Multi-Base Representations

and
their Minimal Hamming Weight

Daniel Krenn

(joint work in progress with Vorapong Suppakitpaisarn and Stephan Wagner)

'l' ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ

May 24, 2018

Der Wissenschatisfonds

@000
A Supported by the

This presentation is licensed under a Creative Commons. Austrian Science Fund (FWF),
Attribution-NonCommercial-ShareAlike 3.0 Unported License. project P28466.



Introduction
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Multi-Base Representations

Representations
(03 (e O mj
n_E Ty o P

o digits d; out of digit set {0,1,...,d — 1}
@ bases p1, ..., Pm
(multiplicatively independent integers > 2)

@ nonnegative integers «;;

o all power-products p; Y py” ... pm™ distinct
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Introduction
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Multi-Base Representations

Representations
n—ZdJ 0 02 pomi

digits d; out of digit set {0,1,...,d —1}

bases p1, ..., Pm
(multiplicatively independent integers > 2)

nonnegative integers «;

all power-products pf‘ljpgzj .. po distinct

How good is the “best possible”
(minimal Hamming weight)
representation of a number?
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Motivation from Cryptography

calculate
nP=P+---+P
as efficiently as possible
(P group element, n € Ny)
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Motivation from Cryptography

standard systems
(e-g. binary, decimal, ...)

calculate
nP=P+---+P
as efficiently as possible
(P group element, n € Ny)

more digits
(e.g. base 2,
digits {—1,0,1})
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Introduction
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Motivation from Cryptography

standard systems
(e-g. binary, decimal, ...)
calculate
nP=P+.--+P
as efficiently as possible
(P group element, n € Ny)

more digits
(e.g. base 2,
digits {—1,0,1}

[ multi-bases
(e.g. bases 2/3/,
digits {0,1})

d
)

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



Introduction
[e]e] e}

Hamming Weight

@ multi-base representations
ayj o QU
n = E dj 1’ 2J . mmj

o digits d; out of digit set {0,1,...,d —1}
e bases p1, ..., Pm
(multiplicatively independent integers > 2)

Hamming Weight

number of d; # 0 in representation
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Introduction
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Hamming Weight

@ multi-base representations
ayj o QU
n = E dj 1’ ZJ . mmj

o digits d; out of digit set {0,1,...,d —1}
e bases p1, ..., Pm
(multiplicatively independent integers > 2)

Hamming Weight

number of d; # 0 in representation

Minimal Hamming Weight

minimal among all multi-base representations of n
with the same bases and digit set

@ “measures” efficiency of representation
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Minimal Hamming Weight

Theorem (K-Suppakitpaisarn—Wagner 2018)

e fix bases p1, ..., pm (m>2)
multiplicatively independent

o fix digit set containing 1

@ there exist positive constants K1 and K,

(U) each integers n has representation
with Hamming weight
at most Kllo'g"l%

(L) infinitely many positive integers n
with no representation
with Hamming weight

less than Kgb'gﬂ%
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Around Multi-base Expansions
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Some Properties

@ smallest numbers with given weight (bases 2, 3)

weight |1 2 3 4 5 6 7
number | 1 5 23 431 18431 3448733 1441896119

(sequence A018899 in the OEIS)
o finding minimal expansion seems to be hard

@ compute approximation 23/ < n
(Berthé-Imbert 2009)
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Around Multi-base Expansions
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Number of Representations

Theorem (K-Ralaivaosaona—Wagner 2014)
e fix bases p1, ..., pm (m>2)
o fix digit set {0,...,d — 1}
@ number of
multi-base representations P, of n

log P, = k(log n)™
+ Ci(log n)™ Lloglog n
+ Cy(log )™ 1
+ O((log n)™ % log log n)

@ with

lo dH’" 1
KR = g
m! Pl log p;
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Around Multi-base Expansions
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Distribution of the Hamming Weight

Theorem (K-Ralaivaosaona—Wagner 2014)
o fix bases p1, ..., pm (m>2)
o fix digit set {0,...,d — 1}
@ Hamming weight of

uniformly random
multi-base representation of n:

o Gaussian/normal distribution (as n — o)
e expectation

= Hc(lclfo—;;)('og n)™ + O((log n)™~* log log n)
e variance
> hj(d - 1) m m—1
% = griogq (08" + Ol(log n)™ " loglog n)
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Around Multi-base Expansions
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Single-base Representations

n= Zdjpaf
J

e digits d; out of finite digit set

@ integer base p > 2

@ Hamming weight
o average order of magnitude is log n
o worst case (maximum) also log n
@ minimal Hamming weight
e number of minimal representations
(Grabner—Heuberger 2006)
e compute minimal expansion
(Phillips—Burgess 2004, Heuberger—Muir 2009)
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Upper Bound
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Greedy Algorithm

Natural Greedy Algorithm

@ input integer n

@ add largest power-product py* ... p%m
less or equal to n

e continue with n— pi™ ... p&m

@ output

a1 Qo Qi
nzz:djp1 Py pm”
J

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



Upper Bound
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Greedy Algorithm

Natural Greedy Algorithm

@ input integer n

@ add largest power-product py* ... p%m
less or equal to n

e continue with n— pi™ ... p&m

@ output

— e O Xmj
n= E dipy 'py” - Pm
J

o Greedy algorithm @ minimal representation

@ smallest counter-example
41 =2232 422 +1=2°432
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History & Related Work

Upper Bound

natural greedy algorithm with input n

terminates after
lo
O(ioglogn)
log log n

@ bases 2, 3, generalizes to arbitrary multi-base of primes
(Dimitrov—Jullien—Miller 1998)

~> “On the maximal distance between integers

composed of small primes” (Tijdeman 1974)

steps
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Upper Bound
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History & Related Work

Upper Bound

natural greedy algorithm with input n

terminates after
lo
O(ioglogn)
log log n

@ bases 2, 3, generalizes to arbitrary multi-base of primes
(Dimitrov—Jullien—Miller 1998)
~> “On the maximal distance between integers
composed of small primes” (Tijdeman 1974)
@ bases 2, 3, 5 (Yu—Wang-Li-Tian 2013)
@ sharpness of bound for double-base expansions
(Chalermsook—Imai-Suppakitpaisarn 2015)

steps
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Termination of Greedy Algorithm

Corollary (K-Suppakitpaisarn—Wagner 2018)

o fix bases p1, ..., pm (m>2)
multiplicatively independent

@ natural greedy algorithm with input n

terminates after (’)(Iolgc’l%) steps

@ bound is sharp

@ output contains only digits 0 and 1

000®
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Proof of Upper Bound

Approximation by Power-products

there are positive constants C and x with
ne—Cllogn)~" < pfl ..pim < n
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Upper Bound
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Proof of Upper Bound

Approximation by Power-products

there are positive constants C and x with
ne—Cllogn)~" < pfl ..pim < n

@ two bases p and g multiplicatively independent

o set A\ = log,q and M = [log, n]

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



Upper Bound
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Proof of Upper Bound

Approximation by Power-products
there are positive constants C and x with
ne” (BN < pt L plm < n

two bases p and g multiplicatively independent

set A = log, g and M = [log, n|

discrepancy of sequence ({Am})f\,f:—ol is < GGM™*F

discrepancy bounds largest gap in sequence
{Iogp n}—GM™" < {Am} < {Iogp n}
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Upper Bound
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Proof of Upper Bound

Approximation by Power-products
there are positive constants C and x with
ne” (BN < pt L plm < n

two bases p and g multiplicatively independent

set A = log, g and M = [log, n|

discrepancy of sequence ({Am})f\,f:—ol is < GGM™*F

discrepancy bounds largest gap in sequence
{log, n} — GM™" < {Am} < {log, n}
log, n — CGM™<l+Ixm< log, n

ne—C(Iogn)_" < qum <n
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Upper Bound
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Proof of Upper Bound

Approximation by Power-products
there are positive constants C and x with
ne” (BN < pt L plm < n

two bases p and g multiplicatively independent

set A = log, g and M = [log, n|

discrepancy of sequence ({Am} M;& is < GGM—*F

discrepancy bounds largest gap in sequence
{log, n} — GM™" < {Am} < {log, n}
log, n — CGM™<l+Ixm< log, n

ne—C(Iogn)_" < qum <n

= upper bound follows '
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“Lower" Bound
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History & Related Work

“Lower” Bound / Sharpness

infinitely many integers n whose minimal
Hamming weight is greater than

log n

K>
log log n - log log log n

@ bases 2, 3 (Dimitrov—Howe 2011)
o bases 2, 3, 5 (Yu-Wang—Li-Tian 2013)

Multi-Base Representations Daniel Krenn, AAU Klagenfurt, Austria



“Lower" Bound
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History & Related Work

“Lower” Bound / Sharpness

infinitely many integers n whose minimal
Hamming weight is greater than

log n

2
loglogn - lo n

@ bases 2, 3 (Dimitrov—Howe 2011)
o bases 2, 3, 5 (Yu-Wang—Li-Tian 2013)
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“Lower" Bound
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Proof of Sharpness: Counting Representations

@ number of different power-products
appearing in multi-base representations of {1,2,..., N}

m m

< T(N) = H(CJ log N) = (log N)chj

Jj=1 Jj=1
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“Lower" Bound
[e] Je]e]

Proof of Sharpness: Counting Representations

@ number of different power-products

appearing in multi-base representations of {1,2,..., N}
< T(N) = [[(ilog N) = (log N)" [ &
j=1 j=1

@ number of representations with weight at most K

K
rem < - (7)ol - 17 < (o)
k=1
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“Lower" Bound
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Proof of Sharpness: Counting Representations

@ number of different power-products

appearing in multi-base representations of {1,2,..., N}
< T(N) = [[(ilog N) = (log N)" [ &
j=1 Jj=1

@ number of representations with weight at most K

~(TV) ‘ K
Rk(N) <) L (DI =1)" < (IDIT(N))
k=1
o suppose all integers in {2571 +1,2571 +2 ... 2%}
have a representation with weight at most K, i.e.
(IDIT(2%)" = Re(2%) = 227!
o take logarithms
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Different Point of View: Communication Complexity

Communication Complexity

o Set-up:
@ Alice and Bob both hold ¢ bits of information
(nonnegative integers less than 2¢)
o Bob wants to check
if both hold the same information
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Different Point of View: Communication Complexity

Communication Complexity

@ Set-up:
e Alice and Bob both hold ¢ bits of information
(nonnegative integers less than 2¢)
e Bob wants to check
if both hold the same information
o Alice send some piece of information
(according protocol)
e Bob says
0t
o A"

e “more”
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Different Point of View: Communication Complexity

Communication Complexity

o Set-up:
e Alice and Bob both hold ¢ bits of information
(nonnegative integers less than 2¢)
e Bob wants to check
if both hold the same information
o Alice send some piece of information
(according protocol)
e Bob says
0t
o “A£"
@ “more”
e for each deterministic algorithm/protocol
~~ instance where £ communication bits needed
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Proof of Sharpness: Communication Complexity

@ assume n has multi-base representation

. |
with only o(ﬁ%) summands
@ convert above ¢ = |log n|-bit instance
to multi-base representation

e summand can be denoted by O(loglog n) bits
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“Lower" Bound
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Proof of Sharpness: Communication Complexity

@ assume n has multi-base representation

with only o(%) summands

@ convert above ¢ = |log n|-bit instance
to multi-base representation

e summand can be denoted by O(loglog n) bits
@ Alice only needs
log n

b - LA RPN
Ioglogn> o(log n)

O(loglog n) - o(

bits to tell Bob everything
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Minimal Hamming Weight

Theorem (K-Suppakitpaisarn—Wagner 2018)

e fix bases p1, ..., pm (m>2)
multiplicatively independent

o fix digit set containing 1

@ there exist positive constants K1 and K,

(U) each integers n has representation
with Hamming weight
at most Kllo'g"l%

(L) infinitely many positive integers n
with no representation
with Hamming weight

less than Kgb'gﬂ%
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