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On Ternary Continued Fractions,
by
D. N. Lenuer, Berkeley, Cal,, U.S.A.

Tt has been known since Lagrange(') that the regular contipu‘{-f{
fraction which represents a quadratic irrationality becomes periodic
after a finite number of terms in the expansion, a_nd 'con\'erscly, th.ut
a regular continued fraction which becon?es perlo.dlc th.'ter a flim.tn
number of terms is one root of a quadratic equat‘lon_ -w1t}_1 rational
coefficients. It is thercfore uscless to look fozj perlodu?lty n the. re-
gular continued fractions which represent cubic and higher irration-
alities. To meet this situation Jacobi undertook to extend the
continued fraction algorithm as follows: .

In the ordinary continued fraction we are concerned with 1_\\'0
series of numbers,—the numcrators and dellol.ninator.\' of the successive
convergents—which are given by the recursion formulae :

fanQnAn—1+Iln—2 ] )
Bn:anu—lJ('Bu-'z) L
with initial values (1,0) for A, and (0,1) for Bn'. In f]acob.lb;( )r
extension of this algorithm we are concerned with three series o
numbers given by the recursion formulae :
AnZQnAn—l+p,7fln-g+:[n_3 ‘ .
B.,=quBu.i+ pabn2t Bu_s g ()
Cn=qnCrct + p1Crat Cacs '
with initial values (l,0,0) for .l,; (0,1,0) for B, and (0, ‘(),‘lv). t"l:
C..  We shall call the series of numbers (Aa, [.3,2, C») tbe cc)h/z;,jz,cg)_ff.--‘L
sets and the scries of numbers (p,, g.) the partial quotwntt oc;im. i.r
ternary continued fraction. Jacob.i’s proplcm‘ was t(.)‘}do 'leild .
possible an infinite scquence of partial quotient sets whic 1‘ \\tio‘ l;D [‘
a sequence of convergent scts (s, By C,,). suc%l th{lt t}lwtm }{O -\.V-”S
and Ca/A, should couverge toward two given irrationalities.

1 hich & Il

iodic seri Arti: otient sets which shou
find a periodic series of partial quo e
e i Bachmann(®) showed later tha

give certain cubic irrationalitics.

(1) La;;r_n_ng_e; Oev. ii, 74.
(2) Jacobi, Werke, vi, 385.
(%) Bachmann, Crelle, Bd. 75, 25 (1873).
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for periodicity certain inequality relations must be satizfed by the
irrationalities, but whether these are always satisficd is not deter-
mined. Berwick(') hus obtained periodic expansions which always
avail for cubic irrationalities, but his convergent sets are not given
by the recursion formulae indicated above. Others have worked on
Jacobi’s problem, but the determination of the partial quotient sets
which shall ultimately recur, and which shall fit a given pair of
cubic irrationalities is a problem which still awaits complete solution.

Some years ago, in 1918 in fact, it occurred to me that the study
of the periodic ternary continued fraction apart from the question of
fitting it to a given irrationality might yield some results of interest.
The study might be called an investigation of the system of difference
equations (2) with especial attention to the arithmetical implications.
Some of the results were immediately extensible to an n-ary con-
tinued fraction easily derived by generalization of the above definition.
The chief imnportance, however, I think of any generalization is its
ability to throw light on the ungeneralized field. The extension to
quaternary and higher continued fractions is often an amusing game
that gives one a virtuous feeling of having done one’s whole duty
by the subject, but which often adds little more than a complexity
difficult to read and of no consequence to the theory of ordinary, or
shall we call them, binary continued Jractions.

The interesting fact developed at once that associated with each
pertodic series of partial quotient sets, there is,—excep' in certain
very interesting speciul cases,—a definite cubic irrationality. 1f the
p’s and ¢’s in the partial quotient sets are related in certain WaYS
the cubic irrationality ¢ives place to a quadratic irrationality or even
to a rational field. We shall speak of these cases later.

Using the above recursion formulae with the initial values as
indicated one obtains easily =1, de=qs, di=quqa+ps ete.
venient computation scheme is:

A con-

An Bn C,

1 0 0

0 0 1
P 1 s 1
P2q: q: 92})1+ 1

g2q1-F p2

C

(1) Berwick, Proc. Lond. Math. Soc. Sor. 2, vol. xii, 1913.
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43S D. N. LEIIMER:

gsqei+ Qsp2 + qipat 1

Psqs qsq2F ps gaqep1+ gst Pspha

Pngn An Bn Cn

Tt is easily shown that for all values of the subseript n we
have :
Ars Bae Cp-- |
Any Baa Cor |=1.
A, B, Cn

It appears that if we assume the original set of recursion rela-
tions of the form
A= QHAn—l +pnAn—2 +rpAn-s

with similar formulae for the B’s and C’s then the determinant given
in the above theorem is equal to the product of the ¢’s, which fact
connects this form of ternary continued fraction with ordinary con-
tinued fractions of the type:

For students of the theory of numbers such fractions are of little
interest. The increase in generality is accompanied with a lossi of
uniqueness which seems to have serious disadvantages in arithmetical
work. .

For continued fractions of order m: the value of the corresponding
determinant is found to be:

(_1\)(11—1)(771—1).

Thus for fractions of odd order the determinant is found to be +1
while for those of even order the determinants are alternately +1
and —1. .

As soon as we have a method of finding a ternary continued
fraction whose nth convergent set (An, By, C,) is given, then it is clu;;n:'
that we shall have a solution of the indeterminate equation X+
B, Y+C,Z=1. In fact, X, and Z may be taken as the co-factors
in the nth determinant. This problem was solved in general, and
the complete solution of the indcterminate cquation in any m_mﬂ\-.";
of unknowns was obtained entircly free from tentative processes, i
without the tedious substitutions usually employed. An account of
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this solution is to be found in the Proceedings of the National
Academy of Sciences for April, 1919.

In building up the theory of ternary and higher continued
fractions a theorem which is an extension of the well known theorem
in ordinary continued fractions was found very useful. Tt has to do
with the continued fraction obtained by writing down the partial
quotient sets of two given fractions. Thus if the partial quotient
sets of one fraction are (py, 415 ps, g5 - .. .5 pi, qo) and the corresponding
convergent set is (4:5.(%), while the partial quotient sets of another
fraction are (p.',q);....; 9w, ¢'v) with corresponding convergent set
(A" B C'), then the convergent set of ordert /;+% for the fraction
(Mqrs-. s peqe; pi'qd - <. p'wq's) 18 given by the formulae :

A”t+k' = jlkC,L-z + Ak._.1B,k: + flt-f_u‘l’k/,
B(’k+kf: Bkcﬂp‘f“ BJ.;-IBVA" + ]))E—EA’L",
C”k+k'= Ck C,kl + OL—.—.]B,L' -+ Ck_eA/k/,

and more generally the last three convergent sets are given by the
rule for multiplying determinants from the product :

A Ay Ais i ‘ C’k' C”ti—l C’t/_.‘: !

By Bio, Bi. X ‘ B B, B,

C Ciey Cron | A Ay A,
’ 44”)5+k' Al’k+k'—1 A”k+k'—2

. !
= B”k+k’ -B /L'+L"-1 B”k+kl—ﬂ

|-
C”k+k' Ol’k+k'—1 C”A:+kl-'-‘2

Consider now the purcly periodic continued fraction of period /-

(P11 Por G- :_.;px-, qu).
Associated with this fraction is the following cubic equation which
we call the characteristic cubic of the ternary continued fraction:
| dye—p  Bis Ceoe |
| 4xs Bia—p G |=0.
.| i By Ci—p !
Written at length this is
pPr—Np'+XNp—1=0,
where M= leet Bea+ O
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and Ne=ApoBroi— i Dot B Oe— D Cin + i nCo— iU,
We have proved the following theorem concerning this cubic :

The characterastic cubic of any periodic ternary continved frqe.
tion rematns wnaltered by any cyclic permutation of the partiol
quoticnl pairs.

Using this theorem we obtain the fundamental recursion formulye
for the convergent scts:

Av=MAp o= NApnt o,
B,=MB, x— NBn s+ Bus,
Co=MCho — NCrvop + Croare

It thus appears that the A’s, B’s and C’s are solutions of the follow.
ing linear difference equation with constant coefficients :

Uper— MUz + NU,— U, =0.

The theory of such equations is well understood. (Boole, Finite
Differences, p. 208). By referring to this theory, we may write

An="ka® (1=1,2,8,....,sk),

where kik.,. ..., k. are independent of #n and zms,....,z. are the roots
of :
a*— M2 N2¥—1=0,

and so are the Lth roots of the roots of the characteristic cubic.
This result leads to the equation:

k k k
i k nlk v k__
An:P?,kZPuw "+P:l Zlewvn+p3 [ZRUQ’ , @ _17
ool 7= =

where P,, Q., R, are independent of n, and p;, ps, ps are the roots of the
characteristic cubic. Similar equations hold for B, and Ch. .

‘From this last result, we obtain the remarkable theorem: If
the characteristic cubic has one root p whose modulus is greater than
the modulus of either of the other two voots, then

lim (4"*5> — lim (Rﬂ> =lim (ﬁ-",“:) —p.
nreo \ A, o b, e Ca

If the characteristic cubic has two imaginary roots whose common
modulus is greater then the absolute valuc of the real root, then the
Sfractions Apii|An, Busi|Bay Coui|C do ot approcch any limit as it
ineredases beyond limit. :

As an example consider the fraction (3,1;2,2) of period 2.

C
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962 26 3

i B o,
0 0
! 1 , 0
0 0 ! 1
3.1 1 | 3 ' 1
2.9 2 7 ‘ 4
3,1 5 16 8
2,2 15 19 ‘ 25
31 32 104 53
22 59 ‘ 322 ‘ 164
31 210 633 | 313
22 650 2,114 , 1,077
31 1,379 4485 2,285
2.2 4,268 13,881 | 7,072
31 9,055 29,450 40,051
28025 91,147 46,437
31 59,458 ; 193.378 98,521
22 181021 598,500 304,920
3.1 390,420 1269781 . | 616,920
22 1,208,340 ‘; 5,929,910 2,002,201
3,1 2,563,621 8,337,783 4,247,881
7,934,342 25,805,227 13,147,084
3,1 16,333,545 54,748,516 27,802,928
22 52,099.395 169,415,269 86,327,905

The characteristic cubic in this example is found to be
P —Tp"+3p—1=0.
An approximation to the largest root of this cubic is given by the
ratio of any number in any one of these columns to the number
preceding it by two in that column. Thus
5299395/ 7,934,312 63663157701
169,415,269/25,805,227 6 56631577005 . . . .
86,327,905/13,147,084 6 56631577009 . . ..
The other two roots of this equation are imaginary. It is not true,
however, that the cubic always has imaginary roots, as the example of
the fraction (5,2) will show  The cubic in this casc is p'—2p"~5p—-1=0
the roots of which are all real. Practically all of the work done so
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far in conncetion with Jacobi’s extension of the continued fraction
algorithm has been concerned with cubic irrationalities with nega-
tive discriminant. The ternary continued fraction applied without
change to all cubic fields alike. Tt also reaches down into the realn
of quadratic irrationalities. In this connection we have the curious
theorem that if p is always greater by 2 than ¢ in a periodic ternary
continued fraction one root of the characteristic cubic is unity and
the other roots will give quadratic irrationalitics. This is a special
condition, sufficient, but mnot necessary. One of my students, Di.
Coleman('), has worked out in detail the necessary and sufficient
condition. Another of my students is at present working on the
problem of finding a ternary continued fraction to fit any given qua-
dratic irrationality. This seems to yield results with little difficulty.

The characteristic cubic has been defined by means of the three
convergent sets at the end of the first period. This may be called
the first characteristic cubic, the sccond being formed in the same
way from the threc convergent sets at the end of the second period,
and so in general. Connected with these different cubics we have
the interesting theorem: The roots of the characteristic cubic of
order [ are the /[th powers of the roots of the first characteristic
cubic. This theorem is true for quaternary and higher continued
fractions.

We have seen that the largest root, if any, of the characteristic
cubic is approximated by the ratio of An.ifds T Burx/Ba or CusifCi.
One asks at once if anything can be said of the ratios B[, or
CulAw or Cy[B,. It is not difficult, using the solutions of the dif-
ference equation given above to show that these ratios also approxi-
mate with increasing n to cubic irrationalities connected by linear
fractional relations with the largest root, if any, of the characteristic
cubic. We have in fact the theorem: If the characteristic cubic
have one root p whose modulus is greater than the modulus of cither
of the other two rools, then the ratio B4y approaches a limit o
related fo p by the equation :

PBL+ALB:¢ T — - qu_llll’l(Bn>.
p A+ Ax- IBL—AJABL -1 Ay

PCL I+Cl.—“‘1k 1 (YA 14 [(___llnl <C;>
PAk 1+ Ceoy — 11. 1Ck A &

(‘) Coleman, American Jmnml of Mathcematics, Vol LII, No. 4, Oct 1930
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and oy P Oroat CvorBiy = CloooBy 1_11m<p )
PBL °+BL(/L-_ — Bi-Cy DBy

The actual cubic equations satisfied by these three ratios nre
obtainable with soine little difficulty from these three equations. The
coefticients of thesc¢ cubics are however too complicated to be of much
use. The case where the ternary continued fraction has a finite
number of non-recurring partial quotient sets ix not difficult to treat.
The results are entirely similar to the results in the purely periodic
case.

It will be remembered that in the case of the expansion of a
pure quadratic surd Y& in a continued fraction the denominators of
the complete quoticnts in the expansion recur periodicallyv. These
denominators are the values of the Pellian quadratic 2®— Ry®, the
values of « and y being the nwnerators and denominators of the
successive convergents. A puarallel state of affairs is found for t(irnzu'-y
fractions which represent the simple cubic irrationality #==R7%. In
fact another student of mine has shown that if 7, 6, §* expand into a
ternary continued fraction which ultimately becomes periodic and if
m be the value of the “ Pellian cubic”

2*+ Ry’ + R*%* —3Rayz
for x=d., y=Ba, z=C,, then the series m is periodic('). Mr. Daus
has also found many other interesting analogies for ternary continued
fractions of the above type with those for the quadratic field. The
great difficulty in the whole subject for the student interested in the
numbertheoretic implications is the lack of uniqueness in the ex-
pansions. It is quite possible to get entirely different expansions
which will give the smne ultimate ratios for the convergent sets.
Thus the purely periodic fraction (4,2; 3,5) will give the same values
of the irrationalities o, 0w, o5 as the mixed fraction (4,2; 36; 1,2; 0,1;
0,1:0,1;1,2;4,5;1,1; 1,4; 0,5; 1,3; 0,1; 0,1; 0,1; 1,2; 1,6). This field
of inquiry T have not yet thoroughly explored, but a number of in-
teresting results have already come out of it. Tt will be observed
that the second of the above fractions is characterized by the pecu-
larity that all of the partial quotient sets with the exception of the
first are such that the p less than or equal to the 4. Such fractions
I have called proper fractions and it would seem likely from experi-
mental evidence th(ut a proper frautlon is obt mmblo oqm\.llont to

(1) Dluk, ‘\m qu ’\[ltlz xliv, No. 4, Oct. l".;.l
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444 D. N. LEFMER :

any improper one.  The most general results which I have been g,
to prove in this connectjon however are the following equivalences -
The purely periodic improper fraction (2p,2p—3) is equivalent
to the mixed fraction
(2p,2p—2;1,2p—2;0,1;,0,p—2; 1,2; 0,1; p—4,p+2: 1,25 —1),
and the purely periodic improper fraction (Zp+1;2p—2) is equivalent
to the mixed proper fraction ;

(2p+1;2p—1;1,2p—1;0,1;0,p—1;02;0,1; p—

It is easy to show that the characteristic cubic of these fractions
has three real roots.

1t should be noted in this connection that Jacobi’s fractions, from
the way the partial quotients are obtained are proper fractions. On

" that account they cover a very restricted part of the field. Dr. Cole-
man has, indeed, just obtained a proof that Jacobi’s fraction can
never represent a quadratic irrationality.

It is well known that the ordinary periodic continued fraction
represents one root of a quadratic equation with rational coeflicients
the other root of which equation may be obtained by inverting the
order of the partial quotients. In other words, inverting the order
of the partial quotients does not change the field of the irrationality
involved. The same is not true of ternary and higher continued
fractions, and it is easy to find examples in which the ternary con-
tinued fraction and its inverse represent irrational’ties belonging to
different fields. It becomes an interesting question to find what
fractions may be inverted without changing ther diseriminwing
cubic. This question I have not answered completely, but T hav
been able to prove the extraordinary theorem that if the p’s anl 1155
satisfy a linear relation Ap;+ Bg:+C =0, then the dizcriminating ¢ bie
is the same for the fraction and its inverse{'). This theorem holds
also for quaternary and higher fractions, so that if the partial quo-
tient sets are interpreted as coordinutes in space, then if they repre-
sent points on a straight line the correspnding fractions e b
inverted without changing the discriminating equstion ; that is wnhm.u
changing the field of the irrationality involved. The proof of this
I have carried out in detail for the ternary and quaternary cascs,
but the method employed is too full of algebraic diticulties for the
general case. In the ternary and qv aternary coses tho pxoof has

(1)7_ . Aug. 1931,

5, p=2:1,%5=1),

Bull. Amer. Math. Soc,
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been made by induction, and is charecterized by a curions ferture
that the induction requires several simultaneous as sumptions which
are then extended from » to w+1. Thus to prove the JI of the first
cubic equal to the B/’ of the second we assume it true for 5 and
procecd to m+1 partial quoticnt pairs. But this extension to '+ 1

requires the assumption of the truth of another equation. This in
turn requires the truth of a third and so on till after six sich
assumptions we return to the original assumption M—=J3/'. All of

these assuned equations are verificd for n=1,2 ecte. and must then
hold for all valucs of «.

Besides such continted fractions which I have called lineos
ternary continued fractions there are of course the fractions which
are palindromic, that is, whose partial quotient sets read the same
backwards as forwards. I have not been able to show that these
exhaust all the cases where the uratlondht) 1s unchanged by inverting
the pairs, but T am assured by experimental evidence that it is so.

From a given ternary continued fraction another which we ~hall
call the reciprocal may be obtained by replacing (.l., B, C.) by
(A'n, B'ay C"2) where .A'y=Bu_oC\ ,— B, ,C\_., etc. This new fraction
is obtainable in an interesting way from a set of partial quotient
pairs as follows: The fraction reciprocal to the fraction

(P Qs P2 g2 Py @y 2)

(0,050, =pi—qu, —p2s — ¢ —Pai - ... )

If we have a purely periodic fraction, its reciprocal 13 periodic and
if the characteristic cubic of the first is p*—Mp*+ N—1=0, then the
characteristic cubic of the second reciprocal to it is = Np'+ Mp—1=0,
so that the equations are reciprocal and the roots of one are the
reciprocals of the roots of the other. If the first cubic has three
real roots, an approximation to the largest will be given by the first
cquation and an approximation to the smallest by the second. If,
however, the first equation has two Imaginary roots with modulus
less tlmn the real root, then the first fraction will give an approxi-

mation to the reul root, while the second will give 1o approxima-
tion at all.
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