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"ON PRIM* NUMBERS AND PER}*ECT
NUMBE RL"“':
By J..CQUES TOUCHARD

1. Introduction
IN AN important paper®, Balth. van der Pol has shown that the fune-
tion

® /
a(f) =1 - 24 % o™, 1) Cres,

where o is the sum of the divisors of %, inclucling 1 and & (cf. Iardy
and Wright'), satisfies the differential equation

dia A2 do ‘
2 E; 4 2« —d't.i —i3 (ZZZ) = 0 (2)

and, by substitution of (1) into (2) he shows that the numbers o satisly
the recurrence relation

n¥(n — 1 [ ‘ ,
—(—~19 ) 0. = 2, [5k(n — k) — u]oions, 7> 1. (3)
Z k=1

I'he first few instances of this, alter simplification, are

[ 30‘?
3(73 == ‘1(710'2
204 = U103 —I“ ?':E’
1 50’.5 o _60’10'; + 6(%(7‘;
I Recently, van der Pol h’lb found that relation (3) may also be writ-
| tenas v
rts.  Number tl ts of di f L. 2 — n — 1
ﬁf;l_theu:;l:{ ctl:'r!c)::’[l:n;d?rlglt‘gilgg ll:-l(l)Ir)III)Er 158 1 i w_ﬁ_l.) G, = Z_: (3712 e 10132)0'k0'n—-k~ (4)
! This is the first instance of a family of modifications of (3) which
| may be obtained as follows: put
n -1
? Sp = Sp('ﬂ bl 1) = Z kpo-kgn—k) (5)
E=1
¢ end change £ to  — k, so that
* Translated from the French manuscript by John Riordan.
! o=

[>29]

e = —
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36 PRIME NUMBERS AND PEREFECT NUMBERS

Sp = ’l’lpSo — pnﬁ_lsl + (g) 7517”25: — e + <—1)FSZ,.

This entails a number of relations, the simplest of which are
251' — 7150
48; = —ndSy + 6n.S,.

By means of these (3) may be given various forms, of which we notice
the following

n*(n — 1)o, — 18125, - 605, = 0. (6)
#(n — 1)o, — 48nS, + 725; = 0. )

The first of these is in fact eq. (4, in different notation.

Noting that for prime numbers, p, o, = 1 4 p and for perfect num-
bers o, = 21, egs. (3), (6), and (7) lead to results which are examined
below.

2. Prime Numbers

| L Writing

U, = g, — 1 — n, i, = —1 (8)
and inserting (8) into (3) gives
win — 1) et = D=4
12 " 4 B

7 —1
ST Bk(n — k) — n®) [ty + 202 — k& 4 D], n>1. (9
1

Thus (9) is an expression, without any auxiliary arithmetic func
tions, which completely determines #, and it is clear from (8) that
u, is zero for n prime, and a positive integer for # composite. The
first few instances are

Uy — 9 = 3uy* + 12w
Suz — 12 = duuy -+ 12w + Sue
4y = —2mug + 412 — Suy + 21lu, — 4us.

Now consider (6) and suppose first that 2 is composite.  Replaci;
o, by the smaller number 1 - 2, we have

n¥(n? — 1) — 18125, + 605, < 0.

JACQUES

The biquadratic equation
gt — [18Su(m — 1) + |

then has two positive roots, one g
Next take # prime. Then % 1

smaller of the two positive roots.
To see this, take z = \/7;21?

to 2n? — 18S5y(n2 — 1) and thisisn

n? < 9,

for » a prime. This may be verif
n>3 '

S‘J(n - 1) 2Un—1 -H

n

> 2n -+

-1

k
> 2n 4 (4

~

since o, > £+ 1, 0,00 > n for n|
n* < 18n -+ 5 (22— 3)|

and (11) is proved generally.
Thus the result of the substituti
Vn? 4- 1 lies between the two pos|
necessary and sufficient conditiot
may be given as:
Aln — 1) = [18Sy(n —

as well as

[1850(71 - 1) A

DO =

must be squares.

3. Perfel

By definiticn a nwnber # is perd
“tsors, 72 itself excluded, or, as no
. Write

v, = 0p — 2
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ERFECT NUMBERS

C

=28, — e (_1)1151,.

implest of which are

*‘ 6”52

rious forms, of which we notic,

, + 605; = 0 (®)
+ 7253 = (. (7)

lifferent notation.

= 1 + p and for perfect nupy,
| to results which are examing

nbers
W 4 ®)
B4 Duml,  #n>1 (9)

ny auxiliary arithmetic func-
and it is clear from (8) that
ateger for # composite. The

gllg
- 8uy + 24wy — 4u,,

1t # is composite.

3

Replacing

- 605, < 0.
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he biquadratic equation

gt — [18Sy(n — 1) + 1iz> + 60S:(n — 1) = 0 (10)
hen has two positive roots, one smaller, one greater than #.
Next take 7 prime. Then # must satisfy (10) and is in faect the
.maller of the two positive roots.

To see this, take z = Vz? + 1 in (10); the left-hand side reduces
0 2n? — 18Sy(1 - 1) and this is negative if
n? < 9S(n — 1) (11)

ior # a prime.  This may be verified directly for # = 2 and 3 and for
2> 3
n— 2

So(n — 1) = 2“7;—1 _{" Z i1
2
>4 % (kD — k1)
k=2
> 2n 4+ (n — 3)(n* 4+ 9 + 2)/6

since 6, > £ -4 1, 0,1 > n for n prime. Hence it is clear that

n* < 18z -+ g (n—3)(n* + 9n + 2), n>3

and (11) is proved generally. -
Thus the result of the substitution z = V2? + 1 is negative; hence

Vn? + 1 lies between the two positive roots and # is the smaller. The
necessary and suflicient conditions that # be prime in consequence
may be given as:

Aln — 1) = [18Sy(n — 1) 4 112 — 240S:(n — 1)

as well as
S 188, ~ 1) + 1 ~ VAl — 1)
must be squares.

3. Perfect Numbers

By definition a number # is perfect when it equals the sum of its di-
visors, 7 itself excluded, or, as noted in the introduction, wien ¢, =
2n.  Write

v, = o, — 2u, 1 = —1 (12)
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38 PRIME NUMBERS AND PERFECT NUMBERS

so that v, is zero for all perfect numbers, and otherwise positive or neg-
ative according as the number is abundant or deficient.
Using (12) in (3), it is found that

n(n —

ﬁ(ﬂ_—uvn—{— 1) (n? — 4n — 4) =

12 6
Sk — B) — %] (o + AR)ons  n> 1. (13)
1

It is known? that the even perfect numbers are all of the form
n o= 29(2¢t1 — 1),

where 22t — 1 is prime. No odd perfect numbers are known but it
has not been proved that they do not exist. Certain properties follow
from (13).

Suppose 7 an odd perfect number so that v, = 0. Then from (13)

n—1

nn — D - 4n — 4)/6 = 3 [bk(n — k) — n?]
1
(i’]; + 4}3)Z'nA;;. (14)

Because of the symmetry of 5k(n — k)v,v,, in kand n — k and be-
cause # is odd, the right of (14) iseven. Forn = 12m -+ 5 cr 12m +
11, the left of (1) is a fraction of denominator 3, and for n = 12m + 3
or 12m + 7, it is an odd integer. In any of these four cases (14) is
impossible and we are left with the only possibilities n = 12m + 1
and 12m + 9.

For the last it is casy to show that m must be a multiple of 3. For
ifn=12m + 9 = 3 (4m + 3) and if 3 and 4m + 3 are relatively

prime
T3¢im+3) — T304m43 = 40‘4m+3
and, since # is perfect

T3(4m43) — 2.3(4772 + 3),

so that
4o4mes = 6(dm + 3)

which is imapossible since the right-hand side is not divisible by 4.
By similar but longer arguments, it may be shown that perfect nunt-
bers of the forin 12m + 9, if they exist, must be of one of the forn
81(4m + 1), 9-13(12m -+ 1) or 9:13(12m + 5). Further results arc
possible, but seem not to be leading to a decisive result.
All this is summarized in the

— e T ———————
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THEOREM: If odd perfect nuy
or 86m - 9.

4. Conse

The results of the theorem g
(7). For n perfect (¢, = 2n) t

n(n — 1),

and the right-hand side is an in
Then if n is odd and divisible
that # = 12m + 9. On the ¢
n — 1 must be divisible by 12, ¢
Turn now to # prime (g, = 1

n3(n? — 1),

If n > 3, #? — 1 must be divisik
5, 12m 4 7, or 12m 4+ 11. IY
cach of these forms exists, but of
that perfect numbers 12m 4 1 4

For numerical concreteness, I

0(1)3forn =1 (1) 10.

VALUES|

Sn(?l)

1
"6
17
38
70
116
185
258
384
490

2
Q
3

)_. .
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Notation: S,
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! Mardy and Wright, An Introduction lt
*U. Hasse, Vorlesungen uber Zallenthe

Balth, van der Pol, *On a Non-ling
wririthm of the Jacobian Theta Functic
Yad. Wetensch. Proc., Ser. A, v. 54, 195]
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rs, and otherwise positive or ng,
ndant or deficient.

- 4) =

v + 4k)v, s, n>1. (13)

numbers are all of the form
=
erfect numbers are known but i
‘exist. Certain properties follor
so that v, = 0. Then from (13
e(n — k) — n?]

(vr + 4B)v,—p. (14)

kv, in k and # — k and be-
n. Forn = 12m + 5 or 12m +
yminator 3, and for # = 12m 4+ 3
n angaof these four cases (14) is
cml;‘assibilities n= 12m 4 1

m must be a multiple of 3. For
| if 3 and 4m + 3 are relatively

j3 = 40’4m+3
dm —+ 3),

m -+ 3)

nd side is not divisible by 4.
may be shown that perfect nunt-
ist, must be of one of the forms
12m + 5). Further results ar
) a decisive result.
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THEOREM
or 36m + 9.

If odd perfect numbers exist, they are of the forms 12m +1

4. Consequences of Eq. (7)

The results of the theorem are much more easily obtained from eq.
7). For n perfect (¢, = 2r) this may be written as

nin — 1)/12 = 2nS, — 35;

.nd the right-hand side is an integer.

Then if 7 is odd and divisible by 3, » — 1 must be divisible by 4, so
that # = 12m + 9. On the other hand, for # odd and prime to 3,
n — 1 must be divisible by 12, and #z = 12m - 1.

Turini now to 2 prime (o, = 1 + #); (7) becomes

n¥(n® — 1)/24 = 2nS, — 3S,.

Ifn> 3, n* — 1 must be divisible by 24; hencen = 12m + 1, 12m +
5 12m + 7, or 12m -+ 11. It is known thiat an infinity of primes of
cach of these forms exists, but of course we may not conclude by analogy
that perfect numbers 12m 4+ 1 or 12 -+ 9 also exist.

For numerical concreteness, I give below values of o, and S,(n), p =
0(1) 3forn =1 (1) 10.

2

VALUES OF o, AND S,(n)

7 On So(22) S1(7) So(n) Sa(n)
1 1 1 1 1 1
2 3 6 9 15 D7
3 4 17 34 76 184
4 7 38 95 75 875
5 6 70 210 720 2700
) 12 116 406 1666 7546
7 185 740 3440 17600
8 15 258 1161 6129 35721
9 13 384 1920 11250 72750

10 18 490 2695 17545 126445

Gl , kg7

- 3%
Notation: S,(rn) = > k" oxop-s41
1

“qq
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