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Introduction Around Multi-base Expansions Upper Bound “Lower”Bound

Multi-Base Representations

Representations

n =
∑
j

djp
α1j

1 p
α2j

2 . . . p
αmj
m

digits dj out of digit set {0, 1, . . . , d − 1}
bases p1, . . . , pm
(multiplicatively independent integers ≥ 2)

nonnegative integers αij

all power-products p
α1j

1 p
α2j

2 . . . p
αmj
m distinct

Question

How good is the “best possible”
(minimal Hamming weight)
representation of a number?

?
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Motivation from Cryptography

calculate
nP = P + · · ·+ P

as efficiently as possible
(P group element, n ∈ N0)

standard systems
(e.g. binary, decimal, . . . )

more digits
(e.g. base 2,

digits {−1, 0, 1})

multi-bases
(e.g. bases 2i3j ,

digits {0, 1})
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Hamming Weight

multi-base representations

n =
∑
j

djp
α1j

1 p
α2j

2 . . . p
αmj
m

digits dj out of digit set {0, 1, . . . , d − 1}
bases p1, . . . , pm

(multiplicatively independent integers ≥ 2)

Hamming Weight

number of dj 6= 0 in representation

Minimal Hamming Weight

minimal among all multi-base representations of n
with the same bases and digit set

“measures” efficiency of representation
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Minimal Hamming Weight

Theorem (K–Suppakitpaisarn–Wagner 2018)

fix bases p1, . . . , pm (m ≥ 2)
multiplicatively independent

fix digit set containing 1

there exist positive constants K1 and K2

(U) each integers n has representation
with Hamming weight
at most K1

log n
log log n

(L) infinitely many positive integers n
with no representation
with Hamming weight
less than K2

log n
log log n ,
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Some Properties

smallest numbers with given weight (bases 2, 3)

weight 1 2 3 4 5 6 7 . . .
number 1 5 23 431 18431 3448733 1441896119 . . .

(sequence A018899 in the OEIS)

finding minimal expansion seems to be hard

compute approximation 2i3j ≤ n
(Berthé–Imbert 2009)

≈
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Number of Representations

Theorem (K–Ralaivaosaona–Wagner 2014)

fix bases p1, . . . , pm (m ≥ 2)

fix digit set {0, . . . , d − 1}
number of
multi-base representations Pn of n

log Pn = κ(log n)m

+ C1(log n)m−1 log log n

+ C2(log n)m−1

+ O
(
(log n)m−2 log log n

)
with

κ =
log d

m!

m∏
i=1

1

log pi

#
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Distribution of the Hamming Weight

Theorem (K–Ralaivaosaona–Wagner 2014)

fix bases p1, . . . , pm (m ≥ 2)

fix digit set {0, . . . , d − 1}
Hamming weight of
uniformly random
multi-base representation of n:

Gaussian/normal distribution (as n→∞)
expectation

µn =
κ(d − 1)

d log d
(log n)m +O((log n)m−1 log log n)

variance

σ2
n =

κ(d − 1)

d2 log d
(log n)m +O((log n)m−1 log log n)

N
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Single-base Representations

n =
∑
j

djp
αj

digits dj out of finite digit set

integer base p ≥ 2

Hamming weight
average order of magnitude is log n
worst case (maximum) also log n

minimal Hamming weight
number of minimal representations
(Grabner–Heuberger 2006)
compute minimal expansion
(Phillips–Burgess 2004, Heuberger–Muir 2009)

p
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Greedy Algorithm

Natural Greedy Algorithm

input integer n

add largest power-product pα1
1 . . . pαm

m

less or equal to n

continue with n − pα1
1 . . . pαm

m

output

n =
∑
j

djp
α1j

1 p
α2j

2 . . . p
αmj
m

Greedy algorithm ⇒ minimal representation

smallest counter-example

41 = 2232 + 22 + 1 = 25 + 32
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History & Related Work

Upper Bound

natural greedy algorithm with input n
terminates after

O
( log n

log log n

)
steps

bases 2, 3, generalizes to arbitrary multi-base of primes
(Dimitrov–Jullien–Miller 1998)

 “On the maximal distance between integers
composed of small primes” (Tijdeman 1974)

bases 2, 3, 5 (Yu–Wang–Li–Tian 2013)

sharpness of bound for double-base expansions
(Chalermsook–Imai–Suppakitpaisarn 2015)

�
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Termination of Greedy Algorithm

Corollary (K–Suppakitpaisarn–Wagner 2018)

fix bases p1, . . . , pm (m ≥ 2)
multiplicatively independent

natural greedy algorithm with input n
terminates after O

( log n
log log n

)
steps

bound is sharp

output contains only digits 0 and 1

• • • ,
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Proof of Upper Bound

Approximation by Power-products

there are positive constants C and κ with

ne−C(log n)−κ ≤ pα1
1 . . . pαm

m ≤ n

two bases p and q multiplicatively independent

set λ = logp q and M = dlogq ne
discrepancy of sequence ({λm})M−1

m=0 is ≤ C1M−κ

discrepancy bounds largest gap in sequence

{logp n} − C1M−κ ≤ {λm} ≤ {logp n}

logp n − C1M−κ ≤ `+ λm ≤ logp n

ne−C(log n)−κ ≤ p`qm ≤ n

⇒ upper bound follows

≈
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History & Related Work

“Lower” Bound / Sharpness

infinitely many integers n whose minimal
Hamming weight is greater than

K2
log n

log log n · log log log n

bases 2, 3 (Dimitrov–Howe 2011)

bases 2, 3, 5 (Yu–Wang–Li–Tian 2013)
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Proof of Sharpness: Counting Representations

number of different power-products
appearing in multi-base representations of {1, 2, . . . ,N}

≤ T (N) :=
m∏
j=1

(cj log N) = (log N)m
m∏
j=1

cj

number of representations with weight at most K

RK (N) ≤
K∑

k=1

(
T (N)

k

)
(|D| − 1)k ≤

(
|D|T (N)

)K
suppose all integers in

{
2s−1 + 1, 2s−1 + 2, . . . , 2s

}
have a representation with weight at most K , i.e.(

|D|T (2s)
)K ≥ RK (2s) ≥ 2s−1

take logarithms

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



Introduction Around Multi-base Expansions Upper Bound “Lower”Bound

Proof of Sharpness: Counting Representations

number of different power-products
appearing in multi-base representations of {1, 2, . . . ,N}

≤ T (N) :=
m∏
j=1

(cj log N) = (log N)m
m∏
j=1

cj

number of representations with weight at most K

RK (N) ≤
K∑

k=1

(
T (N)

k

)
(|D| − 1)k ≤

(
|D|T (N)

)K

suppose all integers in
{

2s−1 + 1, 2s−1 + 2, . . . , 2s
}

have a representation with weight at most K , i.e.(
|D|T (2s)

)K ≥ RK (2s) ≥ 2s−1

take logarithms

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



Introduction Around Multi-base Expansions Upper Bound “Lower”Bound

Proof of Sharpness: Counting Representations

number of different power-products
appearing in multi-base representations of {1, 2, . . . ,N}

≤ T (N) :=
m∏
j=1

(cj log N) = (log N)m
m∏
j=1

cj

number of representations with weight at most K

RK (N) ≤
K∑

k=1

(
T (N)

k

)
(|D| − 1)k ≤

(
|D|T (N)

)K
suppose all integers in

{
2s−1 + 1, 2s−1 + 2, . . . , 2s

}
have a representation with weight at most K , i.e.(

|D|T (2s)
)K ≥ RK (2s) ≥ 2s−1

take logarithms

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



Introduction Around Multi-base Expansions Upper Bound “Lower”Bound

Different Point of View: Communication Complexity

Communication Complexity

Set-up:

Alice and Bob both hold ` bits of information
(nonnegative integers less than 2`)
Bob wants to check
if both hold the same information

Alice send some piece of information
(according protocol)
Bob says

“=”
“6=”
“more”

for each deterministic algorithm/protocol
 instance where ` communication bits needed
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Proof of Sharpness: Communication Complexity

assume n has multi-base representation
with only o

( log n
log log n

)
summands

convert above ` = blog nc-bit instance
to multi-base representation

summand can be denoted by O(log log n) bits

Alice only needs

O(log log n) · o
( log n

log log n

)
= o(log n)

bits to tell Bob everything

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



Introduction Around Multi-base Expansions Upper Bound “Lower”Bound

Proof of Sharpness: Communication Complexity

assume n has multi-base representation
with only o

( log n
log log n

)
summands

convert above ` = blog nc-bit instance
to multi-base representation

summand can be denoted by O(log log n) bits

Alice only needs

O(log log n) · o
( log n

log log n

)
= o(log n)

bits to tell Bob everything

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



Minimal Hamming Weight

Theorem (K–Suppakitpaisarn–Wagner 2018)

fix bases p1, . . . , pm (m ≥ 2)
multiplicatively independent

fix digit set containing 1

there exist positive constants K1 and K2

(U) each integers n has representation
with Hamming weight
at most K1

log n
log log n

(L) infinitely many positive integers n
with no representation
with Hamming weight
less than K2

log n
log log n ,
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