[go: up one dir, main page]

login
A000456
Number of permutations of [n] in which the longest increasing run has length 5.
(Formerly M4735 N2027)
6
0, 0, 0, 0, 1, 10, 99, 1024, 11304, 133669, 1695429, 23023811, 333840443, 5153118154, 84426592621, 1463941342191, 26793750988542, 516319125748337, 10451197169218523, 221738082618710329, 4921234092461339819, 114041894068935641488
OFFSET
1,6
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 100 terms from Max Alekseyev)
Max A. Alekseyev, On the number of permutations with bounded run lengths, arXiv preprint arXiv:1205.4581 [math.CO], 2012-2013.
EXAMPLE
a(6)=10 because we have (12346)5, (12356)4, (12456)3, (13456)2, (23456)1, 6(12345), 5(12346), 4(12356), 3(12456) and 2(13456), where the parentheses surround increasing runs of length 5.
MATHEMATICA
b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]]; T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k + 1]; a[n_] := T[n, 5]; Array[a, 25] (* Jean-François Alcover, Feb 08 2016, after Alois P. Heinz in A008304 *)
CROSSREFS
Column 5 of A008304. Other columns: A000303, A000402, A000434, A000467.
Sequence in context: A179557 A300000 A213454 * A138365 A190823 A187019
KEYWORD
nonn
EXTENSIONS
Better description from Emeric Deutsch, May 08 2004
Edited and extended by Max Alekseyev, May 20 2012
STATUS
approved