>1

on Staneliff

rts. Number the points of division from 1 to 30, the at the point corresponding to the number 15N to 10 31.

MA 19 1953

ON PRIME NUMBERS AND PERFECT NUMBERS*

By JACQUES TOUCHARD

1. Introduction

IN AN important paper³, Balth. van der Pol has shown that the function

$$\alpha(t) = 1 - 24 \sum_{1}^{\infty} \sigma_k e^{-kt}, \qquad (1)$$

where σ_k is the sum of the divisors of k, including 1 and k (cf. Hardy and Wright¹), satisfies the differential equation

$$2\frac{d^3\alpha}{dt^3} + 2\alpha \frac{d^2\alpha}{dt^2} - 3\left(\frac{d\alpha}{dt}\right)^2 = 0 \tag{2}$$

and, by substitution of (1) into (2) he shows that the numbers σ_k satisfy the recurrence relation

$$\frac{n^2(n-1)}{12} \sigma_n = \sum_{k=1}^{n-1} \left[5k(n-k) - n^2 \right] \sigma_k \sigma_{n-k}, \qquad n > 1.$$
 (3)

The first few instances of this, after simplification, are

$$\sigma_2 = 3\sigma_1^2$$

$$3\sigma_3 = 4\sigma_1\sigma_2$$

$$2\sigma_4 = -\sigma_1\sigma_3 + 2\sigma_2^2$$

$$5\sigma_5 = -6\sigma_1\sigma_4 + 6\sigma_2\sigma_3$$

Recently, van der Pol has found that relation (3) may also be written as

$$\frac{n^2(n-1)}{6}\sigma_n = \sum_{k=1}^{n-1} (3n^2 - 10k^2)\sigma_k\sigma_{n-k}.$$
 (4)

This is the first instance of a family of modifications of (3) which may be obtained as follows: put

$$S_p \equiv S_p(n-1) = \sum_{k=1}^{n-1} k^p \sigma_k \sigma_{n-k},$$
 (5)

and change k to n - k, so that

* Translated from the French manuscript by John Riordan.

$$S_p = n^p S_0 - p n^{p-1} S_1 + \left(\frac{p}{2}\right) n^{p-2} S_2 - \dots + (-1)^p S_p.$$

This entails a number of relations, the simplest of which are

$$2S_1 = nS_0$$

$$4S_3 = -n^3S_0 + 6nS_2.$$

By means of these (3) may be given various forms, of which we notice the following

$$n^{2}(n-1)\sigma_{n} - 18n^{2}S_{0} + 60S_{2} = 0$$
 (6)

$$n^{3}(n-1)\sigma_{n} - 48nS_{2} + 72S_{3} = 0. (7)$$

The first of these is in fact eq. (4) in different notation.

Noting that for prime numbers, p, $\sigma_p = 1 + p$ and for perfect numbers $\sigma_n = 2n$, eqs. (3), (6), and (7) lead to results which are examined below.

2. Prime Numbers

Writing

$$u_n = \sigma_n - 1 - n, \qquad u_1 = -1 \tag{8}$$

and inserting (S) into (3) gives

$$\frac{n^2(n-1)}{12}u_n + \frac{n(n^2-1)(n-4)}{4} =$$

$$\sum_{k=1}^{n-1} \left[5k(n-k) - n^2 \right] \left[u_k u_{n-k} + 2(n-k+1)u_k \right], \qquad n > 1.$$
 (9)

Thus (9) is an expression, without any auxiliary arithmetic functions, which completely determines u_n and it is clear from (8) that u_n is zero for n prime, and a positive integer for n composite. The first few instances are

$$u_2 - 9 = 3u_1^2 + 12u_1$$

$$3u_3 - 12 = 4u_1u_2 + 12u_1 + 8u_2$$

$$4u_4 = -2v_1u_3 + 4u_2^2 - 8u_1 + 24u_2 - 4u_3.$$

Now consider (6) and suppose first that n is composite. Replacing σ_n by the smaller number 1 + n, we have

$$n^2(n^2-1)-18n^2S_0+60S_2<0.$$

The biquadratic equation

$$z^4 - [18S_0(n-1) +$$

Next take *n* prime. Then *n* is smaller of the two positive roots.

To see this, take $z = \sqrt{n^2 + 1}$ to $2n^2 - 18S_0(n-1)$ and this is n

$$n^2 < 9$$

for n a prime. This may be verify n > 3

$$S_0(n-1) = 2\sigma_{n-1} +$$

$$> 2n + {n \choose k}$$

$$> 2n + \langle r \rangle$$

since $\sigma_k \geq k + 1$, $\sigma_{n-1} > n$ for n

$$n^2 < 18n + \frac{3}{2} (n-3)$$

and (11) is proved generally.

Thus the result of the substitution $\sqrt{n^2+1}$ lies between the two possecessary and sufficient condition may be given as:

$$\Delta(n-1) = [18S_0(n-1)]$$

as well as

$$\frac{1}{2} [18S_0(n-1) +$$

must be squares.

3. Perfe

By definition a number n is perivisors, n itself excluded, or, as no 2n. Write

$$v_n = \sigma_n - 2$$

ERFECT NUMBERS

implest of which are

 $+6nS_2$.

rious forms, of which we notice

$$f_0 + 60S_2 = 0 (6)$$

$$+ 72S_3 = 0. (7)$$

different notation.

= 1 + p and for perfect numtor results which are examined

nbers

$$u_1 = -1 \tag{8}$$

0

$$(k+1)u_k$$
, $n > 1$. (9)

ny auxiliary arithmetic funcand it is clear from (8) that uteger for *n* composite. The

3112

$$8u_1 + 24u_2 - 4u_3$$

at n is composite. Replacing

$$-60S_2 < 0.$$

The biquadratic equation

$$z^4 - [18S_0(n-1) + 1]z^2 + 60S_2(n-1) = 0$$
 (10)

then has two positive roots, one smaller, one greater than n.

Next take n prime. Then n must satisfy (10) and is in fact the smaller of the two positive roots.

To see this, take $z = \sqrt{n^2 + 1}$ in (10); the left-hand side reduces $2n^2 - 18S_0(n-1)$ and this is negative if

$$n^2 < 9S_0(n-1) \tag{11}$$

for n a prime. This may be verified directly for n=2 and 3 and for n>3

$$S_0(n-1) = 2\sigma_{n-1} + \sum_{k=2}^{n-2} \sigma_k \sigma_{n-k}$$

$$> 2n + \sum_{k=2}^{n-2} (k+1)(n-k+1)$$

$$> 2n + (n-3)(n^2 + 9n + 2)/6$$

since $\sigma_k \geq k + 1$, $\sigma_{n-1} > n$ for n prime. Hence it is clear that

$$n^2 < 18n + \frac{3}{2}(n-3)(n^2+9n+2), \quad n > 3$$

and (11) is proved generally.

Thus the result of the substitution $z=\sqrt{n^2+1}$ is negative; hence $\sqrt{n^2+1}$ lies between the two positive roots and n is the smaller. The necessary and sufficient conditions that n be prime in consequence may be given as:

$$\Delta(n-1) = [18S_0(n-1) + 1]^2 - 240S_2(n-1)$$

as well as

$$\frac{1}{2} \left[18S_0(n-1) + 1 - \sqrt{\Delta(n-1)} \right]$$

must be squares.

3. Perfect Numbers

By definition a number n is perfect when it equals the sum of its divisors, n itself excluded, or, as noted in the introduction, when $\sigma_n = 2n$. Write

$$v_n = \sigma_n - 2n, \qquad v_1 = -1$$
 (12)

so that v_n is zero for all perfect numbers, and otherwise positive or negative according as the number is abundant or deficient.

Using (12) in (3), it is found that

$$\frac{n^{2}(n-1)}{12}v_{n} + \frac{n(n-1)}{6}(n^{2} - 4n - 4) = \sum_{1}^{n-1} \left[5k(n-k) - n^{2}\right](v_{k} + 4k)v_{n-k}, \qquad n > 1. \quad (13)$$

It is known¹ that the even perfect numbers are all of the form

$$n = 2^a(2^{a+1} - 1),$$

where $2^{a+1} - 1$ is prime. No odd perfect numbers are known but it has not been proved that they do not exist. Certain properties follow from (13).

Suppose n an odd perfect number so that $v_n = 0$. Then from (13)

$$n(n-1)(n^2-4n-4)/6 = \sum_{1}^{n-1} \left[5k(n-k)-n^2\right]$$

$$(v_k+4k)v_{n-k}. \quad (14)$$

Because of the symmetry of $5k(n-k)v_kv_{n-k}$ in k and n-k and because n is odd, the right of (14) is even. For n = 12m + 5 or 12m + 511, the left of (14) is a fraction of denominator 3, and for n = 12m + 3or 12m + 7, it is an odd integer. In any of these four cases (14) is impossible and we are left with the only possibilities n = 12m + 1and 12m + 9.

For the last it is easy to show that m must be a multiple of 3. For if n = 12m + 9 = 3 (4m + 3) and if 3 and 4m + 3 are relatively prime

$$\sigma_{3(4m+3)} = \sigma_3\sigma_{4m+3} = 4\sigma_{4m+3}$$

and, since n is perfect

$$\sigma_{3(4m+3)} = 2.3(4m + 3),$$

so that

$$4\sigma_{4m+3} = 6(4m + 3)$$

which is impossible since the right-hand side is not divisible by 4.

By similar but longer arguments, it may be shown that perfect numbers of the form 12m + 9, if they exist, must be of one of the form 81(4m + 1), 9.13(12m + 1) or 9.13(12m + 5). Further results are possible, but seem not to be leading to a decisive result.

All this is summarized in the

THEOREM: If odd perfect nur or 36m + 9.

4. Conse

The results of the theorem a (7). For n perfect $(\sigma_n = 2n)$ t

$$n^4(n-1)$$

and the right-hand side is an in Then if *n* is odd and divisible that n = 12m + 9. On the n-1 must be divisible by 12, a Turn now to n prime ($\sigma_n = 1$

$$n^3(n^2-1)$$

If n > 3, $n^2 - 1$ must be divisit 5, 12m + 7, or 12m + 11. It each of these forms exists, but of that perfect numbers 12m + 1For numerical concreteness, I

0(1) 3 for n = 1(1) 10.

		VALUE	
п	σ_n	$S_0(n)$	
1	1	1	
2	3	6	
$\frac{2}{3}$	4	17	
4	7	38	
5	6	70	
6	12	116	
7	8	185	
8	15	258	
9	13	384	
10	18	490	

Notation: S.

Hardy and Wright, An Introduction to H. Hasse, Vorlesungen uber Zahlenthe Balth, van der Pol, "On a Non-line

agarithm of the Jacobian Theta Function kad. Wetensch. Proc., Ser. A, v. 54, 1951

CT NUMBERS

ers, and otherwise positive or neg ndant or deficient.

$$-4) =$$

$$v_k + 4k)v_{n-k}, \qquad n > 1.$$
 (13)

numbers are all of the form

$$-1),$$

erfect numbers are known but it exist. Certain properties follow

so that $v_n = 0$. Then from (13)

$$ik(n-k)-n^2$$

$$(v_k + 4k)v_{n-k}$$
. (14)

 $k)v_kv_{n-k}$ in k and n-k and ben. For n = 12m + 5 or 12m + 1ominator 3, and for n = 12m + 3n any of these four cases (14) is only ssibilities n = 12m + 1

m must be a multiple of 3. For l if 3 and 4m + 3 are relatively

$$+3 = 4\sigma_{4m+3}$$

$$4m + 3),$$

$$m + 3)$$

nd side is not divisible by 4. may be shown that perfect numist, must be of one of the forms 12m + 5). Further results are a decisive result.

THEOREM: If odd perfect numbers exist, they are of the forms 12m + 1or 36m + 9.

4. Consequences of Eq. (7)

The results of the theorem are much more easily obtained from eq. (7). For n perfect $(\sigma_n = 2n)$ this may be written as

$$n^4(n-1)/12 = 2nS_2 - 3S_3$$

and the right-hand side is an integer.

Then if n is odd and divisible by 3, n-1 must be divisible by 4, so that n = 12m + 9. On the other hand, for n odd and prime to 3, n-1 must be divisible by 12, and n=12m+1.

Turn now to n prime $(\sigma_n = 1 + n)$; (7) becomes

$$n^3(n^2-1)/24 = 2nS_2 - 3S_2$$
.

If n > 3, $n^2 - 1$ must be divisible by 24; hence n = 12m + 1, 12m + 15,12m+7, or 12m+11. It is known that an infinity of primes of each of these forms exists, but of course we may not conclude by analogy that perfect numbers 12m + 1 or 12m + 9 also exist.

For numerical concreteness, I give below values of σ_n and $S_p(n)$, p =0(1) 3 for n = 1(1) 10.

VALUES OF σ_n AND $S_v(n)$

п	σ_n	$S_0(n)$	$S_1(n)$	$S_2(n)$	$S_3(n)$
1	1	1	1	1	1
2	3	6	9	15	27
3	4	17	34	76	184
4	7	38	95	275	875
5	6	70	210	720	2700
6	12	116	406	1666	7546
7	8	185	740	3440	17600
8	15	258	1161	6129	35721
9	13	384	1920	11250	72750
10	18	490	2695	17545	126445
		385 Notation: S	$441 \atop S_p(n) = \sum_{n} k^p$	$\sigma_k \sigma_{n-k+1}$	499

REFERENCES

¹ Hardy and Wright, An Introduction to the Theory of Numbers, Oxford, 1938, p. 240.
² H. Hasse, Vorlesungen uber Zahlentheorie, Springer, Berlin, 1950, p. 32.
³ Balth. van der Pol, "On a Non-linear Partial Differential Equation Satisfied by the Logarithm of the Jacobian Theta Functions, with Arithmetical Applications I, II," Nederl. Akad. Wetensch. Proc., Scr. A, v. 54, 1951, p. 261-271, 272-284.

Related to the divisor for

Divisor (n: (Index)