Moments of Sums
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Let X1, Xs,...,X, be a sequence of independent random variables. A huge
amount of work has been done on estimating the L,-norm of the sum of the Xs:
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We first discuss Khintchine’s inequality [1], which deals with the Rademacher se-
quence €1, €9, . .., E,, Where

P(ey =1)=P(ep,=—-1)=1/2  (symmetric Bernoulli distribution)

for each k. It is known that there exist constants A,, B, such that the bounds
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hold for arbitrary ¢, ca, ..., ¢, € R and n > 1. Szarek [2] and Haagerup [3], building
on [4, 5, 6, 7, 8, 9], proved that the best such constants are
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where W = 271/2(¢; + &5), Z is Normal(0, 1), and py = 1.8474163360... is the unique

solution of the equation
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in the interval 0 < p < 2. In words, if S}_, c¢? = 1, then A; = 272 and B, = 1
encompass the average of | & ¢; ¢y £ -+ + ¢,| taken over all 2" possible choices of
signs. See also [10, 11, 12, 13, 14, 15].

A complex analog of Khintchine’s inequality deals with the Steinhaus sequence
€1,€2,...,En, Where g is uniformly distributed on the unit circle {z : |z| = 1} for
each k. We keep notation identical to before, except that we allow ¢y, co, ..., c, € C.
The best constants A, B, in the inequality
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were conjectured by Haagerup [16] to be
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where W = 2712(gy+¢5), Z = 27/2(U+iV) with U, V independent and Normal(0, 1),
and po = 0.4756170089... is the unique solution of the equation

P RALC)

in the interval 0 < p < 2. Here, if Y ) |cx|* = 1, then Ay = /7/2 and B; = 1
encompass an average taken over all “complex signs” rather than only “real signs” as
earlier. Sawa [17] announced that he could verify significant portions of Haagerup’s
conjecture, but only the case p &~ 1 was published. See also [14, 15, 18, 19]. We
mention as well the following result [20, 21] for which p = 1 and n is the parameter

of interest:
2 11— cos(t)”
Z / ﬂdt for the real case
T
E( 0

for the complex case
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where Jy(t) is the zeroth Bessel function of the first kind. On the one hand, we have

2/1 - cos(t)"dt B n! /2n
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for the real case, where m = [(n — 1)/2]. On the other hand, the Bessel integral takes
on the values 1, 4/m, 1.57459723... and 1.79909248... for n = 1, 2, 3 and 4. Keane
[22] recently determined that the third value in this list has the following closed-form
expression:
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but the fourth value still remains open.
We next discuss Rosenthal’s inequalities [23]:
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for nonnegative random variables and
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for symmetric random variables (meaning that the distribution of —X is the same
as the distribution of X'). A variation of the latter inequality arises if we loosen the
restrictive hypothesis “symmetric” to “zero mean”; the constant is then denoted F,
rather than D,. Johnson, Schechtman & Zinn [24] showed that the growth rate of
the best constants C,, D,, E, is p/In(p) as p — oo; in contrast, the growth rate for
B, is only /p. Subsequent work [25, 26, 27, 28] yielded that

1 it p=1 1 e ifp=2
C,={ 2  ifl<p<2 ., D,= Q+nm@ if2<p<4
1Qll, if2<p<oo IR - 9], if 4 <p<oo

where @ is Poisson(1), Z is Normal(0,1), and R, S are independent Poisson(1/2)
variables. Tt is known that ||Q[” = a,, and ||R — S||3" = 3,, for integer m, where
{am e, ={1,2,5,15,52,203, ...} is the sequence of Bell numbers [29, 30]

I <™ d

¥m =~ - 7 = dx—meXp (exp(z) — 1)

z=0
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and {3,,}50_, ={1,4,31,379,.. } is the sequence

de
ZZ T k 2R = gpam OXP (cosh(z) — 1)

Ibragimov & Sharakhmetov [31] conjectured that

=0
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P
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and proved that this is true when p = 2m; further, |Q — 1|37 = ~,, and {7,,}3°_, =
{1,4,41,715,...} is the sequence

/Ym - e Z ]' - dl'Qm exXp (exp(x) T 1)

z=0

Combinatorial interpretations apply for each of the three sequences: «,, is the number
of partitions of an n-element set into blocks; (3, is the number of partitions of a 2n-
element set into blocks, each containing an even number of elements; and -,, is the
number of partitions of a 2n-element set into blocks, each containing more than one

element [30].
p
)

Define the following Orlicz-type norm:
- - Xk
[:]p:1nf{)\>O:HE(’1 S
k=1
for an arbitrary sequence = = { X}, of independent random variables, for any
p > 0. We mention Latala’s inequality [32]:
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which holds either if all the Xs are nonnegatlve and p > 1, or if all the Xs are
symmetric and p > 2. Observe here that the bounds do not depend on p, unlike the
earlier inequalities. For the nonnegative case, Hitczenko & Montgomery-Smith [33]
improved the left-hand constant (e —1)/(2¢?) = 0.116272... to £ = 0.154906..., where
¢ is the unique positive solution of the equation

53@k+nkk
— X =€
= Kl

It is not known if this improvement carries over to the symmetric case, nor whether
a calculation of best constants is feasible at present.
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0.1. Addendum. Assuming >, ci =1, it is conjectured that the Rademacher
sequence satisfies [34, 35, 36, 37, 38]
) 1
>
-2

Pn=P<ZCk€k§1
=1

always. This inequality is provably true if 1/2 is replaced by 3/8 [35] or if all ¢s are
equal [37]. For the latter scenario, we deduce that

lim P, — erf (1/\/5) — 0.6826894921...
by the normal approximation to the binomial distribution. This constant also appears
in [39] with regard to a continued fraction expansion.
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