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ITERATED EXPONENTIA
Bv JEKUTHIEL GINSBURG

1. Introduction. Inrece

¢

the coeflicients of the expansion of e* ~! as a power series. The intro
duction to the second of the two papers c')ntams a surmary of the sur-
prisingly meager results obtained bv earlier writers,

In this note some of the results obtumv d in these papers

and the field of study is enlarged to include the coelficients of functio ar
like |
oz et 1
e’ , e- ;
E,
which have been treated by E. T. Bell? and 4
log {1 + log (I 4+ x)], log {1 -+ log[1 + log(l + x)]| i
L
etc., which do not seem to have been considered before. The result
are believed to be new.
2. DNotation and Pundam“*ral Relationships. We shall denotet E.
€.(x) the nth iterate of ¢°, that is,
i
el(x) = '-er Ci("".;\' = C’Z) L‘\'\:) T € :r ete. “’1
ne
We shall have then se
pr
a(0) =1, e(0) =¢ &(0) = ¢, el0) = e, ete. ou
Since every coefficient in the Taylor evpansion of e,{x) contain
e,(0) as a facter we may write
e.(x) = ¢,(0) 4 €,(0) Z A k_’ = ¢,(0)-E, (%)
of
' E. T. Bell, “Expouential Polynomials,” Adnnals of Malhemasics, v. 33, 1934, p. 255 o Tt
This article will be referred to as Bell 1. B
1 G. T. Williarus, ““Numbers Generated by the Function e®®~ 1" Am. AL Moniily, v 32

1945, p. 325-327. .
*E. T. Bell, “The iternted Exponential Integers,” dnnals of Matehmatics, v. 39, 10-
p. 539-557. This article will be referred to az Bell I1.

340

apers E. T. Bell'and G. T. William::
discussed some of the alcfebrcuc and number-theoretic nroperties ¢

are e: \Lr‘naL i
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JEKUTHIEL GINSBURG 341
where E,(x) = ¢,(x):eo(x) = " 4,, l’eif. Thus
k=1 -
El(x) = ¢":e" = ¢
Ey(x) = €:(x):e(0) = e :p = ger—1 (2)
Ey(x) = e3(x):e5(0) = ectliet = Lot 1, etc.

The following relationship can be easily verified:

Eni(x) = &50-1 = B g1 @
E,i(x) =1+ log E,(x). (4)

Formula (4) allows us to interpret the meaning of E,(x) for n = 0,
and for negative values of . Starting with Ey(x) = ¢”~1 we have

Efx) =1+ log Ex(x) = 1 4 (¢ — 1) = ¢=

Eo(x) 1+ log Ei(x) = 1 4 &

Eoi®) = 1+ log Fofx) = 1 + 1og (1 + ) :
Eo(x) =14 log E_y(x) = 1 + log [1 4 log (1 + )] (5)

Q. T

E_(x) =1+ log E_(x) = 1 + log 1 4+ .. 4 log (1 + «x)]

the operation of taking the logarithm being repeated # tiimes.

3. Stirling Numbers. Most useful in the study of iterated expo-
gential functions are the so-calied Stirling Numbers of the first and
second kind. A Stirling Number, #,, of the first kind is the sum of the

products of the numbers 1,2,3 ... n, taken as factors £ at a time with-
out repetition. Thus

"3y = 1-2+1-3+2-3=2—|—3+6= 11
4, =1.2 + 1-3+2.4+ 2.3 + 24434 =35
A Stirling Number, 7, of the second kind is the sum of the products
of the numbers 1,2 ... »n taken £ at 5 time, repetitions being allowed.
Thus
2=1241-24+22=7 ,3_ 124 1-342:341249224 32 = o3
r‘l=1-2+1-3+1-4-{—2-3—!—2-4—{-3-4—{—12+22+32+42 = 65.

-



342 ITERATED EXPONENTIALS

For the sake of economy, and perhaps greater clarity, the accepted
symbols A% for Stirling Numbers of the first kind and B} for the secong
kind are replaced in this paper by n, and ., respectively.

Particularly important in this discussion are the Stirling Numbers of
the second kind, given by Stirling as the coefficients of the formulas
expressing x” in terms of factorials: '

X o= x
¥ =x(x — 1) +x = x@ 4+«

x% = x(e - D{x — 2) + 3x(x — 1) + x = x® + 3x® + 20 | (§)
xt=x(x — 1)(x — 2)(x — 3) + 6x(x — D(x — 2) +

Ta(x — 1) + x = 29 + 6x® + Ta® 4 x|
In general v = x( 4 j(n — 1)xC=b 4 | 3x@ 4 9p i
where x( = x(x — 1)(x — 2) ... (x — n + 1).

Frequent use will be made of the following theorems and formulas:

log" (1 4+ x)  x* xntlo qn 2
@ Tt a T T T et D
xn+3 _
e ) P ¢y
o 0!
(ez _ l)rz B n r:l_ B X'L—H— .
(b) oy ;!+17Zn—} I V(”L_‘}_‘))! T
xn+3 + 8)
Y + 3! ®
3 @ k
(¢) TN =Ax+ Ay> 4 435 4+ ., ev =1+ B, wher
21 31 Ly
) 4, -1 A4, —1 0|
Bi=dy B ‘ A, 4, } i By= |4, A, -1, in generdl
As 24, A, |
4, =1 0 .0
A, Ay -1 .0
As 24, . A, 0
0

Bk = A4 3A3 3A2
Ay (D40 84 -1
Ay ("'Tl)Ak—l (kil)Ak—z Vo4,
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Proof. Differentiating y = ¢¥, we get

dx

or

2 2
@=%&+Aﬂ+&;+”>=&+3w+&%+m

x? x2
o+3w+&54me+Aﬂ+m5+”)=

. 2
Bl+Bzx+Bs%+ . (9a)
which may be written symbolically
eBz.AeAz — Be/}h, or Ae(E‘i‘:{)z — Beﬂz,
leading to the recurrent formula*
Buy = A(B + A)n, (10)
Expanding (10) for # = 0,1,2,3 ... and replacing the exponents by
subscripts, we obtain the equations
| B, = 4,
Bz = B1A1 + Az (10@)
B3 = _BgA_l + QBAQ + Ag, etc.

Solving the first # equations for the B’s, we obtain (9).
x? x3 ® x*

(d) log (1 + Bix + Bza -+ B;,5 -+ ) :Z‘Akie—’, where
. - 1 .

B, 1 0

- 0
B, B, 1 .. 0
B; B, 2B, 0
A, = (—1p0r| - SR (11)
Bk—l -Blc—2 (%2)31:—3 . (kIQ)Bl 1

B, B (i)Bis . (}) B, (") B,
Pyoof. Differentiating we get (9a), (10) and the series of equations

(10a), the solution of which for the 4’s leads to (11_).

Theorems @ and b are known. The same may probably be said
about ¢ and d.

4 CL. Bell I, equation 4, 1.
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 STIRLING NUMBERS OF THE FIRST KIND

2 =1 5y = 225 7s = 13068 9 = 269325
2, =3 © 5y = 274 Tr = 5040 9 = 723680
% =2 55 = 120 9 = 1172700
8 = 1 9 = 1026576

3 =1 6o = 1 8 = 36 9 = 362880
3, =6 6, = 21 8 = 516
3 =6 6; = 735 8, = 22449 10, = 35

6s = 1624 8 = 67284 10 = 1320
4y = 1 65 = 1764 8 = 118124 10, = 18150
4 = 10 65 = 720 8 = 109584 105 = 157773
4, = 35 & = 40320 105 = 902053
43 = 30 70 =1 106 = 3-11()930
4y = 24 7= 28 9% =1 10; = 8109500

7y = 322 9, = 45 10s = 12753576
50 = 1 75 = 1960 9, = 870 10, = 10628640
5 = 15 75 = 6769 9 = 6450 10, = 3628800
5s = 85 75 = 13132 9 = 63273

STIRLING NUMBERS OF THE SECOND KIND

02 =1 3 = 0330 0 = 6931 oS =1
2 =3 3 = 28501 5 = 42325 8 =36
2 =7 93 = 86526 63 = 246730 & = 730
2 =15 75 = 1370400 8 = 11880
2 =31 od = 1 S = 159027
82 = 03 4 = 10 0z 5
2 = 253 4 = 350 20 = 9 = 45
2 = 511 @ = 1701 6 = 2646 29 = 1155
02 = 1023 st = 7770 6 = 22827 9 = 29275
102 = 2047 o = 34105 0 = 17087

4= 145750 6 =1320%2
3 =1 gt = 611501 07 = 1 110 = 55
13 =6 17 = 28 210 = 1705
23 = 25 5 =1 o7 = 462
3 = 966 5 = 1030 7 = 627396
3 = 3025 o2 1

4. Expansion of F,(x). Summary of known resulis. For the
computations of the coefficients of Ey(x) = ¢! Bell uses the explicit
formula :

A A2 Al A" '
= —_— _— —_— . n 12
B, (1!+2!+3!+...+n>o... (12)
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which, in view of the combinational properties of the A’s, may be
written as

Bn:[1+n—22+n—-33+n—44+--~+ '
2(n — 2) +aln — 1) + 1] . (13)
As far as the writer knows, this is the only explicit formula given in
the literature for the computation of the B's.
Formulas (13) and (8) yield the following:

. X", . . .
THEOREM. The coefficient of —in the expansion of ¢*~! is equal to
n!

the sum of the coefficients in Stirling’s factorial expansion of x”.
By the use of Cayley’s table of Stirling Nurabers Bell compiled the
following table of the first 20 B’s.

n B, n B, n B,

0 1 7 877 14 196899322
1 i 8 4140 15 1382958545
2 2 9 21147 16 10480142147
3 5 10 115975 17 82864859804
4 15 11 678570 18 682076506159
5 52 12 4213597 19 5832742203057
6 203 13 27644437 20 51724158235372

4

Williams computed the first 14 B's from the symbolic recurrence
formula
B..1 = (1+ B)" o (14)
which will be shown to be a special case, forz = 2, of a general recur-
rence formula for E,(x).

H. W. Becker,® in the solution of a problem proposed by D. H.
Browne, uses an algorithm based on (14) to find :

By = 4 638 590 332 229 999 353
By = 846 749 014 311 809 332 450 147
By = 286 600 203 019 560 266 563 340 498 270

One of the most significant propositions in Willlams' paper is
Dobinski’s? ingenious definition of the B’s, namely,

B, =-%_ 15
e Z:o 7! (15)

from which he derives, among other things, the beautiful theorem
> @D~ B 4 by 16)

where the exponents of the B’s are to be taken as subscripts.
Am. M. Monthly, v. 48, 1941, p. 701-702.
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5. Extension of Above Results. Formulas (15)-(16), comp,
with Stirling’s formula (6) enable us to derive and prove the follo:
pPropositions in a less cumbersome way than would otherwise be .
sible. In all of these formulas the operation of multiplicatic
symbolic; that is, the ¢xponeats of the B’s are to be replaced by .
scripts.

Leyna 1. B, = (B + 2)n~2 4 (B + 1), (17
Proof. By (10) and (11)

| B
B, =y _/ -r
e‘::’r! e z r! !
By Stirling’s formula (6), 72 = r(r — 1) + 7. Hence
1 2 1 rre 1 rno2 1 rn2
B, =": @ 4 1y =iy P AN
ezr.’ ’ +e“‘ s e = (r—2)! ez(r——l)!
LS (r — 24 2)n-2 TS (r =14 1) _ _
- _— = =/ —~ _— 7 = (B 2)n1—2 B IR
822 =) +e; D (B+2)"24 (B + 1
LEMMA 2. B, = (B+3)"=2+ 3(B + 2)n-s + (B4 1)"=2 (174)
. 1.2 rn 1 rmns3 I rns
Proof. Asb B, =2yl 2 P= 2
roof s beiore ., ZO:” ; > o r EZ
1 yn—3 3 yr—3 1 yn—3
D+ Ly =ty 3 —_—
e+ 3 ) ezr—S)!TeZ(r—Q) e (r = 1)!
I (r=3 433 3 ( _ 9 i) B O R
e —_(7—3)! __*—eZ T

(r — 2)! e (r — 1)1
(B + 3)"—3 3(B + 2)n—3 4 (B + 1)
In a similar manner we get :

Bi= (B+4)~ 4 6(B + 3~ 4 708 1 2yt |
| (B+ 1)~ (17)
(B + 5)n_5 + IO(B + 4)"‘5 + 25(B + 3)71—5 + )

15(B + 2)"= + (B + 1)»s, (170)

All of these relationships are special cases of the following geric:
theorem: :

Ba= BB ™t ik )B A+ 1)sp 4 |
. w22(B + 2)" % L (B 4 1) (18

B;

I
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12 - :
- Proof. B, = —Zr—’ By Stirling’s formula
e r!
’,n 7n—k pr—k

=g

| I T S

rl r! r!

fn_k N 7"—k rn—k ;:7'-‘,‘:
k-1 T 4 40 A
(r — k)t 1k = )(r—k+1)!+ + 2(7—2)!+(r—1)!

Substituting in the expression for B, and applying (16) we obtain
the proposition.
For n = %, (18) becomes

By=1+4uk =1+ -2+ . +,..2+1 (18)

Hence (13) is a special case of (i8).
Puttingn = & + 1, we get

Beor=2+3 244 3+ ...+ ka(k—1) + (k4 1), (186)

an explicit formula giving the B next to the one obtained from (13).
FL*.racting (18b) from (18¢), we get

L+ 22+ 3 3+ . .4+ k=D -1 +k=
Bk+1 —Bk- (19)

This is one of a series of formulas obtained by putting, in (18),
n=kk+1,24+2 ,t+3F4+4 .. Thus

P22, 024+ 4 (B = D3k — 1) + 2* = Byry — 2B,
P42 024 .+ (k= 1)k — 1) + 25 = By — 3B.., +

B,
14 +.24‘k_22 + + (k - I)4l(k - 1) + k4 = Bk+4 had 4’—Bk+3 +
L}—BH—I '+ Bk

P2+ 4 (=10 (k~ 1)+ B = B,y — 5B, +
. " 10By2 + 5B — 2B,

P25, 024 .+ (B — 15 (b — 1) + k& = Byyg — 6B,ps +
20Bys + 15B,,, —12B,., — 9B..

6. Other Relationships. A more compact explicit formula for
tomputing B, is obtained from (1Sa) by substituting for the various
Stirling Numbers their values according to the well-known formula

§ Another proof of (18) is given by John Riordan in, “The Number of Impendances of an
* Terminal Network,”” Bell System Technical Journcl, v. 18, 1934, p. 312

C
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1=k k
ik = z@(k — 1" (20)

Simplifying the result we get

wig, = o+ (}) -2 +2(3) -3 +o (-9t
or

WB =% a (Z) (n — k)", (21)

k=0

where ap = 1, a1 = 0, a2 = 1, ax = Fary + (=D
For the convenience of computation a few of the o’s are listed:

ao=1,a1=0,a2=1,a3=2,a4=9,a5=44,a5=265,ay=185-}‘

a, will be easily recognized as the number of permutations of the
first 2 natural numbers in which no ore of the numbers 1, 2 ... ks
in its right place.?

Examples: 51By = 5 + <;>3 + 2(2)25 + 9@

6!Bs = 6° + <g>45 + 2(2)36 + 9(2)25 + 44(2).

Simplified forms of (21) can be derived from (182) by transposing
some of the terms 1, (¢ — 1) ... before substituting for the others
their values from (20). Thus, we have

(n—1)!{Bu—1)=(n—1)"+(”;1>(n—3)"+... =

Fﬁl—zak (n k— 1>(n —k—=1"

k=0

(n — 2) ![B,, —1 - M;PD] - }?M(n . 2)(n —2 — B~

T E. Netto, Lehrbuch der Combinatorik, 2nd edition, Leipzig-Berlin, 1927, p. 67. Aﬂ"‘f; ¥
recurrence given by Netto is an = (n — D{aa_1 + cn_2). ‘A formula equivalent to ="
was given by Ugo Broggi in Instituto Lombardo Rend., v. 61, 1933, p. 196-202.7 [
John Riordan in a letter to the editor.)

e ———
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7. B’s as Determinants.

Expanding (14) for n

solving the resulting equations, we get

_ 1 -1 0‘
et Hm-|d ]
! I
1 -1 0 0 0
1 1 -1 0 0
1 2 1 -1 0
.B,.,+1= 1 3 3 1 —1
1 n n n n
1 1 2 3 4
Another form is obtained by applying (9) to .
E2(x) = ol e:+ﬂ+a+... _
1 —1 1
: 1
C l+x+5 /1 1| T3|n
1 1
| 21
Hence
1 —1 0
1
Ii 1 -2
1 1
B,=| 3 Tl !
i i . —(n
1 1 1
n—1 n—2 n— 3!
. x2  x? x?
Smcex-}—§+3—'+, =log(1 —}—le—l-BQ—,
Bix — Z 42 IBl 1 | B,
| B B |B
4+ =8 et
3 1!
B;
21

SO Oo O

(22)

(22a)
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we must have

n — 11| B, 1 0 .0
B B = (=1
1! 1! 1 ' 0
B B B . .0
21 21 1! (22b)
. . . .. 0
Bn Bn—l Bn—‘.! . . l
n—1 n—-1 n-=2 - B,

xZ

8. The General Case. Let E (x) = 1 + aXx + az gy + ... and

xZ

E,a(x) =1+ Bix + 62—2— + ... By (3), E.ialx) = eEnn—1 or

I
12
.

x2| a1x+mi’+m—,+...
1+B1x+625’r‘---—6 ' :

Differentiating both sides we get

) x? oox?
(1+61x+6~22—!+ ...)(a1+ st 4 an + )

Multiplying and collecting terms we obain a result which may be
expressed symibolically as

e Barr = olBF o)k : (23)

e

a formula yielding the means of computing the coefficients of any ¢x-
ponential E,{x) from those of the exponential of the immediately lowes
order. This formula is equivalent to (2.1) of Bell II.

For the sake of easier reference we shall adopt 4, B, C,... assyi
bols of the coefficients of E;(x), E(x), E4(x), etc. Thatis

E(x) =¢ =1+ ZA,C%, or, symbolically, e+
k=1 :

@ k
E®) =e" 7t =1+ 3] Z; or, symbolically, e?*.
k=1

JP————— L

i ————— T D S s e b
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Similarly Ej(x) = ec?, Ey(x) = e, Es(x) = ef-. We shall have
then by (23)
Bisrv = AB + A = (B + 1)% since 4, = 4, = A; = ... =1
Cir1 = B(C + E)':‘; Dy = C(D + C)k; Eiy = D(E + D)k- (230)
We have seen how Williams used the first of these formulas for the
computation of the first 14 B’s, that is, the coefficients of Ey(x). To

compute the C’s, or the coefficients of Ey(x), we can use the second for-
mula, namely

Civr = B(C + B

cbtaining the coefficients 1, 3,12, 60, 338, 2471, 19302, ..

The same method is used in computing the coefficients of Ey(x), Es(x),
and F4(x), given in the table below.

We shall now derive explicit formulas for the coefficients of £, ,(x) in
terms of those of E,(x).

By the secornd part of (3)

‘ En+l(x) = En(ez—l)

or

x3 (61_12
gt = Tl — 1)+ ,-12-_*2!__?_+”_

2
x
L+ Bix + 32; - B
Expanding and comparing coefficients we get
B = an, By = o + a, B3 = ar + 120 T a3, .

In general
ko
B: = Zk—;‘l"ai (24)
1=9

that is
kL k )
Cr = Zk—i?’Bu D, = >o—itCl
1

i=1

To develop formulas leading from E.i1(x) to E,(x) we observe that
Ea(x) = Eny [log(1 + x)], or

X

| 4+ qx - ag‘)—‘-)r—i‘l... =1—{—Bllog(1+x)—}—2£2’log3(1+x) + .=

0 3
14 8x + (6 — ﬂl>f—,+ (8 — 2.8, + 226x>%+...

o coppumec (159 |
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Hence

ag = Z('—)ikiﬁk——l

Gat =0
or
o= BB —-DE—-2 ... (B~ k) = B® (25)
ral
or, recalling that E.(x) = e*, E.(x) = €5, Iy(x) = ebs, ...
A, = B® (25a)
B, = C® (25b)
C, = D® (25¢)

It should be noted here that formula (25) is identical with (2.3) in
Bell's second paper, while the special case (25a) 1s equivalent fo

Theorem 9 i1 Williams's paper. In fact, since Ay = A, = ... = A
= 1, (23a) becomes Bw = 1, o0r
BB -1 ... (B—n—’rl) = 1.
Agaiu, since 4, = 42= ... = A, =1 A% =10, for all values of &
except £ = 1. Hence, if we put Eylx) = €= we shall have B = 1,
hy = hy = .. = hy = () so that Fq(x) = 1 + x.

9. Expansion of E_ (x). Using the symbolic notation

2

Ey(x) = e = 1+ alx+az’;“|+

i

1 4+ log (1 + x)

2
E_o(x =14 bx bt — 1 4 log 1+ log (1 + )]
2
2
E_s(x) = e =1+ clx—}—@%—l— =1+ 1log{l+

log [1 + log (1 + % 1.
We shall have ¢, = e, Hence g = Ml = 1, as = h(h — 1) =

by — b= —1, 8 = Wk — D — 9) = hy — 3h: + o = 2.
a, = h(h — 1) — N(h — 3) = 31 Similarly a; = tl, & = -5l
etc.
12 2?3k
- - 1 X - — —_— — ——
Hence E_(x) + x 5 + N iy

To calculate the coefficients of E_s(x) = 1+ log [1 4+ log (1 + sH=
¢z we again use formula (25) according to which b, = a® and we have

b1=a1=1,bg=a(2>=a(a——l):a.g—Ol:~2,
b3:a3~8@l+2a1=7,B4:(a——l)(a—Q)(a——B)—’-—

3 Bt
— el

- T > S
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In a similar way we find that the coefficients of E_3(x) = e are

G =1,6 = -3 ¢ = 15, ¢4 = — 103, ete.

e I

It is noteworthy that the Stirling Numbers of the first kind play in
the same part in descending fromi Z,(x) to Ll px as the Stirling Num-

bers of the second kind in ascending from E.(x) to E 4 . /67 2 \
The results of § 8 and 9 are embodied in the following table. t67 ‘ ‘.]‘
|/
- — N\
0 COEI:FALIENTT OF £,(x) G 7 lG?o D
x X x x x x
noox  x 3 3 a3 61 71 (€69 v
6 1 1 6 51 561 7356 120198 2201856 — QOT v/
5 1 1 5 35 315 3455 44590 660065 — 357 s,/
4 1 1 4 22 154 1304 12915 1-1Q115 — '307 v
3 1 1 3 12 66 358 2471 19302 — 2yy 7
2 1 1 2 5 15 52 203 877
11 ] i 1- ] 1 1 ;T - Vo v
0 1 1 0 0 0 0 0 0
-1 1 1 2! —31 4! —5! 61 _
-2 1 1 7 35 298 —183+  17382=—— 1S4
-3 1 1 -3 15 —105 Q(_]Z\ - 10472 137137 ¢
=4 1 1 -1 925 _o3; 2696° —37019 — o v/ %8/
—d 1 1 -5 40 — 440 6170 — 103315 ~0 38? / )
_ . — 57 —_". ()2 — 245755
6 1 1 6 27 741 12244 2 NOD\\&O@ L/’

Certain properties of these numoers will be discussed in a subsequegt
'zx'ticle. %‘7(’ s
Yesmva Corvece ' (67 } D
167¢ D

(675 D

I s e e —— e —— T ——— T T o oy ooy e«



