[go: up one dir, main page]

login
A000972
Fermat coefficients.
(Formerly M4847 N2072)
2
1, 12, 66, 245, 715, 1768, 3876, 7752, 14421, 25300, 42287, 67860, 105183, 158224, 231880, 332112, 466089, 642341, 870922, 1163580, 1533939, 1997688, 2572780, 3279640, 4141382, 5184036, 6436782, 7932196, 9706503, 11799840, 14256528, 17125353, 20459857
OFFSET
7,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. P. Loh, A. G. Shannon, A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
P. A. Piza, Fermat coefficients, Math. Mag., 27 (1954), 141-146.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1,1,-6,15,-20,15,-6,1).
FORMULA
a(n) = A258708(n,n-7). - Reinhard Zumkeller, Jun 23 2015
G.f.: x^7*(1 + 6*x + 9*x^2 + 9*x^3 + 10*x^4 + 7*x^5 + 12*x^6 + 6*x^7 + 4*x^8) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Mar 28 2017
MAPLE
a := n->floor((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/7!);
MATHEMATICA
Table[Floor[((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/7!)], {n, 1, 30}] (* Vincenzo Librandi, Apr 10 2012 *)
With[{c=7!, t=Times@@(2n+Range[0, 5])}, Table[Floor[t/c], {n, 30}]] (* Harvey P. Dale, Apr 20 2014 *)
PROG
[Floor((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/Factorial(7)): n in [1..30]]; // Vincenzo Librandi, Apr 10 2012
(Haskell)
a000972 n = a258708 n (n - 7) -- Reinhard Zumkeller, Jun 23 2015
(PARI) Vec(x^7*(1 + 6*x + 9*x^2 + 9*x^3 + 10*x^4 + 7*x^5 + 12*x^6 + 6*x^7 + 4*x^8) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^50)) \\ Colin Barker, Mar 28 2017
CROSSREFS
Cf. A258708.
Sequence in context: A112142 A271870 A114243 * A180392 A161805 A036399
KEYWORD
nonn,easy
STATUS
approved