Multi-Base Representations and their Minimal Hamming Weight

Daniel Krenn

(joint work in progress with Vorapong Suppakitpaisarn and Stephan Wagner)

May 24, 2018

Supported by the Austrian Science Fund (FWF), project P28466.

This presentation is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Multi-Base Representations

Representations

$$
n=\sum_j d_j p_1^{\alpha_{1j}}p_2^{\alpha_{2j}}\ldots p_m^{\alpha_{mj}}
$$

- \bullet digits d_i out of digit set $\{0, 1, \ldots, d 1\}$
- \bullet bases p_1, \ldots, p_m (multiplicatively independent integers ≥ 2)
- nonnegative integers α_{ii}
- all power-products $\rho_1^{\alpha_{1j}}$ $\int_1^{\alpha_{1j}}p_2^{\alpha_{2j}}$ $\frac{\alpha_{2j}}{2} \ldots p_m^{\alpha_{mj}}$ distinct

Multi-Base Representations

Representations

$$
n=\sum_j d_j p_1^{\alpha_{1j}}p_2^{\alpha_{2j}}\ldots p_m^{\alpha_{mj}}
$$

- \bullet digits d_i out of digit set $\{0, 1, \ldots, d 1\}$
- \bullet bases p_1, \ldots, p_m (multiplicatively independent integers ≥ 2)
- nonnegative integers α_{ii}
- all power-products $\rho_1^{\alpha_{1j}}$ $\int_1^{\alpha_{1j}}p_2^{\alpha_{2j}}$ $\frac{\alpha_{2j}}{2} \ldots p_m^{\alpha_{mj}}$ distinct

Question

How good is the "best possible" (minimal Hamming weight) representation of a number?

Motivation from Cryptography

calculate
$nP = P + \cdots + P$
as efficiently as possible
$(P \text{ group element}, n \in \mathbb{N}_0)$

multi-base representations

$$
n=\sum_j d_j p_1^{\alpha_{1j}}p_2^{\alpha_{2j}}\dots p_m^{\alpha_{mj}}
$$

- \bullet digits d_i out of digit set $\{0, 1, \ldots, d 1\}$
- \bullet bases p_1, \ldots, p_m (multiplicatively independent integers ≥ 2)

Hamming Weight

number of $d_i \neq 0$ in representation

multi-base representations

$$
n=\sum_j d_j p_1^{\alpha_{1j}}p_2^{\alpha_{2j}}\dots p_m^{\alpha_{mj}}
$$

- \bullet digits d_i out of digit set $\{0, 1, \ldots, d 1\}$
- \bullet bases p_1, \ldots, p_m (multiplicatively independent integers > 2)

Hamming Weight

number of $d_i \neq 0$ in representation

Minimal Hamming Weight

minimal among all multi-base representations of n with the same bases and digit set

"measures" efficiency of representation

Theorem (K–Suppakitpaisarn–Wagner 2018)

- fix bases p_1, \ldots, p_m ($m \ge 2$) multiplicatively independent
- fix digit set containing 1
- there exist positive constants K_1 and K_2
	- (U) each integers n has representation with Hamming weight at most $K_1 \frac{\log n}{\log \log n}$
	- (L) infinitely many positive integers n with no representation with Hamming weight less than $K_2 \frac{\log n}{\log \log n}$

• smallest numbers with given weight (bases 2, 3)

(sequence A018899 in the OEIS)

- finding minimal expansion seems to be hard
- compute approximation $2^{i}3^{j} \leq n$ (Berthé-Imbert 2009)

 \bullet Gaussian/normal distribution (as n $\to \infty$)

$$
\mu_n = \frac{\kappa(d-1)}{d \log d} (\log n)^m + \mathcal{O}((\log n)^{m-1} \log \log n)
$$

variance

• expectation

$$
\sigma_n^2 = \frac{\kappa(d-1)}{d^2 \log d} (\log n)^m + \mathcal{O}((\log n)^{m-1} \log \log n)
$$

Single-base Representations

$$
n = \sum_{j} d_j p^{\alpha_j}
$$

logits d_j out of finite digit set
integer base $p \ge 2$

- Hamming weight
	- \bullet average order of magnitude is log n
	- \bullet worst case (maximum) also log n
- **•** minimal Hamming weight
	- number of minimal representations (Grabner–Heuberger 2006)
	- compute minimal expansion (Phillips–Burgess 2004, Heuberger–Muir 2009)

Natural Greedy Algorithm

- \bullet input integer *n*
- add largest power-product $\rho_1^{\alpha_1}\dots\rho_m^{\alpha_m}$ less or equal to n
- continue with $n-p_1^{\alpha_1}\dots p_m^{\alpha_m}$
- o output

$$
n=\sum_j d_j p_1^{\alpha_{1j}}p_2^{\alpha_{2j}}\dots p_m^{\alpha_{mj}}
$$

Natural Greedy Algorithm

- \bullet input integer n
- add largest power-product $\rho_1^{\alpha_1}\dots\rho_m^{\alpha_m}$ less or equal to n
- continue with $n-p_1^{\alpha_1}\dots p_m^{\alpha_m}$

• output

$$
n=\sum_j d_jp_1^{\alpha_{1j}}p_2^{\alpha_{2j}}\ldots p_m^{\alpha_{mj}}
$$

- Greedy algorithm → minimal representation
- smallest counter-example

$$
41 = 2^2 3^2 + 2^2 + 1 = 2^5 + 3^2
$$

- bases 2, 3, generalizes to arbitrary multi-base of primes (Dimitrov–Jullien–Miller 1998)
	- \rightsquigarrow "On the maximal distance between integers composed of small primes" (Tijdeman 1974)

- bases 2, 3, generalizes to arbitrary multi-base of primes (Dimitrov–Jullien–Miller 1998)
	- \rightarrow "On the maximal distance between integers composed of small primes" (Tijdeman 1974)
- \bullet bases 2, 3, 5 (Yu–Wang–Li–Tian 2013)
- sharpness of bound for double-base expansions (Chalermsook–Imai–Suppakitpaisarn 2015)
Multi-Base Representations

[Introduction](#page-1-0) [Around Multi-base Expansions](#page-10-0) [Upper Bound](#page-14-0) ["Lower" Bound](#page-24-0) Termination of Greedy Algorithm

Corollary (K–Suppakitpaisarn–Wagner 2018)

- fix bases p_1, \ldots, p_m (m ≥ 2) multiplicatively independent
- natural greedy algorithm with input n terminates after $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ $\frac{\log n}{\log \log n}$) steps
- bound is sharp
- output contains only digits 0 and 1

there are positive constants C and κ with

$$
ne^{-C(\log n)^{-\kappa}} \le p_1^{\alpha_1} \dots p_m^{\alpha_m} \le n
$$

there are positive constants C and κ with

$$
ne^{-C(\log n)^{-\kappa}} \le p_1^{\alpha_1} \dots p_m^{\alpha_m} \le n
$$

 \bullet two bases p and q multiplicatively independent

• set
$$
\lambda = \log_p q
$$
 and $M = \lceil \log_q n \rceil$

there are positive constants C and κ with

$$
ne^{-C(\log n)^{-\kappa}} \le p_1^{\alpha_1} \dots p_m^{\alpha_m} \le n
$$

- \bullet two bases p and q multiplicatively independent
- set $\lambda = \log_p q$ and $M = \lceil \log_q n \rceil$
- discrepancy of sequence $\left(\{\lambda m\}\right)_{m=0}^{\mathcal{M}-1}$ is $\leq \mathcal{C}_1 \mathcal{M}^{-\kappa}$
- **o** discrepancy bounds largest gap in sequence

•
$$
\{ \log_p n \} - C_1 M^{-\kappa} \leq \{ \lambda m \} \leq \{ \log_p n \}
$$

$$
\approx
$$

there are positive constants C and κ with

$$
ne^{-C(\log n)^{-\kappa}} \le p_1^{\alpha_1} \dots p_m^{\alpha_m} \le n
$$

- \bullet two bases p and q multiplicatively independent
- set $\lambda = \log_p q$ and $M = \lceil \log_q n \rceil$
- discrepancy of sequence $\left(\{\lambda m\}\right)_{m=0}^{\mathcal{M}-1}$ is $\leq \mathcal{C}_1 \mathcal{M}^{-\kappa}$
- **o** discrepancy bounds largest gap in sequence

$$
\begin{array}{ll}\n\bullet & \{\log_p n\} - C_1 M^{-\kappa} \leq \{\lambda m\} \leq \{\log_p n\} \\
\log_p n - C_1 M^{-\kappa} \leq \ell + \lambda m \leq \log_p n \\
n e^{-C(\log n)^{-\kappa}} \leq p^{\ell} q^m \leq n\n\end{array}
$$

there are positive constants C and κ with

$$
ne^{-C(\log n)^{-\kappa}} \le p_1^{\alpha_1} \dots p_m^{\alpha_m} \le n
$$

- \bullet two bases p and q multiplicatively independent
- set $\lambda = \log_{p} q$ and $M = \lceil \log_{q} n \rceil$
- discrepancy of sequence $\left(\{\lambda m\}\right)_{m=0}^{\mathcal{M}-1}$ is $\leq \mathcal{C}_1 \mathcal{M}^{-\kappa}$
- **o** discrepancy bounds largest gap in sequence

$$
\begin{array}{ll}\n\text{log}_{p} n \} - C_1 M^{-\kappa} \leq \ \{ \lambda m \} \leq \{ \log_{p} n \} \\
\log_{p} n - C_1 M^{-\kappa} \leq \ell + \lambda m \leq \log_{p} n \\
n e^{-C(\log n)^{-\kappa}} \leq \ p^{\ell} q^m \leq n\n\end{array}
$$

 \Rightarrow upper bound follows

 \bullet

"Lower" Bound / Sharpness

infinitely many integers n whose minimal Hamming weight is greater than

> $K_2 \frac{\log n}{\log \log n - \log n}$ log log n · log log log n

- bases 2, 3 (Dimitrov–Howe 2011)
- \bullet bases 2, 3, 5 (Yu–Wang–Li–Tian 2013)

"Lower" Bound / Sharpness

infinitely many integers n whose minimal Hamming weight is greater than

$$
K_2 \frac{\log n}{\log \log n \cdot \log \log \log n}
$$

bases 2, 3 (Dimitrov–Howe 2011)

 \bullet bases 2, 3, 5 (Yu-Wang-Li-Tian 2013)

• number of different power-products appearing in multi-base representations of $\{1, 2, \ldots, N\}$

$$
\leq T(N) := \prod_{j=1}^m (c_j \log N) = (\log N)^m \prod_{j=1}^m c_j
$$

• number of different power-products appearing in multi-base representations of $\{1, 2, \ldots, N\}$

$$
\leq \mathcal{T}(N) \coloneqq \prod_{j=1}^m (c_j \log N) = (\log N)^m \prod_{j=1}^m c_j
$$

• number of representations with weight at most K

$$
R_K(N) \leq \sum_{k=1}^K {T(N) \choose k} (|D|-1)^k \leq (|D|T(N))^K
$$

• number of different power-products appearing in multi-base representations of $\{1, 2, \ldots, N\}$

$$
\leq \mathcal{T}(N) \coloneqq \prod_{j=1}^m (c_j \log N) = (\log N)^m \prod_{j=1}^m c_j
$$

• number of representations with weight at most K

$$
R_K(N) \leq \sum_{k=1}^K {T(N) \choose k} (|D|-1)^k \leq (|D|T(N))^K
$$

suppose all integers in $\{2^{s-1}+1,2^{s-1}+2,\ldots,2^s\}$ have a representation with weight at most K , i.e.

$$
\left(|D| \mathsf{T}(2^s)\right)^{\mathsf{K}} \geq R_{\mathsf{K}}(2^s) \geq 2^{s-1}
$$

 \bullet take logarithms

Communication Complexity

- Set-up:
	- \bullet Alice and Bob both hold ℓ bits of information (nonnegative integers less than 2^{ℓ})
	- Bob wants to check if both hold the same information

Communication Complexity

- Set-up:
	- \bullet Alice and Bob both hold ℓ bits of information (nonnegative integers less than 2^{ℓ})
	- Bob wants to check if both hold the same information
	- Alice send some piece of information (according protocol)
	- Bob says
		- \bullet " $=$ "
		- \bullet " \neq "
		- "more"

Communication Complexity

- Set-up:
	- \bullet Alice and Bob both hold ℓ bits of information (nonnegative integers less than 2^{ℓ})
	- Bob wants to check if both hold the same information
	- Alice send some piece of information (according protocol)
	- Bob says
		- \bullet " $=$ "
		- \bullet " \neq "
		- "more"
- \bullet for each deterministic algorithm/protocol
	- \rightarrow instance where ℓ communication bits needed

- \bullet assume *n* has multi-base representation with only $o(\frac{\log n}{\log \log n})$ $\frac{\log n}{\log \log n}$) summands
- convert above $\ell = |\log n|$ -bit instance to multi-base representation
- summand can be denoted by $\mathcal{O}(\log \log n)$ bits

- \bullet assume *n* has multi-base representation with only $o(\frac{\log n}{\log \log n})$ $\frac{\log n}{\log \log n}$) summands
- convert above $\ell = |\log n|$ -bit instance to multi-base representation
- summand can be denoted by $\mathcal{O}(\log \log n)$ bits
- Alice only needs

$$
\mathcal{O}(\log \log n) \cdot o\left(\frac{\log n}{\log \log n}\right) = o(\log n)
$$

bits to tell Bob everything

Minimal Hamming Weight

Theorem (K–Suppakitpaisarn–Wagner 2018)

- fix bases p_1, \ldots, p_m ($m \ge 2$) multiplicatively independent
- fix digit set containing 1
- there exist positive constants K_1 and K_2
	- (U) each integers n has representation with Hamming weight at most $K_1 \frac{\log n}{\log \log n}$
	- (L) infinitely many positive integers n with no representation with Hamming weight less than $K_2 \frac{\log n}{\log \log n}$

