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ABSTRACT

A feasibility study of timing circuits for a model of the human brain.
It is shown that certain random neural networks have cycle times which
increase exponentially with the size of the network, and that these networks
may be used as timing devices even for a period of time equal to a human
lifetime. The principal neural networks considered are characterized by
either property (1) or property (2):

(1) Exactly one branch originates at each node, and exactly one
branch terminates at each node. These are the graphs of the nl! permuta-
tions of n objects.

(2) Exactly one branch originates at each node, and the términating

node of each branch is selected at random from all the nodes. These are

the graphs of the n" mappings of a set of n objects into itself.

The methods used in this report are those of probability, combinatorial

analysis, and number theory.



ORGANIZATION

Chapter 1 contains a detailed description of the problem and its
application to brain models, and is arranged as follows: In sections
1.1 and 1.2 we give a brief account of perceptron theory and indicate
how our problem arose, and then in 1.3 the problem is restated and the
basic quantities LC, LBF and LF are defined. It is shown that the main
problem is to estimate these quantities for various classes of random
networks. In 1.4 a special network is constructed with a very high LC
and LF.

In 1.5 we define certain special classes of networks, of which Type
1A networks are the most important. With this background completed, in
Chapter 2 we give a summary of fhe main results and state our conclﬁsions.

Chapter 3 establishes some basic properties of the Type 1A networks
and is arranged as follows: We begin in 3.1 with a discussion of the
structure of a Type 1A network and the meaning of LBF, LC and LF. Then in
3.2 several probability spaces associated with‘Tn are defined, for conven-
ience and explicitness in later calculations. Also in 3.2 and in the
remaining two sections of this chapter we investigate the number and sizes
of the components and of the loops in a Type 1A network.

Chapter 4 is the most important part of this work and contains the
estimates for the expected values of LBF and LC. Chapter 4 is arranged as
follows: In 4.1 a probabilistic argument is used to 6btain a bound to
E[LBF].- In 4.2 we use a graph theoretical approach to obtain both upper
and lower bounds for E[LBF], although the lower bounds is redundant in view
of the preceding section. (We state it nevertheless because of its simplicity

of form and its similarity to the upper bound.) At the end of this section




we show how the upper bound ‘may be evaluated numerically and state a
_conjectured upper bound based.on the computational results. Bounds/foi
E[LC] and E[LCM of loop lengths] then follow in-sections 4.4 to 4.9; the

organization of these sections is described-in section 4.3.

Chapter.5 contains further discussions of Type 1A networks, of which

a.detailed description is given in-5.1.

Chapter 6 deals with Type 4 networks. Im 6.1 and 6.2 known properties
of Type 4 networks are stated, and in Theorems (6.2.4) and (6.3.1) the LCM
of the loop lengths of-a typical Type 4 network is estimated. In (6:2:2)
an asymptotic upper bound is given to.LC and LF for both Type 1A and Type

4 .networks.
Chapter 7 contains bounds for LBF and LC for Type .5A networks.

Finally in Chapter 8 we describe an -approximate method for obtaining

LF known as the "birthday model" method.

At the end of this report are: Appendix I, some lemmas frequently
used; Appendix II; definitions and results from graph theory; Appendix. III,
a list of symbols used; and a bibliography. '




CHAPTER 1

DETAILED DESCRIPTION OF THE PROBLEM AND ITS APPLICATION TO BRAIN MODELS

1.1 PERCEPTRONS

The problem with which we shall be dealing arose in Dr. F. Rosenblatt's
work on perceptrons.- We will therefore begin with a brief description of
perceptron theory. A perceptron is a neural network which is a model for
the neural activity in the brain. For our purposes a neuron will be con-
sidered as a threshold—iogic element which responds to the sum of a set of
input signals (excitatory and inhibitory) by generating an output signal,
provided that the sum of the inputs is greater than a given threshold,rQ.

The simplest perceptron consists of 3 layers of neurons (see Figure
1.1). The first layer, the sensory units or S-units, act as transducers for.
physical signals originating outside the network; the second layer, the | -
association units or A-units, represent nodal points at which the flow of
impulses through the network is regulated; and the third layer, which in
Figure 1.1 consists of only one neuron, contains the response units or.R-units
which represent output signal generators which can be observed from outside

the network.

"The connections of the network, Cij’ from unit u, to

unit uj,_each have a quantity associated with them called
the value, Vij' In most. perceptrons, the signal transmitted
by a connection is simply equal to the value, Vij’ or else
equal- to zero, if no signal is transmitted. The values may
either be fixed (not time-dependent) or else they may be
variable, with magnitudes depending on the past history of.
the network. All perceptrons are assumed to have at least.

some. variable values.'*

*
All quotations in sections 1.1 and 1.2 are from Dr. Rosenblatt's
papers [49] or [50].
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In the elementary perceptron, the R-unit

"emits an output of +1 if the total input signal is
strictly positive, or -1 if the total input signal is
negative. For a zero signal, the output is ambiguous,
and is tentatively left undefined. Every A-unit has

a variable-valued connection to the R-unit, and receives
a set of fixed-value connections from the S-units. These
S-A connections are generally assumed to have weights

(or values of +1 or -1), and origin points on the retina
may be assigned either systematically or at random,
depending on the particular model.

"The term stimulus is taken to mean any set of sensory
points which are activated at a given time. The set of
S-points activated at time t constitute the stimulus,
S(t)."

A discrimination experiment is a learning experiment with perceptrons.
This is the description of the general case, when the R-layer may have
more than one unit:

2
""The perceptron is first exposed to a sequence of
stimuli from some well-defined enviromment (or admis-
sible set of stimuli), with some modification procedure,
or reinforcement rule, applied to the variable-valued
connections of the network. The perceptron is then
tested on a sample of stimuli to see whether it has
learned a 'correct' output from the R-units for each
stimulus in the test sample. 1In a discrimination
experiment, the object is to teach the perceptron to
assign an appropriate response to all stimuli, identi-
fying the class of the stimulus in each case. For
example, the experimenter might show the perceptron the
four letters A, B, C, and D, in all possible positions
on the retina, and require that the perceptron activate
one R-unit for any A, a different one for any B, a third
for any C, and a fourth for any D. An assignment of
responses to all stimuli in the enviromment W is called
a classification, C(W)."

A solution is said to exist for a given classification problem, C(W),
and a given perceptron, if there is some assignment of weights to the

variable connections, such that each stimuli produces the correct response.



Although a great variety of training procedures and reinforcement
rules have been studied in perceptron theory, for the purposes of this

introduction it is sufficient to describe just one method.

"This is the so-called quantized a-system error correc-
tion procedure, which operates as follows: Some sequence
of training stimuli is presented to the perceptron. For
each of these stimuli, the evoked response is determined.
If the response for a given stimulus is correct, no change
is made in the values of the connections. If the response
is wrong, an increment or decrement, of magnitude Av, is
added to the values of all connections which originate from
active association units (whose input signals exceed the
threshold, for the current stimulus). The sign of Av is
positive if the desired response is positive, and negative
if the desired response is negative. With this system, if
a set of values is obtained for which the response to every
stimulus is correct, there will obviously be no further
changes, and the solution which has been obtained will neces-
sarily be stable."”

The importance of simple perceptrons lies in the following theorem:

"Given a simple perceptron, an environment, W, and some
classification C(W) for which a solution exists, then

the error correction procedure defined above will always
converge to a solution after a finite number of stimuli,
regardless of the initial values of the connections,

and regardless of the sequence in which the stimuli occur,
provided each stimulus ultimately reoccurs."

(For proof of this theorem, and extensions, see [7] and [48], and for further
information about perceptrons see [6], [48], and [49].)
Remark: The S-units may be simple transducers, such as photoelectric cells,

or more elaborate recoding devices,

'"'which may detect such features as straight lines or
edges in the stimulus pattern, transmitting only
information about these important features to the
A-units [49]. Short-time sequences, rather than
momentary stimuli, may form the input patterns; these
may be encoded in the association system as a nontem-
poral (spatial) pattern by means of a distribution of




transmission delays in the S to A network, or by

means of a closed-loop cross-coupled network (either

in the A-system. itself or prior to it), or else by
means of a combination of 'On' and 'Off' neurons in

the early layers which signal the onset and termina-

tion of the activity induced by a moving or changing
stimulus[48]. There is increasing evidence that the

last of these three mechanisms may be largely responsible
for motion detection in the cat's visual system (Hubel
and Wiesel[33])."

1.2 PERCEPTRONS WITH SEQUENTIAL MEMORY

After the above introduction we can now describe an important
extension to perceptron theory, that is, a perceptron with sequential
memory (for more details and mathematical analysis see [50]). It is

in this context that our problem arose.

"The sequential memory model will operate, basically,

by reconstituting the succession of A-unit activity
states which occurred when the original experience

took place. This reconstitution is, generally, far

from perfect, but it can be shown that it can be made
close enough to the original activity states to permit
the previously learned responses to occur, or alternatively,
to learn new responses to stimuli in retrospect, which
will then generalize satisfactorily to stimuli appearing
in the environment. In order to do this, an auxiliary
network is necessary, as shown in Fig. 1.2.

"Tn this figure, as in the subsequent ones, broken arrows
are used to represent adaptive connections (with variable
weights), while solid arrows represent fixed connections.
The circles represent sets of neurons. A normal arrowhead
generally represents excitatory connections (or mixtures of
excitatory and inhibitory connections), while a small circle.
in place of the arrowhead represents inhibitory connections,

"The two main additions to the system shown in the previous:
figure are the threshold servomechanism for the association
system, and, the C-system, or clock network, which has variable
connections to the A-units, and input connections from the
R-units. The ©-servo is simply a negative feedback system
which tends to maintain a constant level of activity in the
association system. It might consist, physiologically, of

a set of cells whose input connections are drawn from the
whole of the association network, and whose output connections
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deliver an inhibitory signal to all A-units, which
~increases with the magnitude of the input signal.
With such a control mechanism the association system
will tend to find and maintain a constant level of
activity despite changes in the distribution or
intensity of input signals.

"The A-units may receive signals from two sources,
apart from the servo system itself. Normally, their.
chief input. source would be the sensory network, which
is assumed to send strong signals to the A-units when-
ever sensory events occur. The second source is the
set of adaptive connections from the C-network (the
functioning of which will be elaborated shortly). These
connections, however, are assumed to be limited to
weights which are considerably smaller in magnitude than
the weights of the S- to A- connections. Consequently,
as long as sensory signals are arriving at the A-units,
the state of the association system will be 'S-determined,'
the signals which might be coming in simultaneously from
the C-system constituting only a negligible perturbation
in the total input signals. Under the action of the
O©-servo, the A-units will act essentially like high-
threshold units in a simple perceptron, and the C-system
will have little or no influence on the operation of the
primary information channel, from S to A to R. In this
state (as long as sensory inputs continue) the perceptron
can be trained or interrogated in the usual fashion, and
all previous analyses of such performances remain appli-
cable. On the other hand, when sensory signals cease
(either due.to lack of environmental stimulation or due
to an active cutoff mechanism in the perceptron itself,
which might be controlled by one of the R-units) the
B-servo will immediately act to lower the thresholds of
the A-units until previous activity levels are restored.
Under these conditions, the relatively weak signal. com-
ponent coming from the C-system becomes the primary
determinant of the state of the system, and the A-units
will respond to the C-network as if it were alternate
sensory field.

"We must now consider the C-system itself in greater
detail. Two alternative organizations are illustrated
in Fig. 1.3. The C-network, as its name suggests, oper-
ates as a 'clock' for the memory of sequences. This
clock may either be synchronous (progressing through a
sequence- of states at a rate which is independent of exter-
nal events) or asynchronous, in which case it advances
from one state to the next only when a suitable trigger-
event occurs to make it do so. A synchronous clock is
exemplified by a simple cross-coupled network (Fig. 1.3a)
which will advance through a succession of states, each



this case,

determined by the preceding state, with a speed
which depends only on the transmission time of

the connections and synaptic delays. The 8-servo
acts to prevent 'blowups' or extinction of activity.
While it would be quite possible for our model to
operate with such a simple mechanism, the asynchro-
nous clock, which permits the events constituting
the recorded sequence to occur at one rate and to

be recalled later at a different rate, is inherently
of much greater interest."

An example of an asynchronous clock is shown in Fig. 1.3b. In

"the C-network is subdivided into two sets (or
layers) of neurons. One layer consists of 'On’
neurons, which deliver a sustained burst of
impulses in response to an excitatory input
signal; the second layer consists of 'Off'
neurons, which are effectively inhibited during
an.input signal, but deliver a brief burst of
high-frequency inpulses when the input ceases.

"The manner of operation of the asynchronous
clock network can best be understood from Fig.
1.3b. Assume that those 'On' units which are
filled in solidly in the diagram are active at the
present time. They will continue to emit impulses
until some inhibitory signal arrives to cut. them
off. This inhibitory signal is provided by an
'On' burst or 'Off' burst of short duration, from
any of the R-units, signaling some change in the
response of the perceptron, and thus the beginning
or end of a distinguishable event. If we assume
that the coupling from the R-units to the C-network
is dense enough and powerful enough, then any
change in response will momentarily quench the
activity of the On units in the C-system. During
all of the time that these On units have been firing,
however, they have not only been transmitting signals
back.to the A-units (by way of the variable connections,
which will soon be discussed in detail); they have also
been sending 'priming signals' to the Off units, which
thus begin to fire as soon as the On units are cut off.
This Off burst occurs only in the subset of cells which
were connected to the active On units. These cells will
immediately transmit excitatory signals back to the On
layer, activating a new subset of On units, which will
then continue to fire until it is finally quenched by

11
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the next change in the R-units. Thus the C-system
will advance through a deterministic succession of .
states, changing abruptly to a new state whenever
the response of the perceptron is altered in a
significant fashion. :

"Ultimately, since the number of C-units must
be finite, the network must return to its initial
state, and the cycle will repeat."

For a ''good" C-network, then, this event will not happen for an
extremely *long time. A second requirement is that the C-network be
biolbgically plausible, for instance a network (like Fig. 1.3b) made
up of loops whose lengths are different primes would be considered quite
implausible.

Our problem is to analyze some possible C-networks. We shall only
consider synchronous C-networks, but since to every synchronous network
corresponds an equivalent asynchronous network our results also apply

to several families of asynchronous networks. We show this correspond-

ence in the case that the synchronous network G contains only excitatory

connections of value 1. The equivalent asynchronous network H is obtained

as follows. Suppose G has n nodes labelled 1,2,...,n. Let H have 2n
nodes, consisting of n "on'" nodes 1,2,...,n and n "off" nodes n+l,...,
2n; and for i=1,...,n let node n+i be connected to node i by a connection
of value 1. Finally for every connection in G, from a node o to a node B,
say, let there be a connection in H of value 1 from node o to node n+8.

Tt is clear that H will be the asynchronous equivalent of G. Fig. 1.4

shows an. example of this procedure. The discussion of the design of the
C-network is resumed in the next section. We have still to show here how

the C-network is used in the perceptron with sequential memory.
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.1Tn all that follows, it will be
assumed that the C-system is of sufficient
size that the likelihood of a state repeat-
ing itself, without the network having been
deliberately reset, is entirely negligible.

"Although the successive states of the
C-system form a deterministic sequence, each
state being a predictable consequence of the
preceding one, their interrelationships (par-
ticularly the measure of the intersections
of active sets at different times) are, gen-
erally, indistinguishable from those that
would pertain to a collection of randomly chosen
states. This property is of great importance
in the subsequent analysis of the memory system.

"It now remains to see how the states of the
C-system can be made to induce a succession of
states in the A-system corresponding to a recorded
sequence of stimuli. For this we must specify
more precisely the modification mechanism of the
C-unit to A-unit connections.

"We assume that each A-unit receives con-
nections from a fraction M of the 'On' units in
the C-network. The connection system from C to
A is a many-to-many system, the only important
constraint being that the choice of connections
to particular A-units should be statistically
independent of the particular sets of C-units
which are likely to be active in different
'clock states.' To be explicit, it will be
assumed that the connections to each A-unit
originate from a set of MN_ points chosen at
random with a uniform probgbility distribution
(where N_ is the total number of units in the
'On' 1aygr of the C-system). Thus, if a frac-
tion Q of the C-units are active in any given
state, it is expected that a fraction MQ are
actually transmitting signals to any particular
A-unit."

The modification of connections take place according to a rule similar

to a-system correction procedure described earlier.

"In the recording of a memory sequence the
following succession of events occurs it is assumed.
that the C-system is set to some initial activity
state. This could be achieved, in the simplest case,
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by activating one of the R-units which forces the

on-units of the C-network to the desired starting

condition. This R-unit, in turn, could be trained
to respond to a starting command, such as the name
of the recorded sequence. The initial weights of

C-to-A connections are assumed to be zero.

"With the C-system in its initial state, the
first stimulus pattern of the sequence appears in
the sensory system, and induces a corresponding
activity state in the association units. Say, for
example, the first stimulus is a triangle. The set
of A-units responding to this triangle will then
have their connections from the active C-units
augmented in value. As long as the triangle remains
on the 'retina,' signals transmitted from the C-
units to the A-units will tend to be ignored, due
to the action of the ©-servo, and the relatively
high weights of connections from the sensory system.
On the other hand, if the same C-state should recur,
without the presence of a retinal input, the O-servo
will lower the effective thresholds of the A-units,
and the augmented connection weights to the pre-
viously active A-units will tend to reactivate the
same set of units which responded to the triangle.

"There will be no systematic attempt to turn
off the 'improper units' which did not respond to
the triangle, but the@-servo will tend to find a
level at which only the units receiving the strongest
input signals will be reactivated, which has essen-
tially the same effect.*

"As soon as the triangle is replaced by the
next stimulus (say a square) which is sufficiently
different so that the response of the perceptron
changes, the C-system will advance to its second
state, which we have seen to be statistically inde-
pendent of the first, although it is a deterministic
consequence of it. Due to this statistical indepen-
dence and the use of the y-system, it can be shown
that the expected value of the signal now received
by any A-unit from the C-system is equal to zero.
Consequently, the modifications of the connections
which now take place to the set of A-units responding
to the square will have the same effect (except for a
slight noise effect) as if no previous memory had
been recorded.

*
This is the so-called '"asymmetric model'.
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"If the square, in turn, is replaced by another
triangle the change in response (whether correct or
not is immaterial) will cause the C-system to advance
to its third state, from which the expected signal
to the A-units will again be zero. A new change in
weights then occurs as before. This process continues
indefinitely until the C-system either recycles (an
unlikely possibility) or is deliberately reset.

"To see how the system acts in recall, suppose
the response which resets the C-system is evoked,
followed by a 'silent period,' during which no sen-
sory inputs occur. The O-servo, striving to normalize
the activity level in the A-system, now lowers the
thresholds to the point where the A-units begin to
respond to the C-unit signals. As we have seen, the
first state of the C-system will tend to reactivate
the set of A-units responding to the first triangle
(without any interference, other than random-noise
effects from any subsequently recorded memory). As
soon as this state is, in fact reconstituted in the
association system, however, the triangle response
should occur, and this response will advance the C-
system to its next state. This state induces the
A-unit activity pattern corresponding to the entire
sequence of sensory events tends to be reconstituted,
in proper temporal order. If the states are recon-
stituted accurately enough they can be used for
teaching the perceptron new discriminations, in
retrospect, or for applying subsequently learned
discriminations to events which were improperly
recognized at the time they occurred. None of this
interferes with the sequential memory system, which
is independent of changes in the A- to R-unit network.

"Due to the fact that the expected interaction
between recorded events is zero, the sequences which
can be stored may be extremely long. Ultimately,
noise effects, which show up as a gradually increasing
variance in the transmitted signals, grow to such a
degree that they effectively mask the residual traces
of previous memory, and the system saturates. Before
this happens, the accuracy with which the association
states are reconstituted gradually diminishes, and
consequently the discriminatory responses which occur
to remembered stimuli become less and less accurate.
In evaluating the performance of this model, the most
important question is the probability that a discrim-
inatory response to a remembered stimulus is correct,
after a long history of experience has been recorded."
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It is then shown in [50] that this probability may be very close to
unity, even after as many as 1O]Jdifferent stimuli have-been seen and
recorded.

This concludes the description of the background for our problem.

In the next section we restate the problem in terms of graph theory.
1.3 STATEMENT OF THE PROBLEM

From what we have said in the previous section, it follows that
the problem is to find a simple family of neural networks, each with
n neurons, with the following property. First one of these networks
is chosen at random. Representing a neuron by a 1 if it fires and by
an 0 if it does nbt fire, the state of this ﬁetwork is a binary vector
of length n, and there are 2n possible‘stétes. One of these is chosen
at random (as the initial state) by a procedure to be described later.
Since there are only a finite number of possible étates, eventually either
a state must recur or the activity must die out. We shall always con-
sider the latter case as if the zero state were recurring with period 1.
The problem is to find a single family of networks such that with high
probability the time, m, at which this first recurrence occurs, is
exponentially large with respect to n.

Each network is a deterministic system, and its state diagram is
a graph* with 2" nodes and 2" directed branches, one branch originating
at each node. Each connected component of the graph contains exactly one

loop, and the complete state diagram will therefore look like Fig. 1.5.

* .
Appendix 2 contains definitions of terms borrowed from graph theory.



FIG 1.5

GENERAL FORM OF STATE DIAGRAM
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The procedure described above is equivalent to choosing an initial
node A from the state diagram and following it until it traverses a Ioop

(see the heavy lines in Fig. 1.5).

Definitions of LBF, LC, LF. Throughout this work, LBF is the distance

from the initial state A to where the path enters the loop, LC is the
loop length, and LF = LBF + LC (see Fig. 1.6). (LC is Length of Cycle,

LBF is Lpngth §pfore cycle, and LF is Length to First repetition.)

Definition of Activity. The activity in a network is the number of

active nodes.

Note: There are two gréphs associated with each network. One is the
graph of the network‘itself;showing the connections and weights; there
are n nodes, representing neurons; and the branches represent axons. The
other graph is the state'diégram of the network, wheré the nodes represent
the states of the netWork, and a branch.goes from node i to node j if the
network goes to state j immediately after state i. ‘There are 2" nodes and
2" branches ,
Briefly, the problem ié to find a simple class of networks with n nodes

such that with high probability LF is exponentially large compared to n.
1.4 DESIGN OF A SPECIAL NETWORK FOR WHICH LC AND LF ARE v 2n/4

It is natural to ask if there exist special networks for which LF
approaches'its maximum, 2", In this section we construét a highly artifi-
cial network for which

LC ~ LF & 24
We design a bistable or flip-flop circuit using 4 nodes, and put a

number, m (say), of these together to form a counting or clock network with

n = 4m nodes.
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FIG 1.6 DETAIL OF FIG 1.5 LBF = 3, LC =5, LF = 8




21

For this network:

LF = 2 +m " 2n/4

part of the state diagram of the complete network is shown in Table 1.2.

1.4.1 Design of Flip-Flop

The state of the flip—flop is the state of node A. We wish to realize
the state transition table shown in Table 1.1. In other words, if no
input pulse X 1is ieceived, the flip-flop remains in the same state. If
an input pulse is received, the state changes; and if an input pulse is
received while in the "on" state, an output pulse Y is produced .

The network shown in Figure 1.7 has these characteristics.v We give
the equations describing its behavior and then vefify that it works as a
flip-flop by constructing a counting network out of several such networks.

A(t), B(t), C(t), X(t), Y(t) will be Boolean variables representing
the states of nodes A;Y at time t. A bar, e.g., A(t), will denote the com-
plement.

From the network we see that

C(t) = A(t-1) X(t-1) (1)
B(t) = A(t-1) X(t-1) - ) (2)
A(t) = A(t-1) B(t-1) C(t-1) + A(t-1) B(t-1) C(tél)

+A(t-1) B(t-1) ‘ _ ' (3
Y(t) = A(t-1) X(t-1) 4)

Substituting (1), (2) in (3) gives

A(t) = A(t-1) X(t-2) + A(t-2) X(t-2) (5)



Input

~ TABLE 1.1

STATE TRANSITION TABLE FOR FLIP FLOP

Present New

State A State A' Output
0 0 0
1 1 0
0 1 0
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FIG 1.7

FLIP-FLOP NETWORK
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In oﬁr application, A(t), X(t) will always satisfy either

Condition 1

If t = 2m, A(2m) = A(2m-1), X(2m) = X(2m-1) (6)
or
Condition 2
If t = 2m, A(2m) = A(2m+1), X(2m) = X(2m+1) (7

If condition 1 is satisfied, and t is odd, (5) becomes

A(t) = A(t-2) X(t-2) + A(t-2) X(t-2) (8)

and

A(t) = A(t-2) X(t-2) + A(t-2) X(t-2) (9)

If t is even,

A(t) = A(t-1) by (6)
= A(t-3) X(t-3) + A(t-3) X(t-3) - by (8)
= A(t-2) X(t-2) + A(t-2) X(t-2) by (6)

thus, (8), (9) hold for all t.
If condition 2 is’satisfied, again we get (8) and (9) immediately from

(5).

1.4.2 Design of Clock Circuit

With n = 4m nodes, m flip-flops are connected together as shown
in Figure 1.8. The initial state is with node X1 firing alone.

Analysis of First Stage

" Because of the self-excitatory branch at-Xl,'

X0 =1, 0.

Also Al(O)

B,(0) = € (0) = ¥;(0) = Ay(0) = ... =0




25
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FIG. 1.8 CLOCK CIRCUIT
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From equations (1) - (4),

and so

B,(1) =1, (1) = A1) = Y, (1) =0,
Bl(t) =»Rl(t~1), t>1
C (1) = A (t-1), t21

Al(t) = Alct—Z), t>2

Bl(t) = Bl(t—2), t>2
C,(t) = C (t-2), t23, C;(2) = 0
Y, (t) = cht-z), t>3, Y, (2) =0 (10)

These variables are the first 5 columns of the state diagram given

in Table 1.2.

Notes:

(1) Activity begins in Stage 1 at t: = 0

(2) Condition (2) is satisfied here

(3) 1If there were only one stage, we would have

LBF =1, ILC = 4, LF = 5 (a cycle is completed for.the

first time at t =.5).

Analysis of Second Stage

There is no activity in the second stage until X2 = Y1 fires,

i.e., at t

= 3.

Initial conditions:

X,(0) = X,(1) = X,(2) = 0, X,(3) = 1

A,(0) = B,(0) = C,(0) = Y,(0) = 0

Az(l) = Bz(l) = Cz(l) = Y2(1)

Xz(t) = Xz(t-Z), t>3, by equation (10)

Calculation of the first nonzero values of A(t) indicates that condition

(1) applies here-- this is verified later.
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So we can apply (8), getting

Az(t—4) = Az(t+2) Xz(t+2) + A2(t+2) Xz(t+2)

= Azct) X, (1) + A, () X, (1) by (8) and (9)
SO
Ay (t+8) = A (1), t>2
Similarly,
C,(t+4) = X, (t+3) A,(t+3)

Xz(t+l) Az(t—l)

Xz(t—l) Az(t-S)

Xz(t—S) Az(t~5)

X2(t45) Az(t—S)

1]

Cz(t—4)
and likewise Yz(t), Bz(t) have periods of 8.
These variables are shown in Table 1.2.
Notes: (1) We verify from‘the'table that condition (1) applieé here
(2) 1If there were only two stages, we would have
LBF = 2, LC = 8, LF = 10. |

Analysis of Third Stage

Activity begins in the third stage when t = 8, and if there were
only three stages, we would have
LBF = 3, LC = 16, LF = 19

Analysis of Fourth Stage

Activity begins when t = 17, and we find
LBF = 4, LC = 32, LF =36

Analysis of Mth Stage

Activity begins when t = ™ m - 3, and

LBF = m, 1C = 2™, 1p = 2™l

which is what we were trying to prove.
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TABLE 1.2

PARTIAL STATE TABLE OF CIRCUIT OF FIGURE 1.8
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Note that we' have not shown that this is the best LF that can be
obtained. An uppeér bound to that is of course 2n; we have here

. 1/4
obtained 2™ /4,

1.5 TYPES OF NETWORKS CONSIDERED
In this report we will restrict ourselves to quite simple classes
of networks. The principal classes we consider are Type 1A and Type 4

networks, but we shall on occasion refer to the other types. The

complete list of definitions of the various tYpes follows.

Type 1A Networks

Tn’ the family of all type 1A networks of-n nodes, is defined to be
the family of the directed graphs of the n" mappings of a set of n objects
into itself. Equivalently, Tn consists of the n" graphs with n nodes
(each of threshold'1l) and one branch (of value 1) originating at each
node, the terminating node of the branch being chosen at random (indepen-

dently and with replacement) from all the n nodes.
Type 1 networks are a generalization of type 1A networks.

Type 1 Networks. Random Terminating Nodes.

(In the notation of [48], p. 132, this is a Poisson, constrained

origin, metwork.)

X excitory branches (of weight + 1) and Y inhibitory branches (of

weight - 1) originate at every node. The terminating nodes of these branches

are not specified, and are to be.chosen uniformly and independently from
all the nodes, so that each node has the probability of-%-of being the

n(X+Y) possible networks.

terminating node of any branch. There are n
Clearly any number of excitory and inhibitory branches, up to nX and nY

respectively, may terminate on any node.

The special case where X = 1, Y = 0, and threshold 68 = 1 is then a

type 1A network, as defined.above.

Type 2." Random Originating Nodes.

(In the notation of [48], p. 129, this is a Binomial type network.)
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Similar to type 1 except that X excitory branches and Y inhibitory

branches terminate on each node, and the originating nodes are randomly

selected.

The special case X =1, Y = 0, 6 = 1 will be called a type 2B

network.

Type 3. Both Ends Random.

(In the notation of [48], p. 132, this is a Poisson, random origin,

network. See also [14].)

X excitory branches and Y inhibitory branches are chosen with both
ends selected randomly and independently, i.e., any node has the probabi-
lity %-of being the originating node of any branch, and any node has the
probability < of being the terminating node of any branch. There are

n(X+Y) different networks.

Type 4 Network

This is just the graph of a permutation of n objects. It corresponds
to a random network with exactly one branch, of weight + 1, originating

and terminating at every node. More precisely, a permutation
1 2 3 ceo N

1 5 3 R
is chosen at random, each of the n! different permutations being equally

likely. The network is formed by connecting node 1 to node a node n

l,-ovo’
to node a3 and has threshold of 1.

Type S5A Network with n Nodes -

Each node is the originating node of exactly one directed branch, of
weight + 1, the terminating node being chosen uniformly (and independently)

from the other n - 1 nodes. The threshold is 1.

Thus, a type SA network is a type 1A network with self-loops, or loops
of length 1, excluded. Clearly there are (n —,l)n different type SA networks

with n nodes, compared with n' different type 1A networks.

It turns out that types 1A and 5A networks can usually be analyzed by

almost ‘identical techniques (see for example [47]). Mathematical sociologists



29b

have used type SA tetworks as models of communication relations in groups
of people. (See for example [53], p. 73, and [44]:) There are certain

situations which are more naturally represented by type 5A networks than
by type 1A networks, for example the network formed by asking each person

to name his best friend.




CHAPTER 2

SUMMARY OF RESULTS AND CONCLUSIONS

With the above background completed, we can now summarize the
main results and state our conclusions.

RESULTS- CONCERNING LBF, LC AND LF, FOR TYPE IA NETWORKS.

2.1 THEOREM (4.1.9)

If the initial state contains one active node, then

E[LBF] = ‘%H-+ 0(1) - ‘ (1)

o 2[LBF] = n(% - %) + 0()
2.2 (Equation (4.1.12))

LBF

If the initial state contains p active nodes, p<<n, then ;:7
- n
(approximately) has the density function
-1 { '
£,0) = FOPT PO
2 o2
where F(y) = |1 - ¢ /2_+ xJ’e-x /2 dx y>0
y
0 _ y<0
2.3 THEOREM (4.2.10)
Let L =n!w and let U Y be defined as in (4.2.5)
W m,n, m,n
(n-w)! n '
and (4.2.6). Then ‘
n | n .
ZLV <E‘[LBF]<ZLU
m n-m,m — - m n-m,m
m=1 m=1
30
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and for low initial activity E[LBF] approaches the left-hand side,
and for high initial activity the right-hand side. Further a method

for computing Um 0 is given at the end of section 4.2.
2.4 A CONJECTURE (Equation (4.2.22))

For some constant.a, and n > 1,

E[LBF] < a nO'564

2.5 THEOREM (4.6.44)

There exist constanfs o, B such that for n > a, and if the initial
state is formed by choosing
vn(log n)3/4
active nodes (with replacement), then

E[LC] > exp[-lz—(log n)9/4 -_B (log n)5/4 log log n]

(The proof of this theorem depends on four approximations, (4.5.9),

(4.6.18), (4.6.33), and (4.6,48).)
2.5 THEOREM (4.7.12)

There exists a constant a such that for n > 32,
E[LCM of loop lengths] > exp’[O.S nl/S -1logn-oa ]

2
(The proof of this theorem depends on the approximations (4.5.9) and

(4.6.48).)
2.7 THEOREM (4.8.9)

For n > 100 and any A such that
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n/(2 log n) > A > 1.6

the expected value of the cycle time LC of all networks with n nodes

and fewer than A log n components is less than

exp[% 1og2 n + A log ¢4 log n]

where c1 =1.33 ...

2.8 THEOREM (4.8.13)

There exists a constant A such that for n 21,

E[LC] < Aezm//ﬁ

2.9 Two other methods for obtaining an upper bound to E[LC] are given

in Theorem (4.8.11) and section 4.9.

CONCLUSIONS ABOUT TYPE 1A NETWORKS

From (2.1) - (2.9) we conclude that type 1A networks with n nodes
form satisfactory clock networks provided either of the following sets
of conditions is satisfied:

(a) The initial activity isichosen randomly, and in fact the initial
state is formed by selecting vn (log n)s/4 nodes at random (independently
and with replacement) from the n nodes; and n > o, where o 1is some
constant (it is only known at the moment that o 3_e633);

(b) The initial state is formed by selecting exactly one active
node at random in each component, and n > 32.

(Conditions (a) and (b) are of course sufficient conditions--the necessary

conditions may be much weaker.)
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ComEarison of Bounds

The dominating terms of the bounds on E[LC] are

9/4
(2.5%) E[LC] > exp{% log nlunder condition {a).

(2.6%) E[LC] > exp (O.Snl/S) under condition (b).
(2.7%) E[LC] < exp[% logzn] for all networks with fewer than A log n
components.

(2.8*)  E[LC] < exp (2V/2n).

These functions are sketched in Fig. 2.1.1.

For a numerical comparisoh we calculate how large n must be in order
to be able to record 103 étimuli pér secohd for 100 vears (i.e., for a
human lifetime),>using the bounds (2.5*%), (2.6*) and (2.8*). (See Fig.
2.1.2),

Lower bound (2.5%)

n must satisfy

H

exp{}% 1og9/4n} 10°.60.60.24.365.100

3.15 1012

. 6 . .
i.e., n = 1.1 10" ' apovroximately

Lower bound (2.6%)

n must satisfy
exp (0.8 n'/5) = 3.15 102
ie., n=6.110"

Upper bound (2.8%)

n must satisfy
exp (2V/2n) = 3.15 1612

i.e., n = 103




FIG. 2.1.1 COMPARISON OF BOUNDS ON E [LC]
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We conclude that there is some n, in the range

103 < n, < 6.1 10’ |
such that the average cycle time LC of all type 1A networks with n, nodes
is

103, 60.60. 24. 365. 100 = 3.15 107

i.e., that these networks behave‘satisfactorily as clock networks for a
period equal to a human lifetime.
REMARK

The results of sections 4.6-4.8 seem to lead to the following conclu-
sion. 'Most' type 1A networks with n nodes have about log n or fewer
components, and for these networks the average value of the cycle time

LC is of the order of

2
Jconstant (log n) (2.11.1)

However there are a "small" number of exceptional networks (exceptionally
~good ) when considered as clock networks, whose number of components
greatly exceeds log n, and for these it seems likely (in view of Theorems

(4.7.12), (4.8.13)) that the average LC is the order of

nCODS tant
e

which for large n is much bigger than (2.11.1). Therefore, we are led to
the following rule: A simple constraint on the maximum size of a component

of a type 1A network with n nodes, say
—n
max component size < (log n)S »
(implying
number of components > (log n)3 )

will greatly increase the cycle time LC, and therefore the performance as

a clock network.
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103 Lt , 1o
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FIG 2.1.2 NUMERICAL COMPARISON OF BOUNDS TO E [LC]
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The choice of the best such constraint is an interesting problem .

for future research.

RESULTS FOR TYPE 4 NETWORKS

2.10 THEOREM (6.2.4) (Erdos and Turan)
Given any positive e, §, there exists no(s,é) such that for

n > no(e,é) ’

1 2 1 2
(7 - ellogmn < L.C.M. of loop lengths j_e(§'+ €)1log'n

holds, except for at most n! exceptional networks.

2.11 THEOREM (6.3.1)

e2/g 1
E(LCM of loop lengths) < ———57 | 1 + 0—
2/el n*/* /=)

2.12 (Equation (6.2.2))

Let G(n) be the maximum LC over all type 4 networks of n nodes. Then
(Landau)

log G(n) v vn. log n
This bound also applies to type 1A networks.
CONCLUSION

From (2.10) we conclude that type 6 networks with n nodes form satisfac-
tory clock networks provided the initial state is formed by selecting

exactly one active node in each component, and provided n is sufficiently

large. -

Results for Type 5A Networks

In Chapter 7 it is shown that most of the above results for type 1A
networks (namely 2-1, 2-5, 2-6, 2-7, 2-8, and 2-12) hold also for type 5A
networks, and therefore the conclusion also holds, that under certain

conditions type 5A networks are satisfactory clock networks.
RESULTS 'ABOUT THE STRUCTURE OF TYPE 1A NETWORKS
2.13 (Equation (3.2.9)) SIZE OF COMPONENTS

P[m1 components of size n ., components of size ny ]

1 1 1

k
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m,
kl Cnl
n! Tr 1
= —--ﬁ' mi
n i=1 n.! "m,!
i i
i-1 T
(i - 1)ti
r =20
Ky
and ey s

2.14 (Equation (3.2.14)) SIZE OF LOOPS

P[a1 loops of length 1,...,a loops of length m]

m

_nlw . ji: 1
o 1aWtl a.
(n-w) in i=1 atli’

m
where w = E iai
i=1

2.15 (Section 3.3) NUMBER OF -COMPONENTS
n- g 1o
P[k components] = j{: n - J c(j+1,k)
j=o\

where c(j+1,k) is a signless stirling number of the first kind.

n
1

E[Number of components] }: L S

j =1 (n_J)!an

%i(log 2n+y) + 0(1)

where vy is Euler's constant, and further for n > 1

0 < E[Number of components] —-%'(log 2n + Y) j_e—l

2 .
0" [Number of components] <-% logzn *Cy log n,

C4 = 3.471,
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2.16 (Section 3.4) NUMBER OF LOOP - NODES
n! w

(n-w)! n"

P[w loop nodes] = )

E[Number of loop nodes] = %E + 0(1)

oz[Number of loop nodes] = n(2 - %J + 0(v/n)
2.17 (Section 4.4) ANALYSIS OF A COMPONENT WITH N NODES

P[component has k loop nodes | component has n nodes]

lndggge“k(k'l)‘zn for k = o(n?/%)

Let E[k|n] 2 E[number of loop nodes | component has n nodes] then
-1

E[k|n] %\[%%-
1

1 2n
) < Elk|n] < /5= (1 - =)
2n RY I ‘/—Z'ﬁ

2n
!

[k[n] ~ n(1 - )

2.18 AN IMPORTANT REMARK (4.4.18)

Suppose a typical type 1A network has components of sizes Ny,To, e,y
containing loops of lengths 21,22,..,,2k»respectively, then
k
P[%l,zz,...,zklnl,.o.,nk] = J7 P[%i]ni]
i=1
2.19 (Section 5.3)

The average height of a node in a tree is v %E

2.20 THEOREM (5.4.2)

The expected number of trees in a type 1A network

In 1
7 -3
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2,21 (Section (5.5)

The expected number of nodes with k incoming branches

n ——=— for fixed k, as n » =,
ek!




CHAPTER 3

BASIC PROPERTIES OF TYPE 1A NETWORKS

3.1 TYPE 1A NETWORKS - INTRODUCTION

structure of Type 1A Networks

As defined in section 1.2, Tn’ the family of all type 1A networks
of n nodes, consists of the n" graphs* with n nodes and one (excitatory)
branch originating at each node, the terminating node of the branch
being chosen at random (independently and with replacement) from all

the n nodes.

FIG. 3.1.1 TYPICAL TYPE 1A NETWORK

O~

*For definitions borrowed from graph theory, see Appendix 2.

38
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No node has two branches originating at it, so it is clear that a
type 1A network consists of a number of components, each component
consisting of exactly one directed loop, with trees attached to the
nodes of the loop. Figure 3.1.1 shows a typical type 1A network with

16 nodes.

Behavior of Type 1A Netwqus as Neural Networks
Suppose the initial state contains a active nodes Xl’ X2, cees Xa'
Let dist (Xi) be the distanceT of node Xi from the nearest loop (in
the obvious sense). The activity in the trees moves in toward the loops,
and after a time
LBF = max [dist (Xi)] (3.1.1)
i=1,...,a
has elapsed all the activity is in the loops. Up to this time the total
activity* has been decreasing or constant, and from now on it remains
constant, and the transient behavior of the neétwork has ceased. The
network is now in a cyclic state, of period LC (say). The individual
loops have periods Hj_equal to some divisor of their total length, as
shown for example in Figure 3.1.2.
The period of the whole network is the least common multiple (abbre-
viated LCM) of the individual periods I, |
Then after a total elapsed time of
LF = LC + LBF,
Some state will be repeated for the first time. Our goal is to estimate LBF,

LC and LF.

+Defined formally in section 4.2.

*Defined in section 1.3.
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® DENGTES AN ACTIVE NODE

LENGTH = 6

PERIOD = 2

LENGTH = 6

PERIOD = 6
FIG 3.1.2 ACTIVITY IN A LOOP

3.2 DEFINITIONS OF SAMPLE SPACES

Let n be fixed, and let Tn be the family of all type 1A networks
with n nodes. It is convenient to define some probability spaces which
classify these networks in various ways. The motivation for»this is
notational convenience, as the following shows. Often we wish to find

the average value over Tn of a quantity X = X(c1 Co vro ck) which depends

2

only on a.gross property of type 1A networks, say their component sizes

¢y Cy e St In this case it is most natural to evaluate E[X] over the.

probability space 92 (see below), and then we have simply

E. [X] =B, X

T n
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where o is the subset of all type 1A networks containing k components

of sizes c1 c2 e Ck'

Also, in this section we derive some basic properties of type 1A
networks that will be frequently used later.

3.2.1 Sample Space Ql(Same as Tn)

There is a 1-1 correspondence between elements of @, and elements of Tn'

1

Bach element of Ql has probability lh
n

Sample Space Qz(Classification of Tn According to Sizes of Components)

Define an equivalence relation R, among the elements of Tn by

2

5 R2 t if s and t are type 1A networks with the same sized components.

Then let
92 = Tn/RZ (3.2.2)
i.e., a typical element ¢ of 92 is the subset of Tr.1 consisting of all
type 1A networks with my components of size n]f m, of size Doy, eees m
1
of size n, ; where
k
1
1 j_nl < n, < < nkl <n (3.2.3)
and
kl
mn =n 3.2.4
Y Y ( )
y=1

To find the probability of o we proceed as follows. n elements may be

divided into m, subsets of size n

1 1200 oMy

subsets of size n o in
1 1
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(3.2.5)

ways:. A subset of. size nY can be formed into a connected type 1A

network in Cn ways, where
Y

j-1 N
c, =y UL (3.2.6)
r=0 T!

by equation (4.4.3) below. Therefore from lemmas A4, A5 and A9 of.

Appendix 1,

1 n-1 1 =
[T _n-= n ’H n-% 12n0 1 n-1
5 I 2 - 5 E-Cn Fr 2 e -3z n (3.2.7)

and
I _ n- 1
C,vzn 2 (3.2.8)
Therefore m
k, ¢
1 :
P[o] = P‘H ot o (3.2.9)
n v=1 1! Yo 1 (also given by Harris [31] )
k n - L m
1 I Yy 2 Y
n
LU 7 Y L (using (3.2.8))
o 7T = using .2,
e n+ 1 -1 Y
y=1 V21 nYY 2 ey
kl
- Vzlfn T “ﬁ?‘l‘— (3.2.10)
2 Sy (by (3.2.4) and (3.2.12) below)
v=1 n'm!
Y
= En P[a random permutation in Sn has my cycles of
2
length ysees,my cycles of length n, ] (3.2.11)

1 1
(by [45] p. 67)
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where kl

k = m : 3.2.12
Lom ( )
y=1

is the number of components in every member of o.

Sample Space QS' (Classification of Tn According to Sizes of Loops )

Define an equivalence relation R, among the elements of Tn by

3
s R3 t if s and t are type 1A networks with the same sized loops.
Then let
2 =-Tn/R3 (3.2.13)

i.e., a typical element o of Q, is the subset of Tn consisting of all

3

a

type 1A networks with a; loops of length 1, a, loops of length 2, ...,
loops of length m. Then
!
Plo] = = Fp— (3.2.14)
w1 a.!l...a 1 1...m n (n-w)!

where w=a1+2a2+...+mam is the number of loop nodes.

1

Proof. The a, loops of length 1 can be chosen in (2 2

)ways. The a, loops
1

of length can be chosen from the remaining (n—al) nodes in

(n~a1)! 1
n-a, - 2a )! a
(-2 -2t
2 (n—al)!
ways; because we can choose an ordered sample of 2a, nodes in
2 (n-a 1 2a2)!
ways; and then we don't wish to take into account the order among the a
pairs, giving the factor TEETT-, nor do we care which of the two nodes in
2 a

any pair is first, giving the factor 1/2 2,



44

Similarly the as loops of length 3 can be chosen in

- - |
(n al 2a2).

a

-a.-2a. - ! !
(n a; 2a2 3a3). a,! 3

3

ways from the remaining (n—a1-2a2) nodes, and so on.

When the loops have been constructed, using w nodes, the remaining n-w
nodes must be arranged to form a rooted w-tree with the w loop nodes as
roots. It is known (see lemma Al of Appendix 1) that this can be done

in wn" Y ways. Collecting these results,

P[c] = [n (n-a,)!

a

12 2a !

(n-a. -2a 9

a 17285)

1

(n-a1-2a2-...~(m—l)am_1)!' wn

a, n
(n-w)! m am!

QED.

Sample Space 94. (Classification of Tn atcording to Number of Components )

Define an equivalence relation R4 among the elements of Tn by s R4 t

if s and t contain the same number of components.

Then let

2, = T/R, (3.2.15)

i.e., a typical element o of Q, is the subset of Tn consisting of all

4

type 1A networks with k components. In section 3.3 below we show that

n-1

n-1 1-3 .
Plo] = Z 21 G,
j=o \J

where c(j+1,k) is a signless Stirling number of the first kind.
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Sample Space . (Classification of Tn according to number of Loop Nodes)

e

Define R5 by: s R5 t if s and t have the same number of loop nodes.

Then let

9 = T /R (3.2.16)

i.e., a typical element .5 of 95 is the subset of Tn consisting of all
type 1A networks containing w loop nodes. In section 3.4 we show that

P[] = n! w (3.2.17)

(n-w)! nW+1

Sample Space 2,. Initial States (Chosen Without Replacement)

Let Q. = 9601) be the probability space consisting of all initial

states with « active nodes (picked at random without replacement from the

6

o

n nodes). Thus Q_ contains (n)'elements, each of probability (n) -1.
a

Sample Space Q Initial States (Chosen With Replacement)

7

Let 97 = 97(A) be the probability space consisting of all initial
states formed by picking A nodes out of n (independently and with replace-
ment) and making them active. Thus Q7 contains nA elements, each of
probability nA
Notation

It will often be helpful to distinguish the probability space over
which a particular expectation is taken. Our notation for this is that E

1

is an expectation taken over Ql’ E2 over Qz, etc.

3.3 CLASSIFICATION OF TYPE 1A NETWORKS BY NUMBER OF COMPONENTS

Let n be a large fixed integer, and let a member g of Tn be chosen

at random. Let g have K components, so that K is a random variable. Then
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P[K=k] = Number of networks with n nodes and k components

n
n
Q
- D,k (say)
n
n
It is known (see [47] )that
n-1
n-1 .
Qn,k = E: p1-d c(j+1,k)
j=o \

where c(j+1,k) is a signless Stirling number of the first kind.
L 1li
Prob [K=k] = :E: PRIPNCTSINS (3.3.1)

j=o \ 7

From (3.3.1) it can be shown (see[47] page 181) that the jth binomial

moment an of K is given by

n-1 n-1
_ o -1-k .
nj - n c(k+2,3+1) : (3.3.2)
k=0 k
Mean of K 1
n- n-1\
E[K] = Bn = }: n c(k+2,2) (3.3.3)
1 K=o k
But([35] p. 159)
c(m,2) = (m-1) ! (1+%-+ %-+ e ElT')’ m>2
- (3.3.4)
c(1,2) = o

Substituting (3.3.4) into (3.3.3) Riordan [47] shows

n
E[K] = :Ej n! - (3.3.5)
4 (n-j) ! nJj

Also Kruskal [37] has shown

E[K] = %—(1og 2n +v) + o(1) (3.3.6)
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where y 1s Euler's constant. Here are his main steps:

Let E_ £ E[K], and define A_ by

A
n -X dx
En = (1-e ) =~ (3.3.7)
o
Kruskal then shows
log A_ = % (log 2n-y) + o(l) (3.3.8)

whose Y is Euler's constant, and from this that

o

(log 2n +v) +‘/- e X dx (3.3.9)

A X
n

=
N I

which using (3.3.8) becomes

L (log 2n +v) + o(1) (3.3.10)

7
1
> log n + 0(1) (3.3.11)

Kruskal also shows that En approaches infinity monotonically with n.

We will now use these results to get bounds for En' Since the
integrand of (3.3.7) is positive for x > 0, it follows that An approaches
infinity monotonically with n. Now for n > 1 certainly En > 1, by defini-
tion. Also

™% < -1+x, X i_o

Therefore from (3.3.7)
A

n
E <_]' dx = A_,
n — n

o

A >1forn->1,
n—- —

<o

f e dx <
A X

n

r—d\‘s

e_xd_xf_fe_xd)c:e_l
*
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Therefore from (3.3.9),

0

< E

variance of K

-2 (ogm ) < el forn>1 (3.3.12)

In terms of the binomial moments we have

2 2
o”[K] = 2Bn,2 + Bn,l - Bn,l (3.3.13)
m! Lo\ &
Now c(m+l, 3) = —2— (Z -IT) - Z = ([35] p. 159)
r=1 r=1 7
m
= m! 2 L (3.3.14)
) TS
r,s=1
s<r
From (3.3.2): n-1 kel
L S 1
B = Z n (k+1)! Z =
n,2 X s
k=1 r,s=1
s<r
n r-1 n-1 n-1
= }: Z L 17K (e 1)y
rs X
r=2 s=1 k=r-1
n r-1
SIDNEY
rs nr
r=2 s=1
n-1 n-1 e
where Anr = n (k+1)!. Luckily it is known
k=r-1 k
that
_ nl!
A= - (1471)
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SO n, r-1
ee Y3 4
n,2 TS . o
r=2  s=1 (n-r)! n
n n
o DI ) =
T2 TS ;T |
r, ezl (n-r)! n el (n-r)! n
n n n
PR
2 Py S =1 (n-r)! n'r s} rz(n—r)! n’
0 (3.3.15)
1
Now Z T < 1+ logn
s=1
so (3.3.15) becomes, using (3.3.5) and (3.3.12),
1 L jogn+d tog2+Xs+e?!
By <z (L+ log n) (5 log 7 1 gv 2t )
1 2
<Zlogn+ c:1 log n forniS (3.3.16)
-1 Yo ol o L-
where ¢y = §~1og 2 + ot e 5 1.503...
From (3.3.12), (3.3.13), (3.3.16) for n >3
2 1 2 :
0" [K] <71-10gn+c2 1ogn+c3
where c, = 2¢ +}-—i(1og2+Y) = 2.871...
2 1 2 2 :
Cg = % (log 2 +v) + e_1 - % (log 2 + Y)2 = 0.600---
or more simply, for n > 3,
oz[K] < % 1og2n tc, log n (3.3.17)

where c, = eyl + feg] = 3.471.. (3.3.18)
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3.4 CLASSIFICATION OF TYPE 1A NETWORKS BY NUMBER OF LOOP NODES
3.4.1 Theorem

The probability that a type 1A network contains w loop nodes is

!
L =_11_'.._VL______ : (3_4_2)

(n-w)! nW+1

. proof. The w loop nodes can be chosen in (3) ways. For each such choice
the w loop nodes can be arranged into loops in w! ways, since there is

a 1-1 correspondence between such arrangements and permutations of w
objects. The remaining n-w nodes do not lie in loops, and if we imagine
that the w branches forming loops to be removed, the n node network
remaining is a w-tree with the w loop nodes as roots (see Appendix 2 for

definitions). By lemma A2, there are wn™ Y1 such w-trees. Therefore

L= w wn™¥l QED
w w ————

n

n

Notation. It is convenient to define

9 (W) = (3.4.3)
(n-w)! n
so that L = 2 ¢_(w)
W n 'n
Lemma {3.4.4)
The mean and variance of w are given by
Mean = 7L%-+ 0(1)
Variance = n(2 - %J + 0(/n)
> nooo w2
roof . = e
Proof . Mean 2: CEOE nW+1 v (3.4.5)

w=1




n 3
24 _ n! W
E[w"] = Z (m-w)T _w+l

we=l

and the lemma follows by lemmas A7, A8 of Appendix 1.

51

QED



CHAPTER 4

LBF AND LC FOR TYPE 1A NETWORKS

4.1 LOWER BOUND TO EXPECTED VALUE OF LBF

case I Initial state contains exactly one active node 8. (In this case
et

Suppose that B is given. The event that LC = j and LF = k can only
happen if node B is connected to a different node B8,, §; is connected to

a different node 62,.,,and Bk—l is connected to Bk-j' Therefore

(n-1) (n-2)...(n-k+1)
K

p [LC=j, LF=k] =
leﬂé . 1
- Lﬂ:llijz - (4.1.1)
(n-K) In
n
Py v [LBF=D] = :E: P[LC = k-b, LF = k] (4.1.2)
176 k=b+1
Therefore
' ' n-1 n
E [LBF] = b Z{: L-1!
Q.xQ 1K
1776 beo K=b+l (n-k)In
n k-1
- Z (n-1)! b
£ @m0
n
) :E: (-1 k(k-1)
xe1 '(n—k)!nk 2 ‘
n-1 ‘ ‘ T
1)1
- ,(n 111) Z (n-1) (n-r-1) 2_' (4.1.3)
2n _ )

r=0

52
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2=

n-

s

|

=D E: . by lemmas A6, A7. (4.1.4)
o™ s! 2

w0

=0

From lemmas A5, A9, and (4.1.4) we obtain

1
Y2In 3 . V2In 12n 2
7 -7 < E[LBF] « 7 e -3 » (4.1.5)
and therefore
E[LBF] = S + 0(D) (4.1.6)
In the same way
n
E[(LBF)Z] . :E: (n-1)! . k(k-1)6(2k—1) 4.1.7)
, RRY
» k=1 {n-k) In
n-1 T
= (n—i)! %T' [Z(n—r)3 - 3(n—r)2 + (n-r)] where r=n-k
6n “r=o '
_eent et I{Z_l 2, 2 )by lemmas A6-AS
- en (n-1)! 7 st (n-1)! y
$=0
.& %2- by lemma A4. We conclude that:

{1.1.9) Theorem If the initial state contains one active node,

E[LBF] = 'Zgn +0 (1) (4.1.10)
02[LBF] =n(-§--1§-)+ 0(vn) - (4.1.11)

and for arbitrary initial activity (4.1.10) is a lower bound to E[LBF].

Distribution of LBF

Still for case I, let Z = EEE'. Then Harris shows ([31]) using

/n
Stirling's approximation (in a different context) that from (4.1.2) it

follows that (as n + ) Z has the density function
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n-1
s
! .
= B Eﬁ- - L by lemmas A6, A7. (4.1.4)
n s! 2
2n
$=0
From lemmas A5, A9, and (4.1.4) we obtain
1
v21In 3 . ¥2In 12n 2
7 -7 E[LBF] < 7} e -3 (4.1.5)
and therefore
E[LBF] = ”inn + 0(1) (4.1.6)
In the same way
n
! - -
E[(LBF)?] = :E: (n-1)!  k(k l)e(Zk 1) (4.1.7)
: I
» Kol (n-k)! n
m-1)1 =l T 3 2
= A 2: — [2(n-1)” - 3(n-1)" + (n-r)] where r=n-k
n T!
6n S T=0
+1
_@-1)! [ 4n" n° _
= T DT =T (n T by lemmas A6-A8
n =
n %E by lemma A4. We conclude that:

(1.1.9) Theorem If the initial state contains one active node,

v2IIn

E[LBF] = ~=

+0 (1)

o2 [LBF] = n(-% - %-) 0(Vm)

(4.1.10)

(4.1.11)

and for arbitrary initial activity (4.1.10) is a lower bound to E[LBF].

Distribution of LBF

LBF

Still for case I, let Z = —— , Then Harris shows ([31]) using

/n

Stirling's approximation (in a different context) that from (4.1.2) it

follows that (as n + «) Z has the density function
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£,) v |V2T (1 -9()) y>o0

(4.1.12)
0 y <0
where
X _x2/2 , ’
®(y) =1 e dx ' (4.1.13)
' V2 -
Fig. (4.1.1) shows a sketch of fz(y)
FIG. - 4.1.1
(A )
tzgy,
P
7
Therefore Z has the distribution (as n + )
2/4
Fo(y) v[1-e™ "+ y/20 (1 -9 () 1y 20
< 0 (4.1.14)
0 yor
Case II 1Initial state contains p active nodes 815 395 +-es ap, where p
is small compared with n.
Then
LBF(ai) = max [dist (ai)] (4.1.15)
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P[LBF(ai) < x] = P[ max [dist(ai)] < x] (4.1.16)
i

n

P[dist(a;) < x, Vi]

1T P[dist(ai)'< x] (This is an approximation since the events
i=1

are not really independent. Once it is known that dist(a;) < x, a small
piece of the network is fixed, and the distribution of dist(az) is, strictly
speaking, no longer based on (4.1.1). However, for p small compared with

n, the approximation will be a good one.)

= P[LBF of Case I< x]P (4.1.17)

—

s
- P
F, ) - (F, (¥)) | (4.1.18)

Let Zp = LBF , then Zp approximately has the distribution function

where_FZ(y) is defined by equation (4.1.14) above.

Zp has the. approximate density function
- p-1
£,00 = pF, (N7 7 £,0) (4.1.19)

where fz(y) is defined by equation (4.1.12) above.
4.2 UPPER BOUND TO EXPECTED VALUE OF LBF

In this section we give a graph theoretical approach which leads to an
interesting pair of bounds for E[LBF] (Theorem (4.2,10)). Because of the
results of the previous section we do not do anything further with the lower
bound. At the end of this section we show how the. upper bound may be evaluated.
on a computer, and give a conjectured upper bound based on computational
results, (equation (4.2.22)).

Our bounds are based on assuming an initial activity either of.1 node,

or of n nodes, and so apply equally well to both
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E [LBE] and E [LBF].
le96 le97

Let Gn n be the family of all rooted m-trees, containing n+m nodes,
of which m are specified in advance as roots. (For definitions see
appendix 2.) By lemma Al, Gn,m has m(n+m)n_1 elements.

If g ¢ Gn o and x is a node of g, define

dist(x)

to be the length of the (unique) path in g joining x to its root node.

weight (g) A }: dist(x) (4.2.1)

all nodes x € g

height (g) max [dist(x)] (4.2.2)

nodes x € g

A
all
EE: weight (g) (4.2.3)
Yn,m }E: height (g) (4.2.4)

A
g € Gn,m
Vn,m A wn,m (4.2.5)
m(n+m)n

= average [ average (distance of a node from its root)]

g € Gn o nodes of g

3

U AY (4.2.6)
n,m= "n,m

m(n+m)n 1

= average [ maximum (distance of a node from its root)]

g e Gn,m nodes of g
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Bounds for E[LBF]

case 1 One active node in initial state
Case %

Then E[LBF|given that there are m loop nodes] = Vn—m,m

n

E[LBF] = Z v L (4.2.7)

n-m,m m
m=1

where Lm is the probability that a type 1A network has m loop nodes, and

by (3.2.17)

L =n!w
w w+l
(n-w)! n

It follows that for any number of active nodes in the initial state,
n

E[LBF] > Z LV ' (4.2.8)

m n-m,m
m=1

Case II n active nodes in initial state, i.e., 100% initial activity

As in case I, we obtain

E[LBF|m loop nodes] = Un—m,m
0

E[LBF] = Z LU oo

m=1

and for any number of active nodes in the initial state,

n
E[LBF] < L U (4.2.9)
- m n-m,m
m=1
Conclusion:
Theorem (4.2.10)
n n

z: L V < E[LBF] < 2: LU
m n-m,m — -_ m n-m,m

m=1 n=1
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and for low initial activity E[LBF] approaches the left hand bound, for
high initial activity the right. |

In view of the lower bound obtained in the previous section, we
do not pursue the left hand side of this any further here.

Calculation of Yn

,m
Let Rém% be the number of rooted m-trees with n labelled* nodes
and height h, and Sﬁ h the number with height at most h.
Then n
- (m)
Yn,m = E: h Rn+m,h (4.2.11)
h=1
n+m

(the (n;m) appears because this is the number of ways of choosing the

root nodes), and

(m) _ ~(m) (m)
Rn - Sih ~ Snoh-l (4.2.12)

Let us write S for Sﬁl). Then Riordan [46] has shown that Sn h is
b 2

n,h h

given by the recurrence relation

Sp k=l k218 1=k k>l

n .
k) Sn-k, hel Sk,h forn>1, h>1

n-1
(n-1) Sn,h+1 = E: k
k=1 (4.2.13)

From Polya's theoren,

(4.2.14j

™1
:5mr~\
&
3%,
| it

5_ b
™1
>

=

3%,

From (4.2.6), (4.2.11), (4.2.12),
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y n
y - DM ) }:h g(m _S(m)
n,m m(mm)n 1 m+n) (n+m) n+m,h n+m,h-1
n h=1 ‘
n-1
- 1 (m) - Z (m)
_{m“n]m(mm)n'l n snm’n smm’i (4.2.15)
n =
| m . i
| Now_Sn+m,n is just the number of m-trees of n+m nodes

n+m n-1
ol I I (n+m) by lemma Al (4.2.16)

From (4.2.15), (4.2.16),

n-1

Uy =n- 1 Z sm (4.2.17)

m+n) n-1 n+m,i
alm (n+m)

so we may compute Un " from (4.2.13), (4.2.14), (4.2.17).

3

Remark It is much more feasible to calculate the transient quantities

LBF, Un n’ Vn m with a computer than it is to. calculate the cycle time,
b 2
1/

because the former are roughly of the order of n™'2 and rapidly show

their true shape,

log n

whereas the latter is of the order of n and does not grow until n

is very large , thus:

*For the explanation of why we use labelled graphs, see the remark
at the end of Appendix 2.
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We may obtain a simpler but cruder upper bound to E[LBF] than
(4.2.9) as follows.

It is clear that a type 1A network containing exactly two trees
has on the average a lower LBF than a type 1A network with exactly one
tree; etc. Thus E[LBF] is a maximum in the case that there is exactly
one tree (i.e., in the case that there is one component, and this com-
ponent contains a loop of length one-- from sections 3.3 and 4.4 it

1 2 1

easily follows that this event has probability ~ T S n

which is relatively "large'.) Thus a cruder bound than (4.2.9)his

E[LBF] f-un—l, 1 (4.2.18)

A Conjecture
Certainly

un’1 <n (4.2.19)
and section 4.1 suggests

lim u 2 > 1

o> o n,l \ IIn
So we are led to conjecture that

u Noa nb , N>, a, b constants, (4.2.20)

n,l
Computer calculation of u
L4
that this is true, and that

using (4.2.13), (4.2.1]), (4.2.17) suggests
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0.564 > b > 0.5 (4.2.21)

From (4.2.18), (4.2.20), (4.2.21) we would then have

E[LBF] < an’-°6% (4.2.22)
for some constant a, which agrees closely with the lower bound,%no'5

obtained in Theorem (4.1.9) above.

4.3 BOUNDS ON EXPECTED VALUE OF LC - INTRODUCTION

In the next six sections we give bounds on the expected value of
the cycle time LC and on the expected value of the LCM of the loop lengths.
We begin by considering various properties of a typical component of a
type 1A network (in section 4.4), then give a lower bound to the expected
value of the LCM of k integers picked at random (in section 4.5). Following
this we derive these bounds:

(i) A lower bound to E[LC], Theorem (4.6.44) (depending on assumptions

(4.5.9), (4.6.18), (4.6.33) and (4.6.48), provided that the initial activity
is chosen according to (4.6.3).

(ii) A lower bound to E[LCM of loop lengths], Theorem (4.7.12), (depend-

ing on assumptions (4.5.9) and (4.6.48)).

(iii) An upper bound to E[LC] over all networks with fewer than A log n

components, (4.8.9)..

(iv) Two upper bounds to E[LC] over all type 1A networks, Theorems

(4.8.11) and (4.8.13), by two different methods.

(v) A third method of obtaining an upper bound to E[LC], section 4.9.

This requires for its successful completion an as-yet unknown upper bound

to the LCM of k numbers, equation (4.9.1).
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4.4 ANALYSIS OF A COMPONENT WITH N NODES

Here we analyze the number of loop nodes, k, in a particular
connected component of a type 1A network, given that the component
has n nodes. Then k =1, 2, ..., n.

Let an = number of possible different components with n nodes
and k loop nodes. It follows from the proof of Theorem (3.4.1) and
the fact that the number of ways of seating k people at a circular

table is (k-1)! that

-k-1 -1
Cotc = (i)k " (k-1)! = ¢n(k)nn (4.4.1)
where we define
¢ ) = —2 (4.4.2)
: (n-k)In

n

Let Cn= total number of different components with n nodes = §: Cn X

n-1 nk k=1
= (n-1)! j{: xT , (4.4.3)
k=0
[N Vi
N %-nn_ 2 , N > o, (4.4.4)

by lemma A4.

Let Pk =.an = probability that a component with n nodes has k loop
C

n nodes
a1 (4.4.5)
“X)! _
(n-k)! n-1 oF
Yo
=0
2 . Y.
W/iﬁl¢n(k) for n + «, uniformily - in k, (4.4.6)

by lemma A4.



Note C 34l =nk<1. So
n
Cn,k

Cn,k:> Cn,k+1, for all k

Expected value of k, given n,

n
Blk[n] = ) xp =
k=1

IL_ k=1
Zk
From lemmas A5, A6, A9 this becomes

/-5%_(1- ——<E[k|n]<F<1 +—)<c/—

for n > 1, where B = 1 and C = (1 -1 ) -1
/21 - 1 ‘ V21
Therefore
E[k|n] &‘/E% as n > ®
n
2 n-k
1 k™ n
Bk’ [n] = 1 T
2 k=l
k! -
k=0

= ﬁ (by lemmas A4, A7)

2 2n  _ 1 -2
[k|n] ~ n- = =0 ( T

For k = o(n2/3), by lemma A2,

| 3
-'k(ls;ll) . 0(_k_)]

¢ (K)=e
b /%H gkGe-D)/om 02/ 5

So, roughly, k has an exponential distribution.
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(4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)

(4.4.11)

(4.4.12)
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For o,B = o(n2/3), from (4.4.12) we have

8 : '
Pla < k < 8] ~ Z_\/E_' o k(k-1)/2n (4.4.13)
" IIn

=0

B
ﬁa_ -x(x-1)/2n
N o je dx (44.14)

a

B
_ 2/.
Roughly, Pla < k < B] /ﬁZ_E j eX 21 dx

v o

B/
=\/'—12T' [ V2 gy (4.4.15)
a/vVn

To summarize this section:
Theorem (4.4.16) For type 1A networks:
E [number of loop nodes in a component| component has n nodes] =

E[k|n] satisfies, for B = (Y2M-1)"1, C = (1 - —— 371

/21
\/7—;‘- (1 - %_-ﬁk E[k|n] </2_§(1 " lj/_;)i cjg__%, n > 1 (4.4.8)
E[k|n] %/'2_% as n > o, | (4.4.9)
and
E[k|1] =1 (4.4.17)
o?[k|n] ~ n(l - 2) (4.4.10)

I

Remark The results of this section are independent of the total number
of nodes in the network. It follows that if a typical type 1A network

has components of sizes n, n s My containing loops of lengths 11,

2’

12, cees 1k’ resp., then
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P[1,, 1., ..., 1

k
Y N, Ny, e n ] o= 77 P[L D] (4.4.19)

i=1

|

4.5 ESTIMATES FOR GCD AND LCM OF K NUMBERS - INTRODUCTION

Let k integers Xl’ X2, e Xk be chosen at random, independently

and with replacement, from [1, 2, ..., n]. In this section we find a
lower bound to

E [LCM (Xp,...,X)]
E X,X,. X ]

This lower bound is based on an approximation, namely (4.5.9), however
in (4.5.24) we give several arguments in support of this approximation,
the main one being that when it is used to estimate

: A
E [6CD(Xy, - - -5X)] A < k-1

it gives the correct result as obtained (by a different and rigorous
method) by Gegenbauer [19].

Decomposition of Xi into Prime Factors

1° XZ’ e Xk be chosen at random, independently

and with replacement, from [1, 2, ..., n].

Let k integers X

Let ap(Xi) be the highest power of the prime p that divides Xi' Thus

Xi and ap(xi) are random variables,

Probability distribution of ap(Xi). Suppose r > 1, and let
T T
n=Ap + B, where 0 < B < p . Then
_ T oL, _A _ n-B
P[ap(Xi) > r] = P[p~ divides Xi] =0 == (475'1)
np
=1 B __Ll . 53 where 0 < g < 1
T T n -
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of course

Pla, (X)) 201 =1 (4.5.2)

Let pj’ j=1, 2, ..., be different primes. In the same way that

(4.5.1) was proved we get, for any rj.z 0,

; ¢ d= —.__—_1_—_‘-— _E—
P[apj(Xi) i_rj, j=1,2,...,u] = f% - -T,02€x< 1
T.
AN (4.5.3)
P[ap(Xi) =r] = P[ap(Xi) >r] - P[ap(Xi) >+ 1] (4.5.4)
I R S
T r n T+1 n
p
P18 s <1
r+l n

(4.5.4) is true for all r > o, but of course ap(Xi) cannot exceed

[log P n], and so

i)

P[ap(Xi) = r] 0 for r > [log p n] (4.5.5)

Let Zj’ j=1,2,...,u be any random variables taking only integer values.

Then u

€.
. : J
PlZ.=r., j=1,..., = -1)j=1 P{Z. > r.+€,
[ 55T35 ul (-1)j [ § 2 Tyrey
ej=o or 1

j=1,...,u] (4.5.6)
where the summation extenas over the 2% possible choices for sl,...,su.
Thus the generalization of (4.5.4) to several primes is

u
€. i
. ] 1 S A
Play (X)) = 1y, 3=1,...u] = EE: R AL L M

T.+€.

u
. n
) €J=0,1 v Pj I
j=1
where |6] < 1

(from (4.5.3) and (4.5.6))
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za
it !
) (ul) T.re, 2n6 > 8] <1,
e.=0,1 pj
j=1
H H
1 1 278
=77 T. _r.+l|  n ] <1 (4.5.7)
j=1 Pj J Pj ]
verify by multiplying out the latter product)
( P
whereas by (4.5.4),
u
_ _ 1 1 8
7 P[apj(Xi) = rj] =TT T - rj+1 * = 6] <1
j=1 j=1 . .
J ] PJ PJ
by 1 .
=TT - ey + remainder (4.5.8)
=t \ F? py

Comparison of (4.5.7) and (4.5.8) suggests (but certainly does not prove)

the following

{4.5.9) Approximation For large n, small error is introduced by assuming the

random variables 2, (Xi), 2y (Xi), ag (Xi), e ap (Xi), ... to be
independent; and to have the distributions

-1

—7— - allr >0 (4.5.10)

P[ap(Xi) =r] =

For the remainder of this section, we assume that (4.5.9) is true.
The following equations, therefore, are to be considered as conditional
on the truth of (4.5.9). (See also the remarks (4.5.24).)

Definition of the Random Variables Ap, Bp, Cp

L
et K K K

A = z ap(Xi), Bp = max ap(Xi), Cp = min ap(Xi) (4.5.11)
i=1 i=1 i=1
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Then clearly

A .
- P
X, Xyoooo X = T P , (4.5.12)
ps<n
BP
LOM[X |, X5 020X ] = T P (4.5.13)
p<n
CP
GCD[Xl,XZ,...,Xk] = TT »p (4.5.14)
psn
Estimate for GCD[Xl’Xz""’Xk]
From (4.5.14) and the Approximation (4.5.9) we have
P[GCD[Xl,Xz,...,Xk] = gl
“p &p &p
=P 7T p"= 770P°] where g = JT p *, (say)
p<n psn ps<n
- PIC = 4.5.15
T PIC, =gl ( )
psn
From (4.5.10) we have
Pla (X;) 2 7] = 1;-, r >0 (4.5.16)
P
_ 1
P[ap(Xi) <r]=1- 1 T 0 (4.5.17)
So that X |
N B _ 1
P[cp >r] =TT P[ap(Xi) >r] = — (4.5.18)
i=1 p
from (4.5.16) , and
k -1
P[Cp =r] = pk(r+1) (4.5.19)

From (4.5.15), (4.5.19),




69

P[GCD[X, .- -»X, ] = g T e (4.5.20)
p<nl? P
1 k—1 1 Bk'l
= JT kg T P——k =% 7 - for0<gz<nm
p<np P ps<n P & pzn P

Now (4.5.20) is based on the approximation (4.5.9), so we must normalize

(4.5.20) to obtain the new probabilities

s - L p-1
P[GCD[Xy,....X, ] =gl = = TT X
<

n
1 1
- L j{: = (4.5.21)

Then if X < k-1,

n - N -1
A Al 1
E[[GCD(Xl’._“’Xk)] ] = Z g —-:E' Z _T(-

g=l & |g18
n - 1 -1

- 1 1

- k-2 gk
g=1 & | g=1
g (k-2) © :

> A0 as n -~ (4.5.22)

If x = k-1, (4.5.22) shows that
- k-1
E[[GCD(Xl,...,Xk)] ] » as n >

So we have proved
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Theorem (4.5.23) For A < k - 1, subject to the approximation (4.5.9),
TheoTcl”

E[[GCD(XI,...,Xk)]A] > %%%%il as n > o

Remarks (4.5.24)

1. As we mentioned in the introduction to this section, Theorem
(4.5.23) has been proved rigorously by Gegenbauer ([19]), and this is

an argument for the validity of (4.5.9) in fhis kind of analysis, and

in particular in the calculation of the LCM to follow (Theorem (4.5.69)).
2. In the case k = 2,

1 _ LCM(X{,X,)

— (4.5.25)
GCD(Xl,Xz) XX
172
Setting A = -1 in (4.5.23), we get
E . = E (4.5.26)
GCD(X.,X)| ~ -
1272 :
a result due to Cesaro [9].
3. Another argument in favor of the validity of (4.5.9) is as follows.

Let w(m) be the number of different prime factors of m, and let

Q(m) be its total number of prime factors, so that if

then w(m) = r, Q(m) = ap ta, to...ta.
Then it is known that w(m) and Q(m) are '"mearly always' about log
log m. More precisely |
Theorem (4.5.27) [Hardy and Wright, [30] Theorem 431, p. 356]
The number of m, not exceeding x, for which
!f(m) - log log m|£> (log log m)l/2 +6

where f(m) is w(m) or Q(m), is o(x) for every positive §.
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Thus a number near 107 will usually have about three prime factors,
and a number near 1080 about five or six. A number like
6092087 = 37. 229. 719
is in a sense a ''typical number".

On the other hand one half of the numbers are divisible by 2, one

third by 3, one quarter by 4, and so on.
Therefore, if two numbers X and Y are picked at random between

1 and n, we should expect them to have some small prime factors in

common, but no large common prime factors.

So if we take care of the effect of small powers of the small primes
2,3,5,..., we might expect to get a gogd estimate of the LCM. We prove
this in the case k = 2 by giving three succeésive approximations to

EE%éXLXl , taking into account no common factors; common factors 2,4,8,

.;,2R, where 2R <<n; and finally common factors'2,4,8,...,2R,3,32,33,

.,35, where 2R <<n, 3° <<n. It will be seen that the successive
approximations rapidly approach the true value of LCM(X,Y) . Now since
XY

our approximation (4.5.9) is most nearly true in the case of small powers

of small'primes+ we expect it to give an accurate estimate of

LCM(X )Xo, -5 X )

Xl.XZ.....Xk

for k > 2.

Successive Approximations to LCM(XY); X,Ye[1,2,...,n]
XY

I.  First Approximation

LCM; (X,Y) = XY

LCMl(X,Y)
XY

Tas is seen by comparing (4.5.7) and (4.5.8).
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1I. Second Approximation is to take into account common factors

2,4,8,...;2R, where 2R <<n. i.e.,

LCMZ(X,Y) = XY if min(az(x),az(Y))< R
min(a, (X),a,(Y))
9 2 2
= XY otherwise
2R
= XY (say)
22
Now P[az(X) > r] = L. E—, 0 <e<1, by (4.5.1)

P[Eé >r] = P[az(x) >, az(Y)

|v

r]

2

and

LCM, (x Y)

1 1 48  46+2R¢$

— et —

n
~3| o
.

2n

~j o

= 0.857

IIT. Third Approximation In the same way it can be shown that by taking

. . R .
into account common factors 2,...,2R,3,...,35,2 <<n,35<<n, that
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El:LCMs(X’Y)}+ 0.791 asn -+, R, S > w.

XY
IV. True Value From (4.5.25), E [LCM(X,Y)|+ 0.73076 as n + .
XY
4, As a final remark, we observe that (4.5.23) has two interesting
corollaries:

(4.5.28) Cor. to Theorem (4.5.23)

If A < k-1, lim E[GCD(Xl,...,Xk)A] is finite.

n > o

lim E[GCD(xl,...,xk)k'l] = o

n -+

(4.5.29) Cor. to Theorem (4.5.23)

. [LCM(X,Y)] 2 RG]
2

XY z(2)

2 (M), z@) [z )\
£ (2)

XY J t{2)
We now derive our estimate for E[LCM(XI,...,Xk)]

Lower bound to Least Common Multiple

We would like to have an exact expression for

E[LCM(X .-+, X )]
E[X[X,.- X

(4.5.30)
k] ‘

however we will only be able to obtain a lower bound.

From (4.5.12), (4.5.13),

CB[LOM(X...X )] =

[t
i
prmey
|y
@]
=
—

[}
tr
|
o]
he]
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B
= 77 Elp p] since by (4.5.9) Bp’ p = 2,3,... are independent
ps<n
Now for a convex function f, E[f(X)] > f(E[X]), (c.f. [3], p. 17). Since

Px is a convex function of x,

B
(M) > g7 p oL P (4.5.31)

p=n

Next we consider the denominator of (4.5.30).

E(Xl,...,Xk) = (E(Xl))k since the Xi are independent and
identically distributed
k
=(121.) (4.5.32)
Let u 4 }: 1 log p. It is known ([51]) that
p<n?
log n > u, > logn-F, n>?2 : (4.5.33)
where
1
F = 1.3326 + E—ng—f =.2.0540
Therefore 1
n<e T pP (4.5.34)
2<p<n
n\k
B(Xpeene Xy (?)
F\k X
< (%) T o | (4.5.35)
2<p<n
From (4.5.31), (4.5.35):
k
© E[LCM] k E[B.] - p
E[X, ... X 26 e P (4.5.36)

p<n
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2 =0.256
F
e

To find- ’E-[*Bp]"we -proceed as follows. = -
k

_ _ k
P[B, < ¥] = Pl max 2 () < x] = Pla,(X;) < x]
1 k
= (1 - —?IT) from (4.5.17)
k k
P[B=r]~(1- 1 ) (1——1)
P T+] T
P P
1 1
E[B,] = Z T (1— r+1) (1— _r)
r=1 P P
o k
k 1 1
= Z r Z( )(_1)5 Ts+s = TS
r=1 s=1°
k s &
k s 1- T
- ) ( )(—1) L2 ) &
s=1 s P r=1
k
k +1
- ( ) L:l)fi__ (4.5.37)
s| _s
s=1 p- -1
=Wp,k (say) (4.5.38)

We next find a lower bound on W K

Case I. p 2 kX In this case the terms in the series (4.5.37) decrease
k
in magnitude. For let wp,k _ Z (_1)5+%s

s=1
so that

se1 _ (k-s) (p°-1)

8 s+ % - D
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Then als+1

a
S

<1

Proof. Must show (k-s) (ps-l) < (s+1) (p5+1-1) for p > k and for

k>s>1

k-8 @ -1 =<(s+1 @ -1 QED

Conclusion. For p > k, the first two terms give a lower bound, i.e.,

k k(k - 2)
W > -

,k -1 2
P P 2(p° - 1)

(4.5.39)

Case II. p Zx

k 1 s+1
Z ( ) LG (4.5.37)
- 1

Now 1 _ 1 1 RN SR SRR S
s T s |1T-1} " _s 2s 3s °
p -1 p s P P P
P
k o
Z ( )(- 1y Z L (4.5.40)
= = P
k
Now W = E[B ] <E[A] = —~—= < » , so (4.5.40) converges.
bk [ p] < E[ p] -1 ( ’ ) g

o K
Wy = Z [1 - - —%—)] (4.5.41)
r =1 p -
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k P
The first term in this series is 1- (1- %J > 1- (1- 2) k = p)

Let r_ be the number of terms in this series that are Z_%—, then

0
r >1, and
o——

H

(o]
Wk 2T (4.5.42)

It is clear that the terms in (4.5.41) are monotonicly decreasing to

zero as T > ©. Let r. be the solution of

1
k
1-a--+y =1, . (4.5.43)
T 2
pl
then r = [rl], and
ro>ry - 1. | (4.5.44)

From (4.5.43), solving for T, we get
r, = -log (1-2" 1/ky f . (4.5.45)
log p
Now log 2 /K <7MK _ g
1 -2 1/k f;%-log 2

(4.5.46)

From (4.5.42), (4.5.44), (4.5.46),
for p < k,

1 [log k
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prom (4.5.33), (4.5.39), (4.5.47), we have for n =k,

1(logk K (k-1)
7 |Togp ™ ! ko kGl
E[LCM k _ =) -
E%X .]....x] >6 T p m PP 20D
1 k 2<psk k<p<n
T pp
2<p<n
- ¢ PiP2 (say) (4.5.48)
Pz
where ) %_(iggv; ) 1)
IS |
2<p<k
k k(k-1) _k
-1~ 2 P
A ‘ P 2(p°-1
p2 = TT P (P )
k<p<n
| k
A ;
Py = T p P
2<p<k
First we estimate
%—(iig - 1) 3 -1/2
= JT P P = PG ¢ G
2spzk 2spsk 2<psk
211 (K)
- K T P 12 (4.5.49)
' 2<p<k
where II(X) is the number of primes < X, and
nxy v _X__ . (4.5.50)

More precisely, from [51] we have
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X

sex X217

and then direct calculation shows

nxy »1 X s X > 2 (4.5.51)
3 log X

Again, log T p = 2: log p E 8(k), and

2sp<k - 2<p<k
1 | '
8(X) < X(1 + _2_—1—Og—)() X>1 (from [51])
so that 1
k —
172 =0 T R
T > 6 ' (4.5.52)
2<pzk

From (4.5.49), (4.5.51), (4.5.52),

1 [log k
P = JT P2 l\logp

2<p<k
_k kK
X 6 log k - e 3 4 1oz k
- ‘ .
E.[l + ——_l___]
e 2 2 log k
> o Dk :
- , for k > 2, : (4.5.53)
<1, 1
where D = Tt 7 Tog 2 - 0.694
Secondly we estimate Py Now
k k(k-1) _k
Pl 2p°-n P
k2 k (3p + 2
- . .k (3p + 2)

2 (p2 - 1) 2p (p2 -1



> --1-(-2-+
2

N
=
———
[\
[

Therefore

2
k 3k 1
log p, > ('7*7) > -
p -1
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It is trivial that

0.231 X <X - 2VX, 7 <X

(4.

(4.5.54)
k<p<n
Now from [51]
X
£00(X) d [£f) Vdy (4.5.55)
z: £(p) = " log X () dy | logy
p<x 2
X
jz: logp _oX) . [ 280y)ydy (4.5.56)
2.1 X2 % - 1)? o
Pixp - 2 Y -
Therefore
; k<p<n p p<n p<k
i v n
4 _ 6 8 (k) 26 (y)ydy
== - = +f ——, {(4.5.57)
n -1 k" -1 X (y- - 1)
Again from [51],
8(X) < 1.01624 X, X > 0 (4.5.58)
X - 2/ <0(X) , 0 <X < 1400 (4.5.59)
X(1 - TBé"X9<'e(X)’ 41 < X

.60)

(4.5.61)
0.73 X < X(1 - 10; ), 41 < X (4.5.61)
So
0.231 X < 8(X) 2=X <7 (by direct calculation)
0.231 X < 8(X) 7<X <41 (by (4.5.59), (4.5.61))
0.73 X < 08(X) 41 < X

(by (4.5.60), (4.5.62))
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Conclusion:
0.231 X <6 (X) = 1.01624 X X > 2 (4.5.63)
or
AX<9(X) <BX, X>2, A=0.231, B=1.01624 (4.5.64)
Now
2d 1 -1
2 [ LS - 2 10g L -2 (4.5.65)
2 2 2 y +1 2
" -1 y© -1

From (4.5.57), (4.5.64), (4.5.65),

Y i fesbe it
- 1 k-1 y yo -1

_(B-Mk B, n-1 B, k-1
Y 2 8 n+ 1”7 8% F1
K“ -1
- F
K* -1
(g - Ak | . B - (232- A) k + B (4.5.66)
K° -1 kK - 1
From (4.5.54), (4.5.66),
log p, > - Eiki:_él_ [(2B - A) k + B]
2(k° - 1)
2B - A B |
>————-—2 k-—2- forkil.
py > e ¢ 7D (4.5.67)

2B - A = 0.90, D =-§ = 0.50812

where C = 5 1

Thirdly we estimate Pz-

1
logp3=kz -ﬁlogp
p<k
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< k log k by (4.5.33)
Py < k (4.5.68)

Now we return to (4.5.48): From (4.5.53), (4.5.67), (4.5.68) we

have the final result:

(4.5.69) Theorem . Assuming the approximation (4.5.9), for 1 < k < n,

k
E[LCM(X, .. .,X )] . C, C, A1
E[Xl,Xz ..... Xk] kk Hx
-D
where C1 =e 1 = 0.60
c, = Ge™" " = 0.052

4,6 LOWER BOUND TO EXPECTED VALUE OF CYCLE TIME LC UNDER RANDOM EXCITATION

We consider type 1A networks in steady state behavior, when only loop
nodes aré active. The period or cycle time LC of such a network is equal
to the LCM of the periods of its components.

Suppose that a typical component contains a loop of length 2, and
that in the steady state a of the % loop nodes are active. Let e be the

period of this component. We also call e the effective loop length of the

component.
(4.6.1) Lemma e|2 and Rlée

Proof. If a = o,vthen e =1 and 1|2, 2|o for any 2.

If a > o, then the a active nodesiand % - a inactive nodes must be
arranged in a pattern with a period of e. It must be possible, therefore,
to divide the lgop in %-sectors of length e, each containing %9 active

nodes. Consequently e|2 and Zlae.
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(4.6.2) Lemma If a > 0, and % and a have no common factor greater than
1, then & = &
Proof. ilae then implies Qle, but ell, therefore e=%.

Figure 4.6.1 gives examples of %, e, a.

Initial Activity. It is convenient to choose the initial state by
selecting

A =AM 2 /Aleg Y4 | (4.6.3)
active nodes out of the n nodes, independently and with replacement.
(As will become’apparent, this is a compromise between high initial
activity, in which casé many of the loops are saturated, and 19w initial

activity, in which case many loops are not activated.)
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Thus there are
LA

possible initial states, each equally likely. It is convenient to define
the probability space g, to be the space of the nA(n) different initial
states.

Remark. A(n) must be an integer, so we should really use

3
AM) = Wi (log m*/4) (4.6.4)
instead of (4.6.3), but the error involved in using (4.6.3) is negligible-

Distribution of Activity. Our first two theorems deal with the distri-

bution of the activity among the components of a typical type 1A network
g containing k components of sizes LPFRP PR
(4.6.5) Theorem If k < (log n)5/4, then over the probability space 97,

with probability P> 1 (as n » «), all components of g of size

‘ ’n 1 2 |
n\)i -k— 1—og—lz = fl(n,k) : (4.6.6)

are activated. Further, the approach of P to 1 is independent of k.
Proof. Without loss of generality we may assume
R CELOTRRR 3_f1(n,k)
and

n oMy < fl(n,k).

100
An equivalent problem is that of throwing A(n) balls into k boxes of sizes

Ny,...,0 Let S be the number of empty boxes among boxes 1,2,...,r.

K
Defiﬁe the random variables

6. = 1 if ith box is empty
i~ 0 if not

fori=1,...,r.
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log E[S] < log k + A log (1 - f1 )

3/4
< logk - logn) by (4.6.3)
vk log k-
1/8
5 (log n) . 5/4
< 2 - <
7 log log n ETTBEfTBE—h (since k < (log n) )
4
5 =00 as n - ©
Therefore E[S] = 0 as n »> =,
Similarly we find
2f A
E[S?] < E[S] + k(k - 1) (1 - Tl
+ 0 as n > o, QED
5/4 -
(4.6.6) Theorem If k < (log n) , then over the probability space
97, with probability P -+ 1 (as n > «), no component of size n 3_f1
contains more than
"2A(n) n,
= = f4(nv,n) = f4 (4.6.7)

initially active nodes. Further, the approach of P to 1 is independent
of k.

Proof. We use the same notation as in the proof of Theorem (4.6.5).
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Let Ni be the number of balls in box i, i = 1,...,r.
We must show

P = P[Ni > f4 for some i = 1,...,r] -~ 0 as n » o,

Now r

P < zz: PN, > £,] (4.6.8)

i=1

First let us observe that if n, 2_%-, then

2n. A
i

N. <A <

1 n

and so

2n. A
i

i
!

P[Ni >
So in (4.6.9) we need only consider i for which

f. < n,

n :
) <3 (4.6.9)

Let us therefore consider such an i, and define

1 if the u™® ball falls into box i

u~ 0 if not
Then

n.
P[X, =11 = —=p (say)

<p< %- by (4.6.9). | (4.6.10)

Let q = 1 - p.
We will bound P[Ni > f4] by the Chernov method (see Jelinek [34]), which

in the present context gives us the




Theorem
- sX,
Let y(s) e log E[e '] = log (pe® + q),

Then for p < X < 1;

- A(s,Y' (sy) - ¥(s;))
P[N, > Ax] < e 17T

where s; is the unique solution of
= ¥'(s)
We apply this theorem as follows:
From (4.6.11), (4.6.13),
1 = log T _xx) 5
From (4.6.12), (4.6.14),

X 1 -X
P[Ni > AX] < exp - A [X log 5-+ (1 - X) log i-p

Let X = ap where a a g-. Then
2An,
> = > .

P[Ni f4] P[Ni 1]
n

< > 3 - >

S PN, > S An.y = PN, > AX]

-TT_ .

| A

exp [ - Af(p)]

where

f(p) = ap log a + (1 - ap) log %—E—%E

v
It follows that f'(o) aloga-a+1=20.1and

2
'I(p) - (a - 1)2
(1 -p)"(1 - ap)

>0 by (4.6.10)

|
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(4.6.11)

(4.6.12)

(4.6.13)

(4.6.14)

(4.6.15)

Therefore f(p) is monotonically increasing for 0 < p < 1 and f is a

minimum at
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o
]
:‘»l)__g—h

and there

f\2
f(fl) = fl_(a log a - a + 1) + O(E%)
n

n
v 014 0 51)?

n n

fl .
> == for n sufficiently large

20n
Therefore from (4.6.15),

A f1

P[N. > f,] < exp| -
* 4 20n

< exp| = (log n) 1/8
25 log log n

) (by (4.6.3), (4.6.6)) (4.6.16)

since k < (log n) /% (4.6.17)

From (4.6.8), (4.6.16),(4.6.17), for n sufficiently large,

- (1og,n)1/8
25 log log n

P < (log n)s/4 exp

>~ 0asn~>®, QED

Next let us look at a particular component of size n, (say), whose
initial state contains a (say) active nodes.

Let b be the activity that finally enters the loop in this component.
More precisely, if at time t there are x active nodes in this component
at distance one from the loop, we say that at time t + 1 an activity of
X enters the loop. For example, see Fig. (4.6.2).

Clearly b < a.
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FIG. 4.5.2

ACTIVITY OF 3 ENTERS THE LOOP AT TIME t - 1, ACTIVITY OF 2

ENTERS THE LCOP AT TIME t + 2

(4.6.18) Assumption. We assume that the b nodes are randomly distributed
over the length of the loop; in other words, if the loop is of length s
then the final activity c is obtained by picking b nodes at random, with
replacement, from the.JLi nodes. Again, c¢ is the number of occupied boxes
when b balls are thrown into li boxes (of equal size).

This assumption is justified simply by the fact that the initial

activity is chosen at random.

Clearly
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The loop is saturated if c = zi. Our next two theorems give some

conditions under which saturation will not occur.
(4.6.19) Theorem If n = N(log N)® (a < 1) balls are thrown into N

bokes of equal size, then the number of empty boxes, S, has mean:

E[S] = Ne™® [1 + 0(§g] (4.6.20)

and variance

Proof. See David and Barton, [12], page 243.

(4.6.21) Cor.
7/8 . ‘s .
If n <N (log N) , then with probability * 1 (as N > ®) there will

be at least one empty box.

(4.6.22) Cor.
/8

If b <% (log 21)7 , then with probability - 1 (as Zi + «)the loop

will not be saturated. (This depends on the truth of Assumption (4.6.18).)

(4.6.23) Theorem*

Provided n i_dz = e and

(log n)5/4 >k (4.6.24)
then with probability > 1 (as n, * ®), the loop will not be saturated if

n, i_fl(n,k) and

2> (n) = %

(4.6.25
(1og n,) 1716

Proof. From Theorem (4.6.6), with probability =+ 1 (as n = )

*This theorem depends on Assumption (4.6.18).




we have

2(log n)3/4ni

/n

b<a j_f4(ni,n) =

91

(4.6.26)

Since n; < n it follows that (4.6.26) is true with probability - 1

n. > ).
(as i )

show that (4.6.25) implies

2(log n)3/4ni

/n

to show that

/8

7
< Zi (log Zi)

Then from Cor. (4.6.22) and (4.6.26) it is sufficient to

3/4 _
2(1og n) "y </H; l-1og n. - l—-log log n, 7/8
—_ 1716 2 i 16 i
/n (log ni)
i.e., that
o15/8 /o 1 /a
(log ni)l/16 (log ni)s/4 1 -1 log log ni7/8 ~ (log n)3/4
T
log n,
which is true, since n. < n, as soon as
15/8 1/16 1 log log n 7/8
2 < (log ni) 1 - = i
log n,
i.e., as soon as
log log n,
416 < log n, 1 - 7 -1
: i 4 log n,
which is true when
e32
n, >e (4.6.27)
. : 1
B i o L
ecause of the condition n, 3_fl(n,k) X Tog K
and (4.6.24), (4.6.27) is satisfied if
/o 5 eS2

e

5(log n)s/slog log n
4
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and this is certainly true if

e33
n>e (4.6.28)

QED

(4.6.29) Theorem. There exists* a constant o, such that for n > o

3 3
/4

and k < (log n)5 the following is true:
Let n denote the event that all components of size n. i_fl contain initial
activity a4 satisfying

2(log n)3/4ni
/n

Let us consider a typical component of size n.

1 j_ai :_f4(n,ni) = (4.6.30)

> f., of loop length %i

1

and effective loop length e . Then (as usual over the probability space

7)
3
E7[ei|ni and event n] > [—¢ 255

(4.6.31)

Proof. We assume that the event n occurs. Then with probability

> 1 (as n. > *) the loop is not saturated if
2
i 2 Fp(ny)

(by Theorem (4.6.23)).

i.e., there exists an oy such that

P[loop is not saturated if Zi > f ‘z_%-for n., >a (4.6.32)

2] i 4

Let o be the final activity in the loop. If Qi and c; have no common
factor, then by lemma (4.6.2), e, = Qi. Now the probability that two
numbers chosen at random have no common factor is asymptotically s

2
Il
(Hardy and Wright, [30], page 269). In fact 2. and ¢, are not chosen at

@ g is specified in (4.6.40) below.
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random, but again we will invoke the randomness of the inial state and

make the

(4.6.33) Assumption

Zi and s have no common factor with probability‘g—.

H2
From (4.6.32), (4.6.33),
n.
i
E[e.|n. and event n] > :{: 2 s L P2, |n.]
i'tti - i 27 2 i'i
Cog, < f f
i 2
We have shown earlier (equation (4.4.5) that
mm - 2
Ple; = #ln; = ml = gu—5T
where -1
T
v o m
- Z n
T =0
From (4.6.34), (4.6.35), .
3 g ¥
E[eiin.l = m, and event n] > }: T
mvy o = f
2
The last sum is
m - f
2: 2 (m - r)mr ) - f2 + 1
T! " (m - f2)!
r=0
and by lemma A5 of Appendix 1,
M
\:V<—2-
From (4.6.37) - (4.6.39) and lemma A9,
m- £ +1
Ele.|n. = m, n] > 3a/2 | B 2
1 — 2 VI m-f = f
m- £)"7722 2

(4.6.

(4.6.

(4.6.

(4.6.

(4.6.

(4.6.

34)

35)

36)

37)

38)

39)
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The logarithm of expression inside the parentheses is

f
1 1 2
- - - = - - EA A S
(m f2 + 1) logm (m f2 + 2) log m {m f2 f 2,1og (1 - ) f2
£2 £
> l-log m - + 2
2 2m
1
= E-log m - R (say)
so that
3 2m -R
E[ellni m, nj > = = ¢
I
where
£2
2 2 1 1
R=—""—-—-= - by (4.6.25)
m 2m (log m) 1/8 2/5-(1og m)1/16
< ————l—T7§ <1 form>-e
(log m):

which completes the proof of (4.6.31), provided the following conditions
are satisfied

(a) n :_ dz (see Theorem (4.6.23))

(b) n. >e

(c) n. > o,

Let Gy = max (a4, e), then (b), (c) are satisfied if

1
n
£, (k) “\/K Tog k = %

But by assumption,
k < (log n)S/4

therefore we require
/n
5 5
z(log n)

7 - ©

8 (log log m) — ° (4.6.40)

n>aq
-2
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i [o ] = O [o ) o

i.e., for some 3 3 ( 25 5),
hz o QED

Remarks (4.5.41).

It is shown in section 4.4, Remark (4.4.18), that zi depends only on

n, . What we have done in the above theorem is to give a lower bound to

E [e.[n., nj
91XQ7 11 .

which depends only on n; . In fact, let ei* =1 if zi~< f

3
, €,% = = g,
2 hi H2 i

if li 3_f2, then
3|2y
E [e.|n., n] > E [e.*|n,, n] = == ==
QIXQ7 i1 Ql i i eH2 I
(4.6.42) From Theorems (4.6.5), (4.6.6), it follows that given € > o

there exists 96(6) such that (over the probability space 97)

Plevent n] > 1 - ¢ for n > a6(e).

(4.6.43) Theorem (4.6.29) depends on Assumptions (4.6.18) and (4.6.33).
(4.6.44) Theorem

There exists a constant % such that for

o 1
n > ag = max (as, a6(2)) (4.6.45)
then
- A 1 9/4 _ 5/4 '
E[LC] = E91XQ7[LC] > exp[-f(log n) u16(log n) log log n%.
Proof. E . [LC]
le97

= E91x97[LCM(el’e2"f"ek)]

where e, is the effective loop length of the ith

(4.6.46)

component .
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Now in section 4.5 we showed that

E, [LCM(X,, ..., X,)]

1
> 1 (4.6.47)
B, [X] X, .- X, ] W
where . Kk
1 %10%11 _ -
-1-1; = —T » oclo = 0.60, (111 = 0.052

and where the asterisk * indicates that this expectation is for Xi taken
from a uniform distribution. 1In (4.6.46) the e; do not have a uniform
distribution, nor are they independent. However, we argue that the con-
straint between them is ''weak' and that the distribution of any one éi
is "flat'", ‘i.e., smooth but nonuniform. Now it is the small primes
2,3,5,... that dominate the calculation of the LCM as we saw in:section

4.5, and Figure (4.6.3) shows.that

FIG 4.6.3
A P{X) PX)
— l -
123456 .. X 123456 .. 4

UNIFORM DISTRIBUTION "FLAT" DISTRIBUTION
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P [2 divides X] ¥ P [2 divides X]

uniform "flat'
distribution distribution

In other words changing from a uniform distribution to a smooth nonuniform
distribution does not increase the probability that X is even (or divisible
by 3, etc.).

Therefore in (4.6.46) we make the

(4.6.48) Assumption

In (4.6.46),
Efe,.e,..... e, |
172 k
E[LCM(el,ez,...,ek)] > u
Therefore (4.6.46) becomes
K e
E[LC] > Fa,xa, 100 (4.6.49)
Mk
rHei ]
‘> E - In| Pn] where n is defined in Theorem (4.6.29)
Q,x0 U
1777 | k
e, *
> E —1nq P[n] where e. is defined in Remark (4.6.41)
Q.x0Q U i
1771 Tk
5/4
1 *
(log n) T E[eilni’n]
= 2: P[n,,n,,...,n ] - P(n)
1’72 k u
k=1 NysNy,. 50y k
(4.6.50)
such that
n o+ ... +m o=

by Remark (4.6.41), where P[nl,...,nk] is the probability that a type 1A

network has k components of sizes n My and is given in section 3.2.

17

We decrease (4.6.50) by restricting ourselves to the type 1A networks

whose component sizes n,,n ,, are all distinct, for which case from

IREEEEUN

(3.2.9),
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k Cn
1
P[n,,...,n J = L (4.6.51)
1 nn n,! .
v =]
r -1 s
_ (r - D!r
where Cr = z —
s =0
By (3.2.7) and lemma A9 of Appendix 1,
1
my 1 [, ), 1=
m! -m IIm
2me
kl
> form > 1
=~  -m
me
_ 1 2 1., _
where 1<1 =3 (1 - ﬁ) (1 - T_Z') = 0.0926
Therefore ’
P[n., ,n | = /21n . if the n, are distinct, (4.6.52)
1 k k k i
K1 n
T m;
i=1:"
Erom (4 6.50), (4 6.52), and Theorem (4.6.29),
(log n)s/4 . 1
E[LC] = Z P(n)Y20n Z K V.
K k n.>f1 273
k=1 ukl n.,N.,...Nn )
1°7°2 k
k
* - N ﬂ ‘ ni
i=1
where K2 = —32-1 /_2__, = 0.088 < 1. (4.6.53)
ell 1
T &
(log n) / = ‘ . > f j
E[LC] = Z P(n) 2In ( ) i
Kk = 1 Ny, ... sy | T n,
such that i=1
l<n;<n,<...<n <n
Zni =n (4.6.54)
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Let

k
ok = }E: m (/'E;l// T ( n, )‘ (4.6.55)
n.>f .
j 1 i=1 ‘

where the summation extends over all k-tuples n,,n,, > My
such that
1 < n, < n, < n < n
and
o+ ...+ n = | : (4.6.56)

and where f, is given by (4.6.6).

We find a lower bound to 6 by finding the smallest term of (4.6.55).
Equivalently, it is desired to maximize

H (4.6.57)

i}
=
H
p—,
B
————————
|
S
=
H
—

n, <

subject to 1 j_ni <n and (4.6.56). It is clear that there are k

essentially distinct local maxima given by, for r =0, 1, ..., k -1,
n1= =nr=f1
Mg = -oe My = (n - rfl) / (k - 1)

giving rise to
Ho= £ [n-rf) / (k-0]15 T (4.6.58)

It is easily shown that if k > 10, then
H°> H, i=1,.’.,k"lo
Therefore

o(n,k) > Q(n,k) / ¥ He  (4.6.59)

where Q(n,k) is the number of partitions of n into éxactly k unequal parts. .
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From [58] we have for all n,k
k .
“v'(zl‘ 1

k-1

Qm,k) > 1
k!

Using Stirling's approximation it follows easily that
nk -1 1/5

Q(n,k) > for k < n (4.6.60)
2kl (k - 1!
' : 1/5
From (4.6.58) - (4.6.60), for 10 <k <n’7,
k k '
1 27t -2
8(n,k) =5n k (k1) , (4.6.61)

From (4.6.42), (4.6.47), (4.6.54), (4.6.55), (4.6.61), if n satisfies

(4.6.45) then

(log n)s/.4 -
E[LC] > }: g, n(k-l)/z alg K (2-k)/2 (k!)_2
k =10
= E: tk (say) (4.6.62)
k .
where A1y = V2 7 %0 /4 = 0.376 ...
Gz = Ogq k2/ k1 = 0.049 ...

Which is the greatest term of (4.6.62)?

We have tk+l /tk = g,

13 7T/ [ Ve k(k+1)¥? ] for k large (4.6.63)

> 1 when

10 < k < (log n)s/4
and so the last term of (4.6.62) is the greatest.

Using Lemma A9 and (4.6.45) the desired result follows immediately.

Q.E.D.
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Remark
This theorem depends on the approximations (4.5.9), (4.6.18), (4.6.33),
and (4.6.48).

- 4.7 LOWER BOUND TO EXPECTED VALUE OF LCM OF LOOP LENGTHS.

In the previous section we gave a lower bound to the expected value of
the cycle time of type 1A networks under random excitation. However
the maximum cycle time for a particular network is obtained when just
one node in each component is activated. Then saturated and inactive
loops are avoided, and for each loop
effective loop length e, = loop length 1i (4.7.1)
and therefore
IC = LCM (e, ez; s e) = LM (1,000, 1)
(4.7.2)

In this section we give a lower bound to the expectation of the latter

quantity.
We have k

ES[ LCM (14, ..., 1k)] > ES[ Vi T 11]

i=1
where vy = 1/ Hyo with a justification similar to that given for- (4.6.49),
k .
> E: vy E: Pln,, ..., 0] _TT E(1,/ n,) (4.7.3)
X i=1

where the second summation is oqver all partitions of n into k distinct

parts. From (4.4.8),
E (13/ m) > Ky /oy (4.7.4)

where K, = 11 2/ 12V 7w = 0.732 ...
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and from (4.6.52),

. -k
P[nl, cees nk] > ¥ 21n k2 / TTni (4.7.5)
if the n. are distinct, where
Kz = 11/24 - 11 / (12 V2 n ) = 0.0926 .

From (4.7.3) - (4.7.5),

. .
E[LCM] > j{: V2 mn Vi k3 ¢n,k (4.7.6)
) k
where K3 = K1 / K2 and

¢n,k = j{: (?132 ..‘nk)'l/2 ,  (4.7.7)

the latter summation extending over all partitions of n into k distinct
parts. A lower bound to the smallest term of (4.7.7) is given by
n, = ...= no = n/k

and: therefore

o > Q (k) K/ a2 (4.7.8)
From (4.6.60), (4.5.69), (4.7.6), (4.7.8),
,1/5
EfLCM] >y x (4.7.9)
k=1
where
_ (k-1)/2 k ,(2-k)/2 -2
t, = cgn <4 k (kD)
cg=c/m/ /2 =076 ...
| ,
| ¢y = KSCZ = 0.41 ...

Now (4.7.9) has the same form as (4.6.62), and from (4.6.63) it follows

that the greatest term of (4.7.9) is located very close to

ko = nl/5 cg < 1/5
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=c 2/5 e—l/5 = 0.57 ...

where c5 4

and certainly

1/5 '
E[LCM] > tk° = exp[c7 n /5 %_log n - c6]
where
_ 1/6
Ce = log (2 e/ 7/ CS)
c_. = = 0.80 ...

" —5c5 log Cg /2 + Cg (2 + log ¢

so we have proved

4)

(4.7.12) Theorem. For n > 32, there exist constants c ., c, = 0.80 .

6’ ~7

such that

E[LCM] > exp[ ¢ nl/5 -1logn--c.],
7 5 6

subject to the validity of approximations (4.5.9) and (4.6.48).

4.8 UPPER BOUND TO EXPECTED VALUE OF CYCLE TIME

Suppose there are k components, of sizes nn, ...my, and containing
loops of lengths 11 12 ...1k respectively;
Wwhere >
k
j{: n, =mn, 1 5:ni < n for all i. (4.8.1)
i=1
Then E [1i/ni] < clv n, by equation  (4.4.8), where ¢, = 1.33 ...
(4.8.2)
so that
El[LC] 5_E3 [LCM (11, 12, vees 1k)] (4.8.3)
<Eg[1; 1, ... 4]
K k
SEBy[ey TT Vny ] (4.8.4)

i=1




104

NoW the maximum of-n1 n, ... My subject to the constraint (4.8.1) is
(n/k)k , when no=n, = ...=n = n/k. So (4.8.4) is
< By Loy
n
= Z s P Ikl (/1K) ¥/ 2 (4.8.5)
= : :

where P[k] = Prob. [Type 1A network has k components] is given by (3.3.1).

Now from (3.3.12), (3.3.17), (3.3.18), for n > 3,

E[k] < 1 logn + <, (4.8.7)
2 H
2 2 .
o [k] < (log” n) /4 + Cs log n (4.8.8)
where ¢, = 1.003 ..., c, = 3.471 ...

2 3

Therefore for any t > 0 and n > 100,

E[k] + to [k]<']l log n + c, +t (1_1og2 n + cslog n)l/2
2 4 }
f<_%~(1 + c4bt) log n + ¢,
where C, = exp (2 Cq / log 100) = 4,53 ...
< %L( 1+ y t + 2 c2) log n
so that, with A= 1 (1 + 2 Cy Ly t),

2

P[k< Alogm] > P[k<E[K] +t o[k] ]

by Chebyshev's inequality
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i.e. for any A >c, + 1 = 1.503, and n > 100, with at most

1
2 3

nn
4

- 15 exceptions, all type 1A networks with n nodes
4 (A -(c,*+)) -

22
have fewer than A log n components. Further we shall now prove
(4.8.9) Theorem. The expected,value'of the cycle time of all type 1A
networks with n nodes and fewer than A log n components is less than

exp [ %-A log2 n + A log n log cl]

for n > 100 and n/ (2 log n) > A > c, + 0.5

*

4
C 94 be the subspace of 94 consisting of all type 1A networks with less

Proof. Let 94 be the sample space defined in section 3.2, and let @

than A log n components. Then the theorem asserts that

E * [LC] < exp [ La log2 n + A log n log c.]
94 2 : : 1

From (4.8.5), A logn
E, I[LC] < zg: K @2, [
9

(4.8.10)

where
P, [kl = P [K]/P[g,]

4 Let

is the probability distribution of ‘@

_ k k/2,-k/2
bk = c1 n 3

It is easy to see that

k = Pk+1
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for k< %‘; so that if A <n/ (2 log n) it follows from (4.8.10) that

EQ* [LC] < exp [ %-A log2 n + A log n log ol
4

which proves the theorem. Q.E.D.

Remark

*

This upper bound over 94 is less than the lower bound over 94 obtained

in theorem (40.41), for large n. This implies that the networks in

*
Q - 94 5 i.e. those with > A log n components, must make a large

contribution to E [LC}. This remark is expanded in Chapter 2. The .

next two theorems give upper bounds to E [LC] over Q,, i.e. when this

4

contribution is included.

(4.8.11) Theorem. There exist constants A,B such that for n > B,

E[LC]<exp[cl/_’1'1'10gn/4+A/rT]
where c; is given by (4.8.2).

Proof. From (4.8.3), (4 8.5),
n

E [Cycle Time] < 2: o (%Jk/z P [k] where a= c
k=1

1

n T

(g:i) n™" j{: o nk/2 C(r,k) using (4.8.6)
r=1 k=1

= Z g:li n ¥ ' (x+7r) /T (x)

where x = o/ n , by (for instance) equation 6.1.22 of [2] and page 71

of [45],

2: a, (say)

T
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Now / a

a1 r = n-1) (x+71)/ nr

so the greatest term of (4.8.12) occurs when r is the nearest integer to

al/z n3/4

for n sufficiently large. Using Stirling's approximation A9, one finds
therefore that
log a. < %- oV n logn+AvVn

for some constant A and n > B. Theorem (4.8.11) follows.
Q.E.D.

In the next theorem we use a different method to obtain a better bound
than Theorem (4.8.11). (We give two upper bounds because neither agrees
with the present lower bound, so that this question is still open, and

the more methods of attack that are available the better.)

(4.8.13) Theorem. There exists a constant A such that for all positive n,

E [Cycle Time] < exp [ 2 V2n --% log n + log A]

Proof. Like the preceeding theorems, this is based on

Cycle Time < LCM < Product.

We have

E [Cycle Time] < E [ Product of cycle lengths]

= E: n! w/[(n - w! nW+1 all v.o.ooa ] {(4.8.15)

n
using (3.2.14), where the summation is over all n-tuples of integers
(al,...,ak) such that

1 say <n, for all i (4.8.16)

and n
1<ws= Z ia; <m, (4.8.17)

i=1
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E: }{:n!w / [(n - w)! nW+1]

over the same range of summation

n
_ }{: pw) n! w/ [(n - w) ! n""] (4.8.18)

w=1

where p(w) = number of partitions of w
Now ([29]) for some constant K, and n > 1,

p(n) < Kn'! exp [2 V/2n ] (4.8.19)

The desired result now follows from (4.8.18), (4.8.19) and Lemmas A5

and A9.
’ Q.E.D.

4.9 A THIRD METHOD FOR OBTAINING AN UPPER BOUND TO E [LC]

If a good upper bound to E [LCM (Xl""xk) ] were known, analogous to

E [ X, X X

g v k]

the lower bound obtained in Section 4.5, say

E [LCM (x; ...x)]

E [x1 X, ...xk] -k (4.9.1)

then the method of Section 4.6 would lead to an upper bound for E [LC],

as follows.

E [LC] = B, X0, [LCM (ep, -..se)] (4.9.2)
1

where e, = effective loop length of ith loop
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EQIXQ7 [LeM 1y, ...,1)]

where 1i is the length of the ith loop (with equality here if the initial

activity were chosen so that each component contains exactly one active
node) .

= EQl [LeM (1, -..,1)]

since the activity is no longer relevant
(4.9.3)
< By oy TT 14
with a justification similar to that of (4.6.49).

Now once the size n, of a component is given, the length li of the loop
in that component is a random variable depending oﬁly on n., and in fact

from equation (4.4.8),

' 1/2
E [11/ ni] < ¢y
(4.9.4)
where c is given by (4.8.2).
(4.9.3) becomes
. < | 1
m,
}: }: P[n1 Cee Ty, ...mk] Uy E[Pi/ni] i
k=1 i=1
(4.9.5)

where the second summation is over all partitions of n into exactly

k components, m, of size n., i=1, ..., kl’ so that
k1 kl
. m, =k, m.n. = n (4.9.6)
i i'i
i=1 i=1
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and where P [ nl"'nk m ...mk] is the probability that a type 1A

1

network has such a decomposition into components, which is given by

(3.2.9)
From (3.2.7), (3.2.9), (4.9.6), k1
1 S
== k
, 12n 1
P[n1 SeeTy My ...mk] <¥2m e " K ; ,R m
| =1 MMy
(4.9.8)
_1 1/12
where Kl =5 e
Using (4.9.4) and (4.9.8), (4.9.5) is
1 X
~—— Tomn Z " |
Lvzm e , u X2 %k (4.9.9)
k=1 ’ .
‘ - S\ : -1/2
where Qn,k = j{: (a1 a, ...ak) - (4.9.10)

the summation extending over all partitions of n into exactly k

components, and where K2 = ¢y Kl'

From (4.9.10) it is clear that @n k,has recurrence relation given by
» - :

n-k
®hkel T . o a-1/2, n> k+1 >2
n- a,k - -
a=1 : '
¢ - Y2 (4.9.11)




111

A trivial calculation shows that

® <TT- 2/n for n > 2 : (4.9.12)
E] .

(4.9.13) Theorem
For all n > k > 2,
-1/2

o . < Ak Bn

nx 2 (k-2)/2 (4.9.14)

[(k-2)1]
where A = (27"[')1/'2 el/6 , B=1/2 é“1/3

Proof. We use induction on k. For k = 2 the desired result follows
from (4.9.12).

Now let us assume (4.9.14) is true for some k > 2. Then we must

prove
(k-1)/2 :
Qn, kel :_uk+1 n for all n :_k+1 (4.9.15)
where u, = A B [(k-z)!]'l/2 ’ ' : (4.9.16)
Now
n -k

(k-2)/2 -1/2 ;
?n,k+1 < EE: uk(n - a)’ a 5. fro& (4.9.11) and (4.9.14)

a=1

ﬁ -k
x)(k-Z)/Z x—1/2 dx

= % (n -

0

which becomes, using the substitution x = n cos2 6 and the result that
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TT/2
sin” 6 do = TTn!/[Z2m+1 (m!)z] if n = 2m
o
= 2™ m)Zm if n=om+ 1
°, kel S 1 if n=1
‘ Tr . 1 ,
< \/5—- e3(n-1) if nodd, n> 3
— n ——
. .
< /T im e
T if n even
Therefore
[T 1/ |
Qn,k+1 Nz e for all n > 1 (4.9.18)

From (4.9.17), (4.9.18)

(k-1)/2
% k+1 S Yke1 D ,

QED

From Theorem (4.9.13) and (4.9.9) we then obtain

v n ‘
E[Lc) < f2TTn o}/ (120) Z u (kK B a B2 gy 712

k=1
which is as far as we can go without knowing Uy -
4.10 RESULTS OF COMPUTER SIMULATION

LBF, LC and LF were measured experimentally by simulating Type 1A

networks on an IBM 7090 computer. The results were generally incondusive,
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since only networks with 100 nodes or less were analized. The results
of one series of experiments, with initial activity equal to 30%, are

shown in Table 4.10.1 and Figure 4.10.1.

TABLE 4.10.1

MEANS OF LBF, LC, LF AS FUNCTIONS OF NETWORK SIZE

Type 1A networks, 30% initial activity

v » No. of
N LBF LC LF Samples
5 .78 1.95 2.73 , 60
10 2.43 2.37 4.80 : 130
15 3.49 2.70 6.19 180
20 4.20 4.49 8.69 190
25 5.26 3.82 9.11 160
30 5,94 4,64 10.58 110
35 6.55 5,84 12.28 . 190
40 7.56 6.61 14.18 : 267
45 8.30 6.42 " 14.72 : 90
50 8.84 6.94 15.78 © 196
55 8.90 8.40 17.31 42
60 9.67 6.21 15.88 75
65 ~10.85 } 9.90 20.75 40
70 10.48 6.86 17.34 29
75 " 11.44 : 10.28 21.71 108
80 12.66 9.44 22.10 41

100 14.08 11.16 25.24. 82
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CHAPTER 5

FURTHER PROPERTIES OF TYPE 1A NETWORKS

5.1 INTRODUCTION

This chapter contains further discussion of Type 1A networks, arranged

as follows.

5.2 A brief note on the history of the study of type 1A networks.

5.3 The average height of a node in a tree is ~ E%n

5.4 Further results on structure of Type 1A networks.
5.5 The expected number of nodes with k incoming branches.

5.6 The relation between type 1A and type 4 networks. .

5.7 A description of the problem for type 1A networks in terms of

semi-groups, and applications to Markov chains, cryptanalysis, etc.
5.2 A NOTE ON THE HISTORY OF THE STUDY OF TYPE 1A NETWORKS
Previous work on Type 1A networks is as: follows:

N. Metropolis and S. Ulam in 1953 ([41]) raised the question of the
expected number of components of a.type 1A network. This was answered by

M.D.. Kruskal in 1954 ([37]).

Kruskal's .paper was followed by the contributions of H. Rubin and
R, Sitgreaves in 1954 [52], J.E. Folkert in 1955 [17], L. Katz in 1955 [36],
B. Harrisin 1960 [31], and J. Riordan in 1962 [47].

115 .
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5.3 THE AVERAGE HEIGHT OF A NODE IN A TREE IS &‘E%a

This section is an extension of section 4.2, and uses the same nota-

tion.Vn 1 is the average height of a node in an average rooted tree with
3

n + 1 nodes, and, we feel, is of independent interest. As far as type 1A
networks are concerned this gives us a lower bound to the average time the

activity will take to die out in particular tree of a type 1A network.

Let~Ln n be the number of rooted labelled trees with n nodes and
3

weight m, with generating function
(o]

L(x,y) = Z Ln 0 xnym (5.3.1)

n!

n,m = o
(5.3.2) Theorem+ L satisfies the functional equation

L(x,y) = x exp L(xy,y) (5.3.3)
Proof. This is an application of Polya's theorem, ([45], p. 133):

Consider the family F_ of rooted trees with n branches at the root
node. The store consists of the rooted trees which may be connected to

these branches, and has the generating function

(o]

n_n+m

X
L(xy,y) = ZE: - =L

n,m = 0
since the n nodes all have their distance from the root increased by ome.

The nodes are labelled, so no tree may be used more than once; so the
generating functions.Sz,Sz,.,,,Sn in the statement of Polya's theorem,
(p. 131 of [45]) are,all 0.

Any permutation of the n branches at the root leaves the same tree, so

the cycle index is that of the symmetric group S, i.e.,

C.(tyty,vest)

n!

+Theorem (5.3.2) and the recurrence relation (5.3.13) are due to
John Riordan, to whom I am very grateful.
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Then by Polya's theorem, since the root node contributes one node, the

generating function for Fn is

X C_(L(xy,y), 0, ..., 0)

n!

and for all rooted trees is

1}

L(x,y) =

z X Cn(L(XY,}’), O: R 0)

x exp L{(xy,y) by (6.1.1)
which proves (5.3.3). ‘

~ Let Ln(y) be the generating function for rooted labelled trees with n

nodes and weight j, so that

L (y) j{: | (5.3.4)

and ©
n
L(x,y) = ZE: = L, (5.3.5)
Therefore -
¢ , _
Ln (1) = j{: j Lnj = q, (say) (5.3.6)
j=1
o _q
W, = "n+i =dp 4+ 1 o (5.3.7)
n,1l
n+ 1 n+ 1

By the preceding theorem (5.3.2}),

= XYL (y)
2 .3
2—_ -~ Ln(y X exp Z (5.3.8)
n=290
Differentiate W.r.t. y:

. Ll(y) = - 1 L_(y) N xnyn"l L (y) +
Z n }: FY Z w-nr "
n=.1

:S|><
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s n_n _f
§ Xy L (y) . (5.3.9)
+ - - n .
n! .
n =20
Now

Ln(l) = ZE: Lnj - by theorem (A.2.1) of Appendix 2
j=0 (5.3.10)

§ Setting y = 1 in (5.3.9), equating coefficients of xn, and using
| (5.3.7), (5.3.10), we obtain
|

n-1

9y E: rr71(n-r)n_r_1' N £r—1
nl ~ rT-r-D7 Zm Uy (5:3.11)

r =1 r=1

Now the first term on the right-hand side

N N
i -1%1"_ Z (s+1)°! (m-s-V"° , putting s=r-1, Nen-2
! / s
S ='O .
1 n-2 .
= Th-2)1 n , by (A10.1) of Appendix 1. (5.3.12)
From (5.3.7), (5.3.11), (5.3.12), LA satisfies the recurrence relation
L . :
o,1 =0 n g |
- n-1 r-1- .
Wn,l = n(n+1) + X i T Wn—r, 1, n>1. (5.3.13)
r=1

which is an unpublished result of John Riordan.

(5.3.13) may be solved as follows. Let woo=W a = n(n+1)n_l,'

n,l-’
n-1
o =n , so that

0 n-1. 0
W =a + Z . o _x Wk’ o< n?/Z. (5.3.14)
k =1




Let o
=

W(LI) = Z Wnn—' (5
n=1
ad n ki n-1

N u. _ n(n+1) n

a(u) = Z Y _'Z nt u (5
n=0 n=0 '
- o - g

where R(u) is the generating function for rooted labelled trees,

satisfies the functional equation (see [45], p. 128)

R(u) = u exp R(u), .R(0) = 0 N (5
Therefore
R = ul Rew) + Rew R (u)
f o R(u .
R = g —xa@) (5
(5.3.14) becomes
W(u) = a(u) + A(u) W)
_ _a(u)
W(u) - ].—A(u) (5'
Now from (5.3.16)
) - 1™ 1 . D™ n
a(u) “'Z rcrin ) Z DT U
n=0 n=0
_of R(u)
= R (u) - = (5.
From (5.3.17), (5.3:19)-(5.3.21),
W =’ @) : (5.

6

= u o+ 8ul + 78u° + 944u’ + 13800u° + 237432 u® + ... (5.

21 31 41 51 6l

which has been verified by direct calculation of-Wn.
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.3.15)

.3.16)

.3.17)

-and

.3.18) -

.3.19)

3.20)

3.21)

3.22)

3.23)
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From (5.3.22),

- 2
Z u— ” Wl (5.3.24)
nl n! e :
Equating coefficients,
) 1 T n-r
n+l _ Z (r+1)~ (n-r+1) (5.3.25)
(n+1) 1~ ! (n-1)! 3.
r=0
n
= 1— Z r+l) (n- r+1)n T
n!
n
= z (n+2) by (A10.4) of Appendix 1
Therefore
n-1
n’ n-1 \g
= - 1 — - i .
Wn—l (n-1)! Z =T ~ 1 (5.3.2%)
: v=0
From lemmas A5, A9, for n =2
v 1
W < VaT nt"1/2 12n %(_1- L, P (5.3.27)
18v2In /|
Now for x =0,
e* < 1 + xe
—_ L —_
12n 1 12n 1 2
e <1+12ne _<_1+12ne s n> 2
1 | == :
W <’% 7 [ 1e o= ) 1= | 0z 2 (5.5.28)
18v2In

from which it follows that

1
W <,/£ 27 [1-A) s 2, © (5.3.29)
n-1 2 l/l’-l- - )
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11 e1/24 )
where AzlS/iﬁ_lZﬁ M e 0 : (5.3.30)
Also
W > 20 o2 %(1- 1 )-nn'l
vV2Ia
1
- éf T - g-n“‘l (5.3.31)

Finally from (5.3.29), (5.3.31),

(i nwl
Wn-l N /E-‘n 2 asn->w

Also from (4.2.5),

n,l Wn
Vv = 2 = (5.3.32)

LI D™ ™

so that from (5.3.29), (5.3.32),

I (n+1) I
Va,1 <J 7T A,/z
n ’H i
< > + /1 - 3 - A z- for n >
(n+1) 3 In 3
Vn,1 >\I“‘7’“" "2 >\1 7 ~ 7. fornzl

\

1 (5.3.33)

and

So we have proved these three theorems:

(5.3.34) Theorem Wn 1_has the following properties:

1

Wy 1 =0

wn,l

i
=)
f—'\_
=
+
—
| —
=
I
Rl
+
oo}
R
'
ot
=
=
|v
—
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1
<ngnn_5 - Enn—l , formn >1,

where A is given by (5.3.30).

The generating function of Wn

17
W(U) = Z Wn,l -i—!- 3
n=1
is given by
¢ 2
W) =u® (W)™

(5.3.35) Theorenm Vn has the following properties:

1
In
Vn,l V72
IIn 3 IIn
_2..-5-><Vn,1< -—-2— —B, n:‘_>__l

where B > 0 is given by (5.3.33).

(5.3.36) Theorem

Let G be the family of all rooted tregs with n labelled nodes, and.
let

Dn = average average (distance'ofva node from the root

geG nodes of g

Then D =~ /EE- and
n 2
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[In 3 [In._ 5 /L
2" <D<y F-AJz.n21

where A is given by (5.3.30)

Proof.. Dn ls'JUSt'Vn<1,1°

et

5.4 FURTHER RESULTS ON STRUCTURE OF TYPE 1A :NETWORKS

Let a type 1A network be chosen at random and.let a .node.B be
chosen at -random.in this network. In the notation of section 3.2 this:

is the probability space anx 96 with .o = 1.

Define s; the number of descendants of B, .to be.one more than the

number of distinet nodes that can\bevreached from B..

Define p, .the number of -ancestors of B, to be.one more than the

number of -distinct nodes from which (8 can be reached.
Let & be the length of the:100p‘in.fh@_component-containing B.

Then it is known - that . (see [52]), over the probability space QI X 96’

P [s~= k] = Lﬂllll_§
(n-k) In"
n
. o (n-1) 1 .
Pr=jl=) I
| k; (n-X) In

The asymptotic density»of-\--i is; for large n,

n

2
xe X /2 for x > 0
0 for x.< 0

and of L. is.
/n

/2I(1 - ¢(y)) for.y > 0
0 for y <.0
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where ¢ is defined by (4.1.13).

Also 1 n-i
n! 397 (m-j)"7

= (m-j)! j! "

Plp = j] (5.4.1)

Harris ([31]) and Riordan ([47]) collected and rederived these
results, and extended them for type 4 networks, type 5A networks, and

type 4 networks with loops of length 1 excluded.

Number of Trees in a Type 1A Network

If a type 1A network contains W loop nodes, not -all of them may

have trees leading into them. Let Bn be the numbér of elements of

sk
Tn with exactly k trees; and let
: . |
B = E: k_ B = expected numbeér of trees.
n P n,k- .
k=1

Bn is of interest to us because it gives some information about the way

in which activity enters ‘the loops. If

Bn << expected number of loop hodes,

then it might be expected that activity enters the loops at a small
number of nodes, and therefore that the distribution of activity in the
loops would be irregular, some loops not being activated at all. On
the other hand, if

Bn ~ A. expected number of loop nodes, A constant, -

then it would be expected that there are 'plenty" of nodes at which the.
activity enters the loops. The latter statement agrees with our intui-

tive picture, and in fact we prove
(5.4.2) Theorem

IIn 1
By vz -9

Proof. Let a node 8 be chosen as at the beginning of this section, over

the sample space 2 x Q. It is clear (although we do not give a proof)

that the following properties of B are independent:
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(I) B is a loop node

(II) there is at least one node, not a loop node, that is directly

_connected to 8.

Then the expected number of trees, Bn =

n P[B has properties I and II]

i

n P[B has property I] P[8 has property II] BRI ¢3¢ o5

Now P[B has property I} ~ /E%r by lemma (3.4.4)
and

P[B8 has property II] = 1 - P[p = 1] (in the above- motation) =~ ©
Nl - % (by (5.4.1))

From (5.4.3),

JIIn 1. . . '
By v 7 (1 - e) QED

Remark

The number of trees is also of interest to mathematical sociologists:
(See [10], p. 73 and [57].) '

5.5 NUMBER OF NODES WITH k INCOMING BRANCHES

Another parameter related to type 1A networks is Cn X = the expected

number of nodes with k incoming branches in a type 1A network of n nodes.

In particular C is the expected number of end points.

n,0
Let there be n nodes labelled 1,2,...,n -and let us consider the family

of type 1A networks with these nodes.

Let Xi =1 if the ith node has k incoming branches

0 if not
n\ 1, k 1 n-k
Then P[X. = 1] = (—) (1->
i n n
v k
e—l
N ET; for fixed k, as n - », since

this is just the Poisson approximation to the binomial distribution.
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Also

n
Sn K = Xi = number of nodes with k_incoming branches, so that
i=1
Conclusion
] = -1
_ N ne . o
Cn,k = E[Sn’k]_— E: E[X.] ~ T for fixed k, as n » «,

5.6 RELATION BETWEEN TYPE 1A NETWORKS .AND TYPE 4 (PERMUTATION) NETWORKS

Let Sn be the family of all n! type 4 networks with n nodes, or
equivalently all n! permutations of n objects. Equation (3.2.11)
suggests that there is a rough correspondence between Tn and Sn’ and
that we may expect properties concérning the decomposition of permuta-
tions into cycles to be roughly the same as properties concerning the
decomposition of type 1A networks into components. This is useful because
of the work of Erdos and Turan [15] on the structure of permutations, a

summary of which is given in Chapter 6.

Distribution of Loop Sizes

The distribution of loop sizes is obviously important for the calcu-
lation of cycle times. An explicit formula for the probability of
occurrence of a, cycles of length 1, 2, of length 2,..., a of length m,
is given in equation (3.2.14), but this does not tell us very much.
However, in section 4.4 it is shown that the size k of a loop, considered
~as a random variable, depends only on the size n of the component contain-

ing it, and in fact

E[k|n] .q,\[-zn_—’;n ' (5.6.1)

For type 4 networks it is shown in [15] (see Chapter 6) that the
component sizes are roughly uniformly distributed (on a logarithmic scale}.
- By the argument of the preceding paragraph this suggests that components of
type 1A networks are also roughly uniformly distributed, and therefore by
(5.6.1) so are the loop sizes. This would seem to be a promising line for

future research.
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5.7 DESCRIPTION OF THE PROBLEM FOR TYPE 1A NETWORKS IN TERMS OF
SEMI-GROUPS

Erdos and Turan call their basic paper ([15]) on the structure of
random permutations "On Some Problems of a Statistical Group Theory'.

Type 1A networks do not form a group, but they do form a semi-group.

Let Tn be the set of all type 1A networks of n nodes. Th can be

identified with the set of all mappings of the set
[1,2,...,n]

into itself. We define a multiplication of elements s,t eTn to be the
composition s o t of the corresponding mappings. The following properties

are then satisfied:
(1) s,t ¢ T 2 sote T,
(2) so(tou =(sot)ou for all s,t,u e T

(3) there exists an identity element e ¢ Tn (the identity mapping)
such that

eos=so0oe=3s5 , forall s e Tn'

Thus (Tn, o) is a semi-group with unit element (see.e.g., [39]). For
convenience we will call it Tno
Some additional properties of T are:

(4) the number of elements of Tn is n"

(5) if Bn is the group of all permutations of n objects, then

Bn CZ.Tn
(6) Tn is non-commutative

ie., 3s, te T 3 sotFtos

(7 Tn does not have the property of right cancellation
i.e., 3s,t,uce Tn 3

sou=tou ands %:t

(8) Tn does not have the property of left cancellation
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(9) Inverses do not always exist in Tn

i.e., Is ¢ Tn such that
s ot %=e, V’t £ Tn

In fact if s ¢ Tn is such that

s() = s L xFy

then s does not-have an inverse.

Our problem for type 1A networks may be stated in terms of semi-groups

as follows:

Let X be a subset of [1,2,...,n]. Pick an element s at random from
the semi-group Tn° What is the behavior of ‘
s"(X)

as m <+ «?
This work could therefore be subtitled "On Some Problems of a Statistical

Semi-Group Theory'. .

Two Examples where Semi-groups Tn occur in Science

Example 1. Taken from Ljapin ([39]): '"Let us consider the following very
common situation in physiecs. Let  be a physical system of states for which
it is known that the system can occur in one of the states n ,n_,...,n_,...,
the totality of which we will denote by Q. The systen1Cl,is gow subjec%ed to
certain actions. Each of these actions S is defined by stating that if the
system is in the state ng, then as a result of the action in question the

system will pass to-a new state n (which may of course coincide with the
original state n, if the given state is stable with respect to this action).
..". Clearly if 2 has n elements, then the family of all actions S is just

T .
n

Examgle 2.

Let M = (5,1,0,8,)A) be a finite automaton, where S is the finite non-

empty set of states,
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I is the set of inputs
0 is the set of outputs

§: S X I-=S is the next state function

A: S X I-=0 is the output function

Suppose there are n stateéi Then for any input symbol i, s§(.,1)
defines a mapping from S into S, and the set of all such mappings is

just Tn°

Application to Directed Graphs

Directed graphs with weights (labels, numbers) attached to the
branches are of widespread occurencé (see [5], [26]). Examples are
given in Table 5.7.1. Provided such a directed weighted graph has the
property that at least one branch leaves every node, we may condense
this graph to a type 1A network by omitting all branches leaving each
node except that with the highest weight.*

In other words, the condensed graph is a subgraph which is a type
1A network in which any node i is followed by that node to which it is

closest, or which is mést likelybto,follow it.

As an example, Figure 5.7.1 shows the condensation of the graph of a

random walk with absorbing barriers ([16] Volume I, p. 310) with six states.

Application to Cryptanalysis

For additional examples, it is amusing to construct the condensed
graphs corresponding to the last example in the above table. Thus, the
nodes of the graph correspond to the letters of the alphabet, and node i
is connected to node j if the 'letter i is most likely to be followed by
the letter j. In Figures (5.7.2-3) this is done for 2 languages. The data
is taken from [18], [54], [62], and [63]. For each language, two graphs

*Provided such a branch exists. If there are two branches with the
same, highest, weight leaving a node, there are two possible condensations.




Field of
Application

Communication
systems

Social
structure

Automata
theory

Transmission
of disease, .
spread of

rumours, etc..

Cryptanalysis

Table 5.7.1. Examples of Directed Graphs
Nodes Branch from Node i
Represent to Node j Represents

Towns Communication channels
(telephone; road,
railway, etc.)
People Political or
social contact:
Football Team i played team j
teams
People Friendship
States of. Possibility of
an automata - transition from
or Markov state i to state j

chain, etc.’

People Contact
Letters of Letter j has been
alphabet observed to

follow letter i
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The Weight of this
Branch Represents

Traffic (calls per
hour, cars per
hour, etc.)

Degree of political
or soci:al equality

Equality of ability
Strength of

friendship

Probability of"
this transition

Measure of contact

Frequency of.
this event
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Fig. 5.7.1

Example of Condensing a Graph

p+q=1;p<q

Original directed weighted graph

N

0]

N

Q

N

®

AN

@]
Q

8

Condensed graph (Type 1A network)k
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are obtained, depending on whether or not spaces between words are omitted.
In the former case the data is taken from text in which the words have

been run together,* while in the latter case the ''space' counts as a 27th

letter.

An obvious application is that given a sufficiently long message coded
by a simple substitution cipher, one could in this way determine the original

language.

Thus, our thesis problem may be stated in terms of weighted directed:
~graphs with at least one branch coming out of every node. For instance,
in terms of Markov chains: given a Markov chain, and an arbitrary subset
X of its states. Assuming that at each time instant a state goes to the
most likely next state, what is the behavior of the '"descendents' of the

set X?

*Which seems to be common practice in cryptanalysis.



133

Without Spaces

With Spaces
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Without Spaces

Fig. 5.7.3. Italian

(J, K, W, X, Y, Not Used)

With Spaces




CHAPTER 6

TYPE 4 NETWORKS

The family of type 4 networks with n nodes is by definition the family
of all graphs of the n! permutations of n objects, and will be denoted by

Sn' In 6.1 and 6.2 we collect known properties of.Sn, including the work
of Erdos and Turan ([15]), and 6.3 give an upper bound ay to the average
order of an element of Sn (= average value of LCM of cycle lengths: of a

type 4 network).
6.1 KNOWN PROPERTIES OF Sn

One of the n! permutations is chosen.at random, each having the proba-
bility of %T of being chosen. We study the probable structure of this

permutation.

Let it have a; cycles of length 1, a, of length 2,..., and a, of length

n, so that

n
}: Ta_ = n;
T
r=1
then the permutation is said to be of type (al, Bps wens an),

The probability that a permutation has this type is easily seen to be
([451, p. 67D

. 1
P(al, Bys eees an) = o 7 5
17 12° 1 n "o
a; a, a,
Incidentally we verify by Lemma A3 that
ZP(al, Bys oees an) = 1.
A generating function for P is
a ‘a a
: 1 2 n
= i .
C_(t), Tty +oes t) Zn. Pla, .o, a) t, ' t, 0 ...t

136
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al a

)y al |z
- all az! e an! 1 2

2 n

::’l:jrf

which satisfies the functional equation ([45], p. 68)
G (t,, t,, ..., t) W 2 3
Z n 1' 2 n = exp(ut, + T2+ P34 ) (6.1.1)
n L2 =5

n=o0
from which most of the following results have been deduced.

(Cn(tl, t2, coes tn) is the cycle indicator of the symmetric group

and was used earlier in the proof of Theorem (5.3.2).)

The total number of cycles, (of any size) is

n
r =1

N and for n » o,

E(m) ~ log n
) v
o (m) ~ log n
(see [45] p. 72, [22], [23], [24], [16] Vol. I, p. 242, and [31]).
Also

Pln = k] = LA

where c(n,k) is defined in section 3.3, and

n-> V2 log n
([22]).

: B 2
lim Pla < 221081 g v=.l—f et at
/ﬁ o

Also, having selected a permutation, let a node x be chosen at random,
and let & be the length of the cycle containing x. Then it is shown in
[31] that
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The probability that there are k cycles of length r is ([23])

Pla_ = k] =
T ki r

The most likely type is ([23])

ST

a, =»a3 =...=a 5= an = 0,

that is, with one cycle of length one, and one cycle of length n - 1.

The number of permutations without cycles of length 1 is investigated
in [45] p. 72, and [31].

The ordering of the objects within the cycles is investigated in
[45] p. 74, and [59].

The number of odd and even permutations is considered in [45] p. 78.

The density function for the length of the longest cycle is obtained

in [23], and this has been considerably generalized in [56].

6.2 KNOWN PROPERTIES OF THE ORDER OF AN ELEMENT OF»Sn; RESULTS OF ERDOS
AND TURAN

Let T be a typical element of Sn’ and let its cycles have lengths

%1, 22, cees Zk. Then the order of T is defined to be

LOM[& 1, Ros ooes &4

Landau ([38]) showed that if

G(n) = max [order ()]

e Sn A (6.2.1)
~ then _
log G(n) ~ vn log n as n -+ o, * (6.2.2)
vn log n

*Therefore, e is an asymptotic upper -bound to the cycle time
LC and to LE, for both type 1A and type 4 networks.
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On the other hand, II's of order as low as n are common; all II's consisting

of a single cycle are of order n, and there are

n- D! = %-n! | (6.2.3)

of them, which is relatively large. In spite of the large difference
between (6.2.2) and (6.2.3), Erdos and Turan ([45]) prove

(6.2.4) Theorem

For any positive €, 6 and n > no(s, 8)
(%—— €) logzn C%
e < order (II) < e

+ €) 1og2n

holds, apart from at most

§ n!

exceptional II's.

What can be said about the expected value of the order of NI? Turan

([60]) has announced c /e

E[order (N)] < e1Og n (6.2.5)

but this has not yet been published. In the next section we prove the

weaker result

62/5 1
Elorder (M)] < —————p—r (1 + 0(=—) ) (6.2.6)
2vell n3/4 Jﬁ)

In the course of proving (6.2.4), Erdos and Turan derive the foilowing

result about Sn'

Theorem Apart from o(n!) I's the remaining ones have these properties

(wl(n), wz(n) and w(n) are any functions which tend monotonically to &o

with n, e.g., Ylog log n)

(6.2.7) Let k(II) be the number of different cycle lengths of I, then
|k(1) - log n| < w(n)vlog n

(6.2.8) No two cycles of length :_wl(n) in I have the same length
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(6.2.9) At most wz(n) cycles in T can have the same length i_wl(n)

(6.2.10) The different cycle - lengths in T are "equi-distributed" in

the following sense: Define N by

1/3
- k@3,
For each II € Sn we can determine uniquely the nonnegative integers
! ! ’
Sl’ 52’ ey SN
such that, if Ny, Moy eees nk(H) are the different cycle lengths,
1/N 2/N
1 <n, <n, < <ny s <n < 1Ny < ... <Ny /7 <n <
-1 2 s, — s, o+ 1 S S5 -
1 1 2
< ny / <.ovoo <Ny ’ s =1 _<_n,
sp *t syt 1 ] * sy, * e + sy k
N N
if there is no nj e.g., in nl/ < X f_nz/ we have S; = 0, etc.
{ I
Of course S = S (1) and
v v
1 ' !
S1 + S2 + ook Sy = k

Let HS be the subset of Sn whose II's satisfy the inequality

max S -kt =<

| 4/5
p=1, ..., N ‘(N‘)

and let ]HS‘ be the number of its H's. Then

lim 1 |u.| =1

e

n-~>o nl 3‘

(6.2.11) For any cycle length n o, the contribution to the LCM of the

prime factors not exceeding log6n cannot exceed exp((log log n) )
6.3 UPPER BOUND TO THE AVERAGE ORDER OF AN ELEMENT OF Sn

(6.3.1) Theorem

The expected value of the order of an element I of Sn is bounded above

~]-In (6.3.2), I = 3.14159... . It will always be clear from the context.
which II is meant.
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62/5 1
a =——-:_———-— 1 + O — (6.3.2)
T o/el ns/4 ( (E)
Proof
E[order of I] = E: T . 1 T . [l.c.m. of all i,
[ki] 1 1 kll co.n kn! 1 <i <n, such that

ki > 0]

where the summation extends over all n-tuples of nonnegative integers
(kl’ k2, e kn) such that
k1 + 2k2 + ... F nkn =n (6.3.3)

Now certainly the lcm is less than or equal to the product of the cycle

lengths, i.e., [l.c.m. of all i, 1 < i < n, such that ki > 0]

k k k
<1 1 2 2 ... N n
Therefore
. k k k
Elorder of T < }: k L k .1 1 2 2 ..n ™
1 n
| 1
[ki] 1 kl' ... 1 kn'
i} Z ]
1 T T
[ki] kl' k2. v kn. (6.3.4)

= a (say)

Now it is easy to see from (6.3.3) and (6.3.4) that a is the coefficient

of tn in

1+t +t+ t3 + .. 1+t s t4 + t6 + .. 1+t Ei + t9 oo
ir 27 3T ir 2t 27 T 27T 37
2n 3n ,
R R T (6.3.5)
17 27 31

or, what is the same thing, the coefficient of t" in
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- s
—

+
r—llﬁ
+
Nld
+
m'rf
+

i
up-is
I
bt

So it remains to find the power series expansion of
£ 1}‘t ‘
1-t_1 e o § n :
e =3 = a t . (6.3.6)

From (6.3.5) it is easy to get a, = a1 =1

The expansion follows from a result of Maclntyre and ‘Wilson, ([40]):

Let X 0 {

If |arg v| < I,then

C

1/4 y/2 2/yn
XS 1+ o(1 ) (6.3.7)

=l = 6
PV ERIL n

Setting y = 1, and substituting ¥6.3.7) into (6.3.6) gives (6.3.2).



CHAPTER 7

TYPE ‘5A NETWORKS

Type 5A networks are defined in section 1.5, and as the following
theorems will show, have properties very similar to type.lA networks.
We first prove various structure theorems and then show that most of the
bounds for E[LBF] and E[LC] obtained in Part II for type 1A networks

with n nodes apply also for type 5A networks with n nodes, for n large.
(7.1) Theorem (c.f. equation (4.1.1))

If the initial state contains exactly omne active node, then
(n - D!

k
(n-X)! (n-1)

P[LC = j, LF = k] = (7.2)

Proof. Similar to that for (4.1.1).
(7.3) Theorem (c.f. Theorem (4:4.16))
E[number of loop nodes in a componentlcomponent has n nodes]v ’Z%

Proof. Let Cn X be the number of possible different components with n
2 .

nodes and k loop nodes. Then as in 4.4 we obtain

C 0if k=1

n,k

I}

C N R R TA (7.4)

n,k

The theorem then follows from (7.4) in the same way that theorem (4.4.16j

follows from (4.4.1). In particular we obtain

L
1
C c L a7 (7.5)
n n,k 2 ’
K = 2 :

QED

e

(7.6) Theorem (c.f. equation (3.2.9))

P[m1 components of size 1, ..., m components of size n]




144

where Cn is given by (7.5).
Proof. See [31].

(7.7) Theorem (c.f. equation (3.2.14))

Pla, loops of length 2, ..., a_loops of length m
2 P - m P g
n-w-1 1

n! wn
- n 0 a
(n-w)! (n-1) TT ali i
i
i=2.
nl w 1
en wr 1(n w)! m ai
: i
T a ! i
i=2

m
where w = Z
i=2

Prbof. Similar to that for (3.2.14).
(7.8) Theorem (c.f. equations (3.3.5) and (3.3.12)

Let En be the expected number of components.of a type SA network with

n.nodes. Then

’nf_l,
5 (n-s)! s (n- 1)

and, for n i_2,

% log n + A E-En <2 logmn+B

where A %-(1og 2+ v)

2 log 2 + 2y + se”t -1

v
i

Y = Euler's constant
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Proof.

We use Kruskal's method [37]. Let G be a type 5A network with n
nodes labelled 1, 2, ..., n. Let a function f be defined in terms of G

as follows: 1if node i is connected to node j in G, define j = f(i).

Since each node is connected to exactly one other node, f is well-defined.
We may determine the components of G systematically in the following way.

Starting with an arbitrary node Xl’ let X, = f(Xl). Then by definition
of a type 5A network, Xz:# Xl. If f(Xz) Xl we choose X3 = f(XZ); if
£(X4) # X,, and £(X,) F X, we choose X,

= f(XS)’ and so on until we come
to the first node Xj whose image f(Xj) is one of the j nodes already

over, beginning with an arbitrary node Xj+1

nodes chosen so far. The sequence starting with Xj+1 is continued until

we reach the first node whose image is already either in the sequence or

different from the j distinct

in the first partial component. If this image is in the sequence then

we form the second partial component out of the sequence elements and

start over. If it is in the first partial component, however, then we
enlarge the first partial component by the addition of the sequence elements,
and again start over. In either case, another arbitrary starting node

generates a sequence which grows either until it runs into itself, thereby

forming a new partial component, or else until it runs into an already
existant partial component, in which case it is added on to that partial
component. This process is continued until the nodes are exhausted. The

components of G are then just the partial components at the end.

Let pm(s) be the probability that the current growing sequence has
exactly & elements just after the mth node Xm has been chosen. It is

easy to see that the initial conditions are

defined. We then call these nodes the first partial component, and start
%

i mﬂ)=1,mﬁ)=0,2isin

|

P,(2) = 1, p,y(s) =0, s F2
and
m - 2
Pl) = =——7, 3<m<mn
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and that the recurrence relation is
pm_l(s—l), 2<m<mn, 2<s<n (7.9)
Clearly also for 2 <m <n

pm-l(n) =0

Now let us define, for 1 < i < n, the random variables

Xi = 1 if a new partial component is formed during the

step of going to the image of Xi

= 0 if not
Also let
A -
Pi = P[Xi = 1]
so that
En 4 expected number of components
n
i=
n n
- X EX, = Z P, (7.10)
i=1 i=1
Clearly |
P =0,m=1
m
and
n
_ S = 1
Pm = z = 1 pmcs) (7.11)
s =2
and
n
E: pm(s) =1, l<m<n

From (7.9) and (7.11) for 2 <m < n
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n
s -1 n-m+1 ‘
Pn = E: n -1 n -1 Pn - 1(S - D
s =2

n n
_n-m+1 r -1 ’ 1
- n-1 E: n -1 pm-l(r) ¥ E: n-1 pm—l(r)
r=1 r=1
n-m+ 1 1
T n-1 [ P17 a1 ] : (7.12)

We will next solve this recurrence relation by means of generating

functions. 1

Let g(y) = Z L y" ' (7.13)

m=1-

To agree with (7.12) define P_ = 0. Then multiplying (7.12) by y

+ 1
and summing over m from 2 to n + 1 gives after some simplification, -

n
n-1-mn n-1- +
g ) + 5 gy = s

y m-1A-9°

This has integrating factor
n—'].;

= vy y "

and the solution is

n-1 y n-1

. n
g(y) = e y yn,Jf o u u—n n - 1_5 nu + ué du, -
(n - 1)(k - u

the constant of integration being determined by the .condition that g(y) be

regular at y = 0. Then the expected number of :components

I

E

L = gl from (7.10), (7.13)

1 -0

n
-n n.-.1-nu+u
j’ e u- . > du
0 , (n-1DIA-uw
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Let -z ={(n.- 1)(1 - %—), then this becomes

e_Z z I 1
En ‘=f dz~T (z-1 (1 * = _-1) +-1
0 z
z n-1
Expanding (1 + —1 ) by the binomial theorem, -
and using -
f ™ 7% dz = m!
0 .
webobtain
n
‘ i
E = Z 0! — (7.14)
, Ty m-s)s (-1

Now the corresponding formula for type 1A networks is given by (3.3.5)

above; and is -

n.
* 9 . !
E_ = Z LLLAE » (7.15)
n- (n--s)! sn®
s =.l ‘. .
Also in. 3.3 .it is shown.that -
* 1 | -1
0 <E -3(log2n+y) <e (7.16)
and we will use-this~to,obtain‘bounds‘oann.
From (7.14),.(7.15) we have.
| | n
* on n * ‘T ‘ n N
Eno 3 -1 n-1= En =By (n - 1-) "m-1 (7'17)_

n

Now- ([28]) - (1 - hl—)‘ decreases -for n>.1, ,as,n > @, so for n > 2,

from (7.16),.(7.17),

l(log 2n +y) - 2 <E. < 2(log 2n +'y) .-}.;n:;,4e_:1 - 1.
2= : -n-=""" C

QED
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The following theorems now follow from the above results in exactly
the same way that the corresponding theorems for type 1A networks were

proved in Part II.
(7.18) Theorem (c.f. Theorem (4.1.9))

If the initial state contains exactly one active node,

E[LBF] =_/E%s + 0(1) (7.19)

02[LBF] = n (%-_ %} + 0(vn) (7.20)

and for arbitrary initial activity (7.19) is a lower bound on E[LBF]
(7.21) Theorem (c.f. equation (4.2.18))
For arbitrary initial activity, -

E[LBF] < u 1,1

where U is defined in (4.2.6).

(7.22) Theorem (c.f. Theorem (4.6.44))

There exist constants a o,, such that if the initial state is formed

8’ 716
by choosing /E(log n)3/4 active nodes (with replacement), then

E[LC] > exp %{log n)g/4 - a16(1og n)s/4 log log n

for n > g (This depends on the approximations (4.5.9), (4.6.18), (4.6.33)

and (4.6.48).)
(7.23) Theorem (c.f. Theorem (4.7.12))

There exists a constant 17 such that

1/5
- 0. log n]

for n > 32. (This depends on approximations (4.5.9) and (4.6.48).)

E[LCR of loop lengths] > exp {0.80 n

(7.24) Theorem (c.f. Theorem (4.8.9))

For n > 100 and any A such that
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n

m'> A > 1.6,

the expected value of the cycle time of all networks with n nodes and
fewer than A log n components is less than

exp [ %-logzn + A log cl'iog ﬁ]
where ¢, = 1.33 is given by (4.8.2).
(7.25) Theorem (c.f. Theorem (4.8.13))

There exists a constant A such that for n =1,

1
E[LC] <_e2/§ﬁi_'§ log n'+ log A - A eZJZ;

/n




CHAPTER 8
MBIRTHDAY MODEL" FOR FINDING LC AND LF*
The name is derived from the well-known problem (see-[16] Vol. I,

p. 31): given p people in a room; what is the probability that two of them:
will have the same birthday? '

In the simplest birthday mode11for;networks-with n nodes the first state

is given, the second and later states are chosen at random, independently

and with replacement, from the Zn'possible states.

Let p=2". Them for 0 <i <p-1, 1<j<p, L<i+j<p,
PLBF = i, LC = j, LF= i + j] = (=1 -2 - (p-(G+j- 1)
- p!
= T 341 N
PEIT 2 p - (149!
k - 1.
P[LF = k] = E: P[LBF = i, LC = k - i, LF =K]
i=0
kp!
® Tk+ 1
p (p-k)!
K K (k-1) K
-.:5 exp - 2p +0;—§-
for k = o(p? ) = 0 (2273 by Lemma (A2)

*This idea is due to Mr. Mike Stitelman.

TBecause this is the probability thHat the first i + j state%hchosen
are all different, and that the next state chosen is the (1 + 1) ..
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-1
2 T
k™ p! . _ pb _ 22 po
E[LF] = Z T e Z (- 5K
k=1 P P r =
~ /Eg = %- 27/2 by Lemma A7 (8.1)
_ .
3
oz[bLF] . kKpt I

N 2n(2 - %D by Lemma A8

The main trouble here of course is the assumption that the states
are chosen out of the 2" possible states-each time. As a result E[LF]
is far too high, in fact we show in section 6.2 that for type 1A and

type 4 networks
vn log n

max LF < Ae

which is smaller than (8.1) for large n.



APPENDIX 1. LEMMAS FREQUENTLY USED

Lemma Al

The number of m-trees with p labelled points is

p -m-
HE

The number of m-trees with p labelled points, for which the m root

nodes are specified in advance, is

m pp-m-l

Proof: see [32], Appendix

n

Lemma A2
Let ‘
@n (p) = n!/[(n-p)! np]
For p=o@”% , o () = exp[-p(p-1)/2n + 0(p>/mH]

0(n3/4) > ¢ (p)

For p n

exp[-p(p-1)/2n - p(p-1) (2p-1)/6n° + 0(p*/n%)]

The proofs are elementary. These results are stated, without proof,

in [14].

Lemma A3. Cauchy's Identity

the summation extending over all non-negative n-tuples (al, a ..,an) for

27
which



Proof: see [45] page 69.

Lemma A4

l::
=t

° L_ 25 oLy
I B
' V2T 3400 6oagn? nd

0.1328 0.00738

n

n-1
S =0

=¢" |0.5 - -
NG n
Proof. Follows from
n-1
: S n n
h _ & _u@ n_
s! 2 n n!
S =0
where
6 ~ 1 N 4 _ 8 .
n 3 135n 2835n2

as n > (see [11], p. 230, ex. 18),

and

n! V27T /2 en |y L 12 + ...

Lemma A5. For n > 1,

§

7]

e" 1 > ¢ 11 e"
- 1 - < !<—f 1..——-—<—-—2—
V2TTa - 18Varmn |
Proof. It is known from [11] that e above satifies
o1 1
31% 17
and the result follows from lemma A4.

Lemma A6




Lemma A7
n-1
T
2 n
E (n-1)" 4 =ny
T =0

Proof. Expand (n - r)2 as

(n - r)2 = r(r - 1) + v(1 - 2n) + n2.
Lemma A8
n-1
3 nf 2nn+1
(n-1)" o7 = -+ (n-1)!
T =0

= ¢" /%nS/Z -%+ %—TT—I--T;—+O'(1)

Proof. Use

(- 1)° = ~(r), + 30 - (@), - (3n° - 3+l + n°

where

(r)m =7(r - )(r - 2)...(r. - m+l)

and lemmas A4, A6, A7.

Lemma A9 Stirling's Approximation For x =1

1
. X + —
- /277- Xx—1/2 e X < T(x) <_,/277- xx-1/2 o 12x

Proof. See [16], Vol 1, p. 52.

Lemma Al0 (Formulae of Abel, Jensen, Holder and Cauchy)

n

n\. n
}Z: (v) (x + va)v—l iy - va)™V = (x ; y)

vV =0

(A10.1)
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n
" v n-v-1 _ (x + y)n .
z ( \)) (x + va) (y - va) =~y "ha (A10.2)
v =0
n
n n-1
Z (\)) (x + \)a)\)_l (y - \)a,)n_\)-1 o (x+y - na) (x + y)
v=o0 x(y - na) (A10.3)
n n
bV Y
Z (n) x +va)’ (v - va)"™Y = nt Z (x }’3” a (A10.4)
v !
vV = 0 vV =0

Proof. See Salie [55], and Abel [1].




APPENDIX 2. DEFINITIONS AND RESULTS FROM GRAPH THEORY

A directed graph G(N,E,I) consists of a set N whose elements

are called nodes or vertices; a set E whose elements are called edges

or branches; and a mapping

I: E » NxN
which associates with each edge e ¢ E an ordered pair of not necessarily
distinct nodes (a,b) called the endpoints of.e, thus

I(e) = (a,b) (1
The edge e is then said to be directed from its originating node a to
its terminating‘node b; and nodes a, b are said to be incident with e.

For example, see Fig. (A.2.1).

FIG. A. 2.1 BXAMPLF OF A DIRECTED GRAPH

2

W
(90

K

Graph G(N,E,I) with N = [a,b,c], E = [1,2,3,4,5], I{1) = {(a,b),

I(2) = I{(3) = (b,c), I(4) = (c,b), i(5) = (c,c).
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The undirected graph G'(N, E, I') corresponding to the directed

graph G (N, E, I) is obtained by removing the "arrows"' from G(N, E, I);
or formally by replacing the phrase ”ordered pair'" by "unordered pair"
in the above definition.

Example. The unordered graph corresponding to Fig. (A.2.1) is shown

in Fig. (A.2.2).

FIG. A. 2 2 EXAMPLE OF AN UNDiRECTED GRAPH

In the remainder of this appendix Qe shall only be concerned with
undirected graphs (which we. usually abbreviate to graph). |
The degree of a node is the number of edges ha&ing the node as an
endpoint.
| A path in a graph G(N, E, I) is a sequence

a X5

Cp5eees X 95 @ (2)

1, xl; az’
with a e N, X;e E for all i, satisfying

(i) a,, a,,...,a are distinct, and
1 2 n-1

(ii) I(Xi) = (ai, ai+1) for 1 <i <n-1.

It will sometimes be convenient to represent the path (2) just by the
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sequence of edges

X1 XgseeesX 1

A conﬁected graph has the property that there exists a path apseeesdy
between any pair of nodes.

A loop is a path (2) whose first and last nodes coincide.

A subgraph H(N', E', I) of a graph consists of a subset E' of the
edges E together with a subset N' of the nodes N, such that the

endpoints of E' are contained in N'.

A connected component is a maximally connected subgraph.

If G has n nodes, e edges and p connected components, then
the rank of G =n - p, and the nullity of G=e-n+ o
A graph G 1is finite if the sets: N and E are finite.

A weighted graph is a graph G (N, E, I) together with a function W

on E (which associates a weight, for example an electric current, with
each edge).

An undirected graph is complete if there is one edge between every
pair of nodes.

A tree is a connected subgraph containing no loops.

An m-tree is a subgraph with m connected components and containing
no loops. (Thus a l-tree is the same as a tree). A rooted tree is a tree
in which one particular node called the root is distinguished. A rooted
m-tree is an m-tree in which m particular nodes calléd the roots, one

in component, are distinguished. Theorem (A.2.1) (See [45] p. 128.)

In a complete graph with n nodes 1, 2,..., n , the number of trees
with n nodes is nn—2; the number of rooted trees with n nodes and
with node 1 as the root is nn—2, and the number of rooted trees with n

. o . n-1
nodes and an unspecified root node is n= .



Remark. Labelled versus Unlabelled Graphs

| Since our networks are made up of physical neurons we are concerned
throughout this work with graphs with labelled (as opposed to unlabelled)
nodes. The difference’is best illustrated by an example. Consider rooted
trees with 3 nodes. There are two such unlabelied trees, shown in

Fig. (A.2.3).

FIG. A, 2.3 UNLABELLED ROOTED TREES WITH 3 NCDES

but 9 labelled trees, since (i) can be labelled in 3 ways and (ii) in

6 ways. The average height of the unlabelled trees is
1
5—(1.3 + 1.2) = 3/2

but for the labelled trees it is

(1.3 + 6.2)/9 = 5/3

For further information, see for example [42] or [45] Ch. 6.



ApPENDIX III. LIST OF SYMBOLS

SYMBOL MEANING PAGE
C Usually the number of Type 1A Networks 62
n . ,
with n nodes and 1 component
c(n,m) Signless Stirling number of ISt kind 45
dist (x) 55
El’EZ’ e Expectation over 91, 92, v 45
graph A<5 -
height(x) ' : 56
k Usually the number of components in a
Type 1A network ' ' 45
LBF Transient time ‘ ' 20
LC Cycle time 20
LCM Least common multiple : 39
LF = LC + LBF 20
1w Probability that a Type 1A network has
w loop nodes o 50
m-tree : A-7
n Usually the number of nodes in a Type 1A
network 29
T, Family of all Type 1A networks with n nodes 29
tree A-7
U 56
n,m
v 56
n,m
W 56
n,m
Y ‘ 56
n,m .

¥ Euler's constant 46
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