypothesis.

Some attention has been paid to symmetric solutions.
where Sti) is in the set iff S(n) — Sti) is. Wegner and
Doig (1966) investigate sets called *j-bases™ which possess
a nested extension ol this property. and R. D. Wycherley
has computed some best j-bases for m < 17. We have

Now at SRC Arlas Computer Laboratory, Chilton, Didcot, Berhshire
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'mpared them with our own. except to note that
= 2 they are best if n < 8 and quite good there-

It is convenient to think of the set S as augmented by °
an extra stamp S(0) = 0 and insisting that exactly m

stamps arc used per letter.
i ¢ bound on the sizes of the S(i).

Obviously
S(i— 1) <2 S(i) < val($(0), . . ., S(i - 1)). (2)

The val on the right must be at most the number U(n, i)
of ways to choose with repeats / things from n - 1, so

S(@) < Vn, iy < Uln, i) = (": '). 3
Incidentally. V{(n. n)/U(n, m) measures the ‘efficiency’
of the best set, and for this reason we have included both
functions in Table 2. The ratio might prove interesting.

Another bound which would be reassuring is on the
number of best sets for given # and m. We assume that

37%

there are fewer than n + m, and have prepared ourselves
gallantly to sacrifice the excess should the assumption
fail. The record so [ar is for m == 2, n = 6, with 5 best
sets.

For given n. m the ‘serial method” of finding best sets
breaks up into two computational parts: to enumerate
all sets S within some plausible universe. where the
object is to enumerate as few as possible; and, given o
set S to find its value, where the object is to compute this
as quickly as possible.

Alternatively, we might commence with an entire
class S* of plausible sets S and, for each rate r in turn,
eliminate those S from which r is unobtainable. When
S’ vanishes, r = ¥V(n, m). The storage problem is
insuperable, even if S’ is stored as a tree: however, a
mixture of the two approaches might be effective. For
example, once S(1), . . ., S{n — 1) have been chosen
serially we could generate the set of ali S(n) which yicld
a value as good as the current best: this set would usually
be empty. Generating it efficiently invites ingenuity,
but we fecl that any resulting improvement could at best
add one more hyperbola on the right of the tables; and
so we return to the purely serial method.

Table 1

Best sets for n stamps in set, m on letter

min 1 2 3 4 5 6
1 1 2 128 1234 3284 8 123456
2 1° 12 1 8.4 1356 0 8,817 8§ 1258910
13 1348911
13491116
b 3S-6 15 14
1357910
18138 1478 1461415 1379192
146141729
4 131588 131118 13111532 14916 3849
14 1582729 44

=) J " U O B 141221 1493151 1
151228 1

[P'S

13 24 56 61
8 33 54 67

6 L 14 1712 183M33 17124352 1711483837113
15
il 1 L§ LEI%- 46297 19164 102
8 O ) T R . 4. B Rl B B
16 191580118
&8 1 16 1920 153460 1923108181
10 1) 1 &' 1 1826 &4l e
7
1 1 179950, "1"7 48 83
11026
120 L L@k 1 7asTIRe
18
13 1 18 11334 19 56155
14 1 18 11252 1861 164
19
min 10 11
1 12345678910 1234567891011
2 2370114519 2122 24 I 2800 151928 25 26 28
125 7701 5. 19 21" 22 24 A2 STRCTIC S 19230 2506 28
1349111618 23 24 26 27
153 86 18- 14721 22 24,26 27

7 3 9
1234567 12345678 123456789
1258111213 125811141516 1349111617190
13249101213 13579102122

135781718

14515182734 1361024263941 13891432365 ¢

149 24 35 49 51
410 15 37 50 71
158 25 31 2.7

2
1234567891011 12
1349111621 23 28 29 31 32

A posia

Enumeration

b§nng (2), and assuming we have an integer procedur
val(S, n, m) on hand, this looks like

S[0] := 0;

for S[1] :== val(S, 0, m) step — 1 until S[0}—~14d
ik - 1do

for S[2] := val(S. 1, m) step — I wntil S{1] < | do

for S[n] := val(S, n — 1, m) step — | until
Sln— 1]+ 1de
[test val(S, n, m) for best so far);

This sort of indefinitely nested for loop occurs fre-
quently in combinatorial problems, under some such
name as ‘back-tracking’ (Beckenbach. 1964, Floyd, 1907‘
:and Walker, 1960). It may be thought of as a for IoorA
in which the index variable is a vector S[0:#] instead ol
the }1sxxal scalar. To find the next S after a given one
lhe_ idea is to back down [rom S[n] till an S[;] is foumj
which has not reached its limit, then to increment this
S[i] and re-initialise all subsequent elements of S. Fo.r
example the present instance is actually coded as follows:

T

Best values ¥'(a, m) and number of choi

min 1 2 3 4 5
1 2 ] 4 5 v
2 3 4 5 6
2 2) 5 9 13 17
3 6 10 i5 21
3 4 8 16 25 37
4 10 20 < 56
4 5 11 27 45 71
s 15 3s 70 126
5 6 15 36 2 127
6 21 56 126 252
6 7 19 53 115 217
7 28 84 210 462
7 8 24 70 166 346
8 36 120 330 792
8 9 29 90 235 513
9 45 165 495 1287
9 10 35 113 327 798
10 55 220 715 2002
10 11 41 147 428
11 66 286 1001
11 12 48 173 548
12 78 364 1365
12 13 55 213 709
13 91 455 1820
13 14 63 260 874
14 105 560 2380
14 15 71 303 1095
15 120 680 3060
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‘numeration
Using (2), and assuming we have an integer procedure

(S, n, m) on hand, this looks like

S[0] :=0;
for S[I] := val(S, 0, m) step — 1 until S[0] + 1 do
for S[2) := val(S. 1, m) step —1 until S[1] + 1 do

for S[n) := val(S, n — 1, m) step —1 until
S[n— 1]+ ldo
[test val(S, n, m) for best so far];

This sort of indefinitely nested for loop occurs fre-
uently in combinatorial probiems, under some such
ame as ‘back-tracking’ (Beckenbach, 1964, Floyd, 1967,
nd Walker, 1960). It may be thought of as a for loop

_n which the index variable is a vector S[0:#] instead of

he usual scalar. To find the next S after a given one,
he idea is to back down from S[n] till an S[i} is found
vhich has not reached its limit, then to increment this
5[i] and re-initialise all subsequent elements of S. For
xample the present instance is actually coded as follows:

=P S =
L: Slitz= Sk} ="1;
for i ;= i -+ 1 step | until n do
S[i] 1= val(S, i — 1, m);
[test val(S, n, m) for best so far];
for i ;= n step — 1 until ] do
if S[i] % S[i — 1] + 1 then goto L;

One attempt to further reduce the enumeration (due
to J. S. Rohl) reasons that if » is the best value found so
far, there is no point in considering sets for which
Sy < (v — VYfmor Sn — 1) < (v — 1)/m?, etc. Using
this device it scems natural to enumerate the S(/) down-
wards (as is done in the coding above) to avoid calling
val unnecessarily. However, this may be a mistake if
the best sets turn out to be clustered near the end of the
enumeration. Our program incorporates the idea in
this form, but we have not established its utility nor
answered the last query.

It is possible to compute simultaneously with ¥(n, m)
alt ¥ (i, j) for i, j < n, m, at some cost in speed. Owing
to the severely exponential increase in time with m
and especially n, this is only worthwhile for n=4
(time = O(2™)) and n = 5 (time = O(4")). The point

Table 2

Best values ¥ (n, m) and number of choices U(n, m) for n stamps in set, mn on letter

min 1 2z 3 4 5
1 2 5 4 5 6
i 3 4 5 6
2 3 5 9 i3 17
3 6 10 Is 21
3 4 g 16 25 37
4 10 20 35 56
4 5 11 27 45 7
5 15 35 70 126
5 6 15 A 2 127
B 21 56 126 252
6 7 19 53 s 217
7 28 84 210 462
7 8 24 0 166 346
8 36 120 330 192
8 9 29 %0 235  SI3
9 45 165 495 1287
9 10 35 13 321 798
10 55 20 715 2002
10 1 a1 47 438
1 66 286 1001
1 12 48 173 548
12 1 64 1365
12 13 55 23 709
13 o1 455 1820
13 14 63 260 874
14 105 560 2380
14 15 7 303 1095
15 120 680 3060

6

7
7

21
28

53
84

109
210

212
462

389
924

1/ 8 9 10 11 12
8 9 10 it 12 13
8 9 10 11 12 13
27 33 41 47 35 65
36 45 55 66 78 91
71 94 122

120 165 220

163 -

330
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ntioning this here is that Rohl's device does not
BEnL it: no best sets for smaller » are lost because
Vin, oimn=t < V(i, m),
and none for smaller m because

Vi mymn i )Vin, jimn=i < Vi j)jot

Valuation

Because of the way the va/ routine is used above, when
it is called upon to value S(1). ..., S(/) we may assume
that S(1), . . ., S(i — 1) are unchanged from last time:
so the portion of the calculation relating to them need
not be repeated.

Given o sct S of stamps. we define L(i, j) to be the set
of all numbers obtainable from S(1), . . . . S(/) using up
to j stamps. A convenient way to store L is as a string
of bits: bit k = 1 ifl k is obtainable. For example, if
S = (1.4, 5) then

L(2.3)= 11111 11011 00100 00000 . ..

N
L(3.2) = 11101 11011 10000 ... &(4)
L(3,3) = 11111 11111 16111 10000 ... J

Observe that L(3, 3) has a 1 in just thosc places where
L(2, 3) has or L(3, 2) shifted up 5 places has: in general,

Lijy=LG,j— D4 SO VLi—17)- (5
and furthermore
L(i, 0) = L(0, j) = 10000 . . . (6)
since 0 is the only number obtainable in these cases.
Using (5) and (6) L(i, m) can be constructed from
L(i, 0y and the L(i — 1./), 1 ¢ j =~ m. all of which have
already been calculated. Then val(S, i. m) is just the

position of the first zero in L(i. m).
Details to watch: The two lists on the RHS of (5) may

il to overlap. i.e. max (L(i — 1, j)) may be less than
This results in a gap which has to be coded for.
merge (5) may leave empty words on the end of the

resulting L(i, j). which should be pruned. In the inner
loop L(n, j) could be pruned even more by stopping at

References

m¥n - L. m) — (m — ))S(n). since L(n, m) must have
its first zero before m ¥V (n — 1. m): this would be effective
for high values of m. At some extra effort one could
also drop the initial string of 1's and replace it by a base
count. We didn't think of either device at the time.
Long strings of I's and O’s suggest storing an L-list as
bit-changes: e.g. L(2. 3) above would be kept as (7. 8,
10, 12, 13). these being the places where 0 changes 1o
1 or 1 to 0. However. there is no reason to suppose
that even good sets are not more or less random in the
middle of their L-lists. The idea is feasible if the overall
ratio changes/bits is less than 1/word length (24 bits on
Atlas), assuming equal times for dealing with one word
of list and one change. Even this may be over-optimistic,
for the implementation of (5) becomes rather complicated.

Performance

It is the lot of every machine-code programmer 10 sce
his most cherished creations sink into unpublishable
obscurity. Enough! let us baldly state that the value
algorithm was hand-coded for the Manchester Universiy
Atlas I computer, the rest of the program being in Atlus
Autocode, and Table 1 and Table 2 were produced in
about 20 hours. The time required is badly exponential
in n, slightly less so in »m. The inner loop—merging the
L(i, j) together as in (5)—took about one microsecond
(less than half an instruction) per bit. The results on
the right-hand hyperbola of the tables each took sever:i
hours, the longest being n == nm’ =6 with 54 hour -
during this time the value routine was called 4 millicn
times, and the L-lists extended to 10 thousand bii-.
Run-times of this order demand a dump/restart facilit- .
in order not to upset either the programmer (when ' ¢
machine stops) or the computing service (when
doesn’t).
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Initialising Geoffrion’s implicit
the zero-one linear programmir

By J. L. Byrne* and L. G. Prolit

This paper describes 2 mel
programs in zero-one variab
which may be employed in
between the original and mo
(Received December 1968,

1. Introduction

!n a recent paper Geoflrion (1967) has proposed an
implicit enumeration algorithm for the solution of the
gcnpral linear programming problem in zero-one variables
wlych is computationally auractive because of its sim-
plicity and modest storage requirements compared with
the related algorithms of Balias (1965) and Glover (1965).
However, the computational experience with Geoffrion's
algorithm provided by Freeman (1966) and Byrne (1967)
shows that the time required to reach termination may
bg considerable even for relatively small problems. The
aim of this paper is to show how this time may be
considerably reduced by means of a modification of the
non-iterative part of the algorithm. The modification
proposed consists of three modules, one or all of which
may be employed depending on the path along which
the computation flows.

.]n the following sections the general linear program-
ming problem in zero-one variables is referred 10 in the
following form:

minimise z = ¢’.x

subject 1o Ax = b, h
=0 an iy (= 02 6 v R
c> 0,

where ¢, x are n-vectors, b is an m-vector and A is an
m by_n matrix. The coefficients in (1) are not restricted
to being integers. Any linear programming problem in
zero-one variables can be written in the form of (1) by
means of a series of simple transformations (e.g. see
Balas, 1965). The above form differs slightly from that
considered by Geoffrion in the expression of the con-
straints but appears more natural to the authors.

2. Some aspects of Geoffrion’s algorithm

In this section some aspects of Geoflrion’s algorithm
which are necessary to the development of the proposed
modification are reviewed.

A solution of (1) is any binary n-vector. A solution x
of (1) is feasible if Ax > b and a feasible solution which
minimises z over the set of feasible solutions is said to
be optimal. The objective of an implicit enumeration
algorithm is to obtain and verify an optimal feasible
solution whilst explicitly enumerating as few as possible
of the 2" solutions of (I). This latter point is an

* Department of Mathematics. University of Queensland
t Department of Mathematics. University of Southampron



