Multi-Base Representations and their Minimal Hamming Weight

Daniel Krenn

(joint work in progress with Vorapong Suppakitpaisarn and Stephan Wagner)

May 24, 2018

Supported by the Austrian Science Fund (FWF), project P28466.

This presentation is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Introduction		
0000		

Multi-Base Representations

Representations

$$n = \sum_{j} d_{j} p_{1}^{\alpha_{1j}} p_{2}^{\alpha_{2j}} \dots p_{m}^{\alpha_{mj}}$$

- digits d_j out of digit set $\{0, 1, \ldots, d-1\}$
- bases p₁, ..., p_m (multiplicatively independent integers ≥ 2)
- nonnegative integers α_{ij}
- all power-products $p_1^{\alpha_{1j}}p_2^{\alpha_{2j}}\dots p_m^{\alpha_{mj}}$ distinct

Introduction		
0000		

Multi-Base Representations

Representations

$$n = \sum_{j} d_{j} p_{1}^{\alpha_{1j}} p_{2}^{\alpha_{2j}} \dots p_{m}^{\alpha_{mj}}$$

- digits d_j out of digit set $\{0, 1, \ldots, d-1\}$
- bases p₁, ..., p_m (multiplicatively independent integers ≥ 2)
- nonnegative integers α_{ij}
- all power-products $p_1^{\alpha_{1j}}p_2^{\alpha_{2j}}\dots p_m^{\alpha_{mj}}$ distinct

Question

How good is the "best possible" (minimal Hamming weight) representation of a number?
 Introduction
 Around Multi-base Expansions
 Upper Bound
 "Lower" Bound

 ○●○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○

Motivation from Cryptography

$$calculate nP = P + \dots + P as efficiently as possible (P group element, $n \in \mathbb{N}_0$)$$

Introduction Around Multi-base Expansions Upper Bound "Lower" Bound OOOO OOOO OOOO OOOO OOOO

Introduction		Upper Bound 0000	
Hamming We	eight		

multi-base representations

$$n = \sum_{j} d_{j} p_{1}^{\alpha_{1j}} p_{2}^{\alpha_{2j}} \dots p_{m}^{\alpha_{mj}}$$

- digits d_j out of digit set $\{0, 1, \ldots, d-1\}$
- bases p₁, ..., p_m (multiplicatively independent integers ≥ 2)

Hamming Weight

number of $d_j \neq 0$ in representation

Introduction		Upper Bound 0000	
Hamming We	eight		

multi-base representations

$$n = \sum_{j} d_{j} p_{1}^{\alpha_{1j}} p_{2}^{\alpha_{2j}} \dots p_{m}^{\alpha_{mj}}$$

- digits d_j out of digit set $\{0, 1, \ldots, d-1\}$
- bases p₁, ..., p_m (multiplicatively independent integers ≥ 2)

Hamming Weight

number of $d_j \neq 0$ in representation

Minimal Hamming Weight

minimal among all multi-base representations of n with the same bases and digit set

• "measures" efficiency of representation

Introduction	Around Multi-base Expansions	Upper Bound 0000	"Lower" Bound 0000
Minimal H	lamming Weight		

Theorem (K-Suppakitpaisarn-Wagner 2018)

- fix bases p₁, ..., p_m (m ≥ 2) multiplicatively independent
- fix digit set containing 1
- there exist positive constants K₁ and K₂
 - (U) each integers n has representation with Hamming weight at most $K_1 \frac{\log n}{\log \log n}$
 - (L) infinitely many positive integers n with no representation with Hamming weight less than $K_2 \frac{\log n}{\log \log n}$

	Around Multi-base Expansions		
0000	0000	0000	0000
Some Proper	ties		

• smallest numbers with given weight (bases 2, 3)

weight	1	2	3	4	5	6	7	
number	1	5	23	431	18431	3448733	1441896119	

(sequence A018899 in the OEIS)

- finding minimal expansion seems to be hard
- compute approximation 2ⁱ3^j ≤ n (Berthé−Imbert 2009)

0000	000	0000	0000
Nu	mber of Representations		
	Theorem (K–Ralaivaosaona–Wagner 20	014)	
	• fix bases $p_1, \ldots, p_m \ (m \geq 2)$		
	• fix digit set $\{0, \ldots, d-1\}$		
	• number of		
	multi-base representations P _n of r	ו	
	$\log P_n = \kappa (\log n)^m$		
	$+ C_1(\log n)^{m-1}\log\log n$	og n	
	$+ C_2(\log n)^{m-1}$		
	$+ O((\log n)^{m-2} \log \log n)$	$\log n$	
	• with		#
	$\kappa = \frac{\log d}{m!} \prod_{i=1}^{m} \frac{1}{\log p_i}$		

Around Multi-base Expansions

Upj

"Lower" Boun 0000

Distribution of the Hamming Weight

Theorem (K–Ralaivaosaona–Wagner 2014)

- fix bases $p_1, \ldots, p_m \ (m \ge 2)$
- fix digit set $\{0, \ldots, d-1\}$
- Hamming weight of uniformly random multi-base representation of n:
 - Gaussian/normal distribution (as $n
 ightarrow \infty$)
 - expectation

$$\mu_n = \frac{\kappa (d-1)}{d \log d} (\log n)^m + \mathcal{O}((\log n)^{m-1} \log \log n)$$

variance

$$\sigma_n^2 = \frac{\kappa(d-1)}{d^2 \log d} (\log n)^m + \mathcal{O}((\log n)^{m-1} \log \log n)$$

	Around Multi-base Expansions	Upper Bound	
	0000		
C' I I	D		

Single-base Representations

p

$$n = \sum_{j} d_{j} p^{\alpha_{j}}$$
• digits d_{j} out of finite digit set
• integer base $p \geq 2$

- Hamming weight
 - average order of magnitude is log n
 - worst case (maximum) also log n
- minimal Hamming weight
 - number of minimal representations (Grabner-Heuberger 2006)
 - compute minimal expansion (Phillips-Burgess 2004, Heuberger-Muir 2009)

		Upper Bound	
		0000	
Greedy Al	gorithm		

Natural Greedy Algorithm

- input integer n
- add largest power-product $p_1^{\alpha_1} \dots p_m^{\alpha_m}$ less or equal to n
- continue with $n p_1^{\alpha_1} \dots p_m^{\alpha_m}$
- output

$$n = \sum_{j} d_{j} p_{1}^{\alpha_{1j}} p_{2}^{\alpha_{2j}} \dots p_{m}^{\alpha_{mj}}$$

		Upper Bound	
		0000	
Greedy Al	gorithm		

Natural Greedy Algorithm

- input integer n
- add largest power-product p₁^{α₁}...p_m<sup>α_m
 less or equal to n
 </sup>
- continue with $n p_1^{\alpha_1} \dots p_m^{\alpha_m}$
- output

$$n = \sum_{j} d_{j} p_{1}^{\alpha_{1j}} p_{2}^{\alpha_{2j}} \dots p_{m}^{\alpha_{mj}}$$

- Greedy algorithm 🧭 minimal representation
- smallest counter-example

$$41 = 2^2 3^2 + 2^2 + 1 = 2^5 + 3^2$$

natural greedy algorithm with input *n* terminates after $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$

steps

• bases 2, 3, generalizes to arbitrary multi-base of primes (*Dimitrov–Jullien–Miller 1998*)

→ "On the maximal distance between integers composed of small primes" (*Tijdeman 1974*)

Upper Bound

natural greedy algorithm with input *n* terminates after $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$

steps

- bases 2, 3, generalizes to arbitrary multi-base of primes (*Dimitrov–Jullien–Miller 1998*)
 - → "On the maximal distance between integers composed of small primes" (*Tijdeman 1974*)
- bases 2, 3, 5 (Yu-Wang-Li-Tian 2013)
- sharpness of bound for double-base expansions (Chalermsook–Imai–Suppakitpaisarn 2015)

		Upper Bound	
0000	0000	0000	0000
T 1 1			
Terminatio	n of Greedy Algorithm		

Corollary (K–Suppakitpaisarn–Wagner 2018)

- fix bases p₁, ..., p_m (m ≥ 2) multiplicatively independent
- natural greedy algorithm with input n terminates after O(log log n) steps
- bound is sharp
- output contains only digits 0 and 1

		Upper Bound 000●	
Proof of Uppe	er Bound		

there are positive constants C and κ with

$$ne^{-C(\log n)^{-\kappa}} \leq p_1^{\alpha_1} \dots p_m^{\alpha_m} \leq n$$

		Upper Bound	
		0000	
Proof of l	Jpper Bound		

there are positive constants C and κ with

$$ne^{-C(\log n)^{-\kappa}} \leq p_1^{\alpha_1} \dots p_m^{\alpha_m} \leq n$$

• two bases p and q multiplicatively independent

• set
$$\lambda = \log_p q$$
 and $M = \lceil \log_q n \rceil$

		Upper Bound	
		0000	
Proof of Up	per Bound		

there are positive constants C and κ with

$$ne^{-C(\log n)^{-\kappa}} \leq p_1^{\alpha_1} \dots p_m^{\alpha_m} \leq n$$

• two bases p and q multiplicatively independent

• set
$$\lambda = \log_p q$$
 and $M = \lceil \log_q n \rceil$

- discrepancy of sequence $(\{\lambda m\})_{m=0}^{M-1}$ is $\leq C_1 M^{-\kappa}$
- discrepancy bounds largest gap in sequence

$$\{\log_p n\} - C_1 M^{-\kappa} \le \{\lambda m\} \le \{\log_p n\}$$

۲

		Upper Bound	
		0000	
Proof of l	Jpper Bound		

there are positive constants C and κ with

$$ne^{-C(\log n)^{-\kappa}} \leq p_1^{\alpha_1} \dots p_m^{\alpha_m} \leq n$$

• two bases p and q multiplicatively independent

• set
$$\lambda = \log_p q$$
 and $M = \lceil \log_q n \rceil$

- discrepancy of sequence $({\lambda m})_{m=0}^{M-1}$ is $\leq C_1 M^{-\kappa}$
- discrepancy bounds largest gap in sequence

$$\{\log_p n\} - C_1 M^{-\kappa} \le \{\lambda m\} \le \{\log_p n\}$$
$$\log_p n - C_1 M^{-\kappa} \le \ell + \lambda m \le \log_p n$$
$$n e^{-C(\log n)^{-\kappa}} \le p^{\ell} q^m \le n$$

		Upper Bound	
		0000	
Proof of	Upper Bound		

there are positive constants C and κ with

$$ne^{-C(\log n)^{-\kappa}} \leq p_1^{\alpha_1} \dots p_m^{\alpha_m} \leq n$$

• two bases p and q multiplicatively independent

• set
$$\lambda = \log_p q$$
 and $M = \lceil \log_q n \rceil$

- discrepancy of sequence $(\{\lambda m\})_{m=0}^{M-1}$ is $\leq C_1 M^{-\kappa}$
- discrepancy bounds largest gap in sequence

$$\{\log_p n\} - C_1 M^{-\kappa} \le \{\lambda m\} \le \{\log_p n\}$$
$$\log_p n - C_1 M^{-\kappa} \le \ell + \lambda m \le \log_p n$$
$$n e^{-C(\log n)^{-\kappa}} \le p^{\ell} q^m \le n$$

 \Rightarrow upper bound follows

		Upper Bound 0000	"Lower" Bound ●000
History &	Related Work		

"Lower" Bound / Sharpness

infinitely many integers n whose minimal Hamming weight is greater than

 $K_2 \frac{\log n}{\log \log n \cdot \log \log \log n}$

- bases 2, 3 (Dimitrov-Howe 2011)
- bases 2, 3, 5 (Yu-Wang-Li-Tian 2013)

		Upper Bound 0000	"Lower" Bound ●000
History &	Related Work		

"Lower" Bound / Sharpness

infinitely many integers n whose minimal Hamming weight is greater than

$$K_2 \frac{\log n}{\log \log n \cdot \log \log \log n}$$

- bases 2, 3 (Dimitrov-Howe 2011)
- bases 2, 3, 5 (Yu-Wang-Li-Tian 2013)

 number of different power-products appearing in multi-base representations of {1, 2, ..., N}

$$\leq T(N) \coloneqq \prod_{j=1}^m (c_j \log N) = (\log N)^m \prod_{j=1}^m c_j$$

 number of different power-products appearing in multi-base representations of {1, 2, ..., N}

$$\leq T(N) \coloneqq \prod_{j=1}^m (c_j \log N) = (\log N)^m \prod_{j=1}^m c_j$$

• number of representations with weight at most K

$$R_{\mathcal{K}}(N) \leq \sum_{k=1}^{\mathcal{K}} {\binom{T(N)}{k}} (|D|-1)^k \leq (|D|T(N))^{\mathcal{K}}$$

 number of different power-products appearing in multi-base representations of {1, 2, ..., N}

$$\leq T(N) \coloneqq \prod_{j=1}^m (c_j \log N) = (\log N)^m \prod_{j=1}^m c_j$$

• number of representations with weight at most ${\it K}$

$$R_{\kappa}(N) \leq \sum_{k=1}^{\kappa} {\binom{T(N)}{k}} (|D|-1)^k \leq (|D|T(N))^{\kappa}$$

 suppose all integers in {2^{s-1} + 1, 2^{s-1} + 2, ..., 2^s} have a representation with weight at most K, i.e.

$$\left(|D|T(2^s)\right)^{\kappa} \ge R_{\kappa}(2^s) \ge 2^{s-1}$$

take logarithms

			ound "Lower" Bound
0000	0000	0000	0000
Different	Point of View:	Communication	Complexity

Communication Complexity

- Set-up:
 - Alice and Bob both hold ℓ bits of information (nonnegative integers less than 2^ℓ)
 - Bob wants to check if both hold the same information

Communication Complexity

- Set-up:
 - Alice and Bob both hold ℓ bits of information (nonnegative integers less than 2^ℓ)
 - Bob wants to check if both hold the same information
 - Alice send some piece of information (according protocol)
 - Bob says
 - "="
 - "≠"
 - "more"

			ound "Lower" Bound
			0000
	Deint of Minut	C	Como na localita a
IJITEPENT	POINT OT VIEW	Communication	I OMNIAYITV

Communication Complexity

- Set-up:
 - Alice and Bob both hold ℓ bits of information (nonnegative integers less than 2^ℓ)
 - Bob wants to check if both hold the same information
 - Alice send some piece of information (according protocol)
 - Bob says
 - "="
 - "≠"
 - "more"
- for each deterministic algorithm/protocol
 - \rightsquigarrow instance where ℓ communication bits needed

- assume *n* has multi-base representation with only $o(\frac{\log n}{\log \log n})$ summands
- convert above ℓ = [log n]-bit instance to multi-base representation
- summand can be denoted by $\mathcal{O}(\log \log n)$ bits

- assume *n* has multi-base representation with only $o(\frac{\log n}{\log \log n})$ summands
- convert above ℓ = [log n]-bit instance to multi-base representation
- summand can be denoted by $\mathcal{O}(\log \log n)$ bits
- Alice only needs

$$\mathcal{O}(\log \log n) \cdot o\left(\frac{\log n}{\log \log n}\right) = o(\log n)$$

bits to tell Bob everything

Minimal Hamming Weight

Theorem (K–Suppakitpaisarn–Wagner 2018)

- fix bases p₁, ..., p_m (m ≥ 2) multiplicatively independent
- fix digit set containing 1
- there exist positive constants K₁ and K₂
 - (U) each integers n has representation with Hamming weight at most $K_1 \frac{\log n}{\log \log n}$
 - (L) infinitely many positive integers n with no representation with Hamming weight less than $K_2 \frac{\log n}{\log \log n}$

