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Abstract

Cognitive radio has become a promising technology to increase spectrum u-
tilization through spectrum sharing between licensed users (primary users)
and unlicensed users (secondary users). Performance evaluation and anal-
ysis is of key importance to get more knowledge of this newly emerged
technology.

Queueing theory and Markov chain model have been applied to con-
duct the analysis, where some results are obtained. The existing research
sheds light on the performance of cognitive radio networks. However, there
are also some limitations. Poisson arrival and exponentially distributed
service time are mostly assumed in existing analysis. With these assump-
tions, existing queueing theory results, particularly M/G/1 priority queue
results, can be directly applied, and the Markov chain model can be estab-
lished. However, these assumptions are too restrictive for modern wireless
communication networks, where the traffic can be of different types and
the channel capacity can vary over time. In addition, particular focus is
made on average values (such as average delay) with little investigation on
probabilistic distribution bounds.

Therefore, new methodology is needed to make a breakthrough and to
bring new insights regarding performance of cognitive radio networks. Net-
work calculus, a newly developed theory, provides a possible solution. It
was firstly proposed by R. L. Cruz in 1991, and has involuted into two
branches now, i.e., deterministic network calculus and stochastic network
calculus. There are two basic concepts in network calculus: (stochastic)
arrival curve and (stochastic) service curve, which are used to describe the
arrival process of input traffic and the service process of server, respective-
ly. Probabilistic performance guarantees can be analyzed using stochastic
network calculus. In addition, the independence between arrival process
and service process can be exploited to obtain tighter probabilistic bounds,
which is called as independent case analysis.

This work is devoted to applying network calculus analysis, particularly
stochastic network calculus, to performance evaluation of a cognitive radio
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network. Generally, this work contains two scenarios: a single-channel
scenario and a multiple-channel scenario.

In the single-channel scenario, several key factors are considered and
discussed. Different traffic models, including Periodical source and (Com-
pound) Poisson source, are considered. The sensing error process, which
can be further divided into mis-detection process and false alarm process,
is modeled, and the corresponding stochastic arrival process is analyzed.
Both constant channel and Gilbert-Elliott ON-OFF fading channel are in-
vestigated, and the stochastic service curves are obtained. In addition, the
influence of different re-transmission schemes is also studied. These schemes
include no-re-transmission, re-transmission until success and maximum-N-
time re-transmission. Probabilistic delay distribution bound and probabilis-
tic backlog distribution bound are obtained and discussed. Furthermore,
delay-constrained capacity is defined and capacity regions for both prima-
ry users and secondary users are also studied. Independent case analysis
is applied in some cases, and results are compared and discussed. In the
multiple-channel scenario, the main concern is put on the guaranteed service
of multiple parallel channels and delay-constrained capacity by assuming
perfect sensing and constant channel.

In validating the theoretical results, system configurations are speci-
fied mainly based on Long Term Evolution (LTE) networks, and numerical
calculations executed in Matlab are made to visually depict the results.
Simulation platform by C++ language is also constructed to obtain sim-
ulation results. Related results show the influence of different schemes or
parameters on system performance and capacity region. Comparison be-
tween the numerical and simulation results is made, which further verifies
the theoretical deductions.
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Chapter 1. Motivation and Focus of This Thesis

1.1 Motivation

As the requirements for mobile communications increase greatly, wireless
communication systems have been developed quickly. However, the avail-
able spectrum resources, which are suitable for wireless transmissions, are
scarce. Therefore, how to utilize the limited spectrum in a more efficient
way becomes a vital task, and attracts significant attention from both in-
dustry and academy. The proposal of cognitive radio provides a remarkable
solution, and leads to fruitful results after more than ten years development.
Many research efforts have been put on specific problems in cognitive ra-
dio networks, such as spectrum sensing algorithms and spectrum allocation
mechanisms. The evaluation and analysis from the network performance
viewpoint is one of the important issues.

The inherent characteristics of a cognitive radio network pose challenges
for performance evaluation. First, there are two types of users, named pri-
mary users and secondary users, sharing the spectrum according to differ-
ent priorities. Second, spectrum sensing is relied on by the secondary users
to find the vacant spectrum before their transmissions. Imperfect sensing
can greatly impact the system performance, which will introduce collisions
between a primary user and a secondary user, or will lead to waste of trans-
mission opportunities. Third, retransmission is usually employed in order
to cope with loss. In addition, channel fading and offered traffic will also
affect the performance. To sum up, all these factors make the evaluation
process complicated.

In the literature, the classic queueing theory has been used to conduct
performance analysis of cognitive radio networks. In [1], an M/D/1 priority
queueing system model is used to derive the average waiting times and av-
erage queueing lengths in a cognitive radio network with perfect spectrum
sensing. M/M/1 queueing model is employed to analyze the average queue-
ing time of secondary users in [2]. The authors of [3] relied on the M/G/1
preemptive priority queue to obtain analytical forms of average delay and
throughput for both PUs and SUs. In these works, the impact of spectrum
sensing errors on the system performance is not well studied, and they only
provide results in terms of average values with little investigation on prob-
abilistic delay bounds. Furthermore, the M/G/1 model assumes that the
system is work-conserving. However, due to sensing errors, the system may
not be work-conserving, which implies that the M/G/1 priority results can
not be directly applied when sensing error is taken into consideration. In
addition, M/G/1 results can not be applied to the multi-channel case.

The Markov chain model has also been relied on to conduct performance
analysis. Considering the cognitive radio scenario, the state space of the
Markov chain can be defined in two ways: (1) based on the channel occu-
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1.2. Focus of This Thesis

pancy state (that is, whether a channel is free, occupied by PU, occupied
by SU or collision), and (2) the number of PUs and the number of SUs in
the system. In most literatures, the second is used for indices of the Markov
state space, such as in [4–6], because, with it, the dimensionality and com-
plexity of the Markov model (especially in the multi-channel case) can be
more easily reduced as highlighted by the authors of [5]. The Markov chain
based analysis helps to derive the blocking probability for SUs, average
number of users in the system as well as throughput. However, to the best
of our knowledge, no delay-related results are available from this analysis.

In all the related works, the authors assume Poisson arrival and most
of them also assume exponentially distributed service time, so that existing
queueing theory results, particularly M/G/1 priority queue results, can be
directly applied, and the Markov chain model can be established. However,
these assumptions are too restrictive for modern wireless communication
networks, where the traffic can be of different types and the channel capacity
can vary over time.

Therefore, it is of great importance to make all-rounded performance
analysis of a cognitive radio network by considering different traffic models,
channel models and other factors. Network calculus, an analysis theory
based on min-plus/max-plus algebra, provides a novel approach to fill in
the blank area. By applying network calculus, system performance for
more traffic models can be evaluated, the influence of channel fading and
re-transmission schemes can be studied, and capacity region for primary
users and secondary users can be obtained. All these results will then pro-
vide more insights on the performance of cognitive radio networks. At the
same time, application of network calculus will be extended from computer
networks to wireless communication networks.

1.2 Focus of This Thesis

In this work, a newly developed approach – network calculus, specifically
stochastic network calculus – is employed to perform stochastic service
guarantee analysis of cognitive radio networks. Several key factors that
will influence the final performance are considered, including:

• Traffic models. Poisson traffic will be used as a classical model. Be-
sides, periodical source model and compound Poisson traffic will al-
so be studied. The mathematical model, named (stochastic) arrival
curve in network calculus, will be used to describe the characteristics
of traffic.
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• Wireless channel models. Fading is perhaps the most significant dif-
ference between wireless channels and wired channels. Thus, channel
fading and its impact should be considered and studied. In this work,
the wireless channel will be modeled as a Gilbert-Elliott (GE) channel
with two states: ON and OFF. In state ON, data can be transmitted
and received correctly, while in state OFF, no data can be received
by the receiver due to deep fading. The mathematical model, named
stochastic service curve for such a channel will be obtained. In addi-
tion, constant channel is also employed and studied in this work.

• Sensing error process. Spectrum sensing can be thought as the basis
of a cognitive radio network. The secondary users obtain the infor-
mation about spectrum occupancy state through spectrum sensing
mechanisms, and then they will make use of the unused spectrum so
that the spectrum utilization can be improved. However, spectrum
sensing results are not always consistent with the real conditions due
to many difficulties during the sensing process, which are called sens-
ing errors. In this work, the sensing errors will be classified into two
types, i.e. Mis-Detection (MD) and False Alarm (FA). Stochastic ar-
rival curves of these processes will be derived, and their influences on
performance will also be studied and analyzed.

• Re-transmission schemes. The transmitted packet may not be re-
ceived successfully by the receiver because of deep fading or mis-
detection. Therefore, Re-Transmission (RT) is needed in order to
guarantee a certain packet loss probability. Different schemes will be
studied in this work, including without re-transmission, re-transmit
until success and max-N-time re-transmission.

The performance will be evaluated and compared mainly by the prob-
abilistic delay/backlog distribution bound and delay-constrained capacity.
Both a single-channel scenario and a multiple-channel scenario are modeled
and studied. Furthermore, independent case analysis approach in stochas-
tic network calculus is also investigated and applied to obtain better bounds
and capacity region.
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Chapter 2. Background

In this part, a short introduction to the related background will be p-
resented. First, cognitive radio network is described including the network
architecture and spectrum sensing techniques. Second, network calculus re-
lated contents are introduced, including its mathematic basis, traffic model,
server model, useful properties and independent case analysis. Then, the
cognitive radio network considered in this work is modeled, and the con-
cerned output parameters are presented.

2.1 Cognitive Radio Network

Nowadays, the development of wireless communication techniques cannot
meet the fast increasing of communication requirements. One of the most
essential bottlenecks is the scarce spectrum resource, which is suitable for
wireless transmissions. The fixed spectrum allocation policy makes the
problem even severer. In most countries, the use of spectrum bands is
regulated by governments through a spectrum management process known
as spectrum allocation. A number of forums and standards bodies are
also involved in the spectrum management process, such as International
Telecommunication Union (ITU) and European Telecommunications Stan-
dards Institute (ETSI). Spectrum bands are assigned in three types [7]:

• No one may transmit: frequencies reserved for radio astronomy to
avoid interference at radio telescopes;

• Anyone may transmit, as long as they respect certain transmission
power and other limits: open spectrum bands such as the unlicensed
Industrial, Scientific and Medical (ISM) bands. The “listen before
talk” contention based protocol is mostly used in this case;

• Only the licensed user of that band may transmit: the licensing body
may give the same frequency to several users as a form of frequency
reuse if they do not interfere because their coverage map areas never
overlap.

For those high-demand sections of the electromagnetic spectrum, auc-
tions may be used to decide who can use them. Generally, the aforemen-
tioned spectrum allocation is static or fixed for a certain time length. It
has been found that some bands are not efficiently utilized in space domain
or in time domain. According to [8], the utilization of the fixed spectrum
assignment is approximately 15-85% based on temporal and geographical
variations. On the contrary of under-utilization, the requirements for spec-
trum resource increase urgently. In other words, dynamic spectrum alloca-
tion mechanism is required in order to make better use of the spectrum.
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The proposal of cognitive radio provides a novel solution to improve
spectrum utilization efficiency. The concept of cognitive radio was firstly
proposed by Joseph Mitola III in a seminar in 1998, and then published in
an article by Mitola and Maguire in 1999 [9]. After that, cognitive radio
has gained a lot of attention. A cognitive radio is the key enabling technol-
ogy for dynamic spectrum access, and it has various definitions given by
different regulatory bodies, such as Federal Communications Commission
(FCC) and International Telecommunication Union.

• (Definition by FCC) A Cognitive Radio is a radio that can change its
transmitter parameters based on interaction with the environment in
which it operates.

• (Definition by ITU) A radio or system that senses and is aware of
its operational environment and can dynamically and autonomously
adjust its radio operating parameters accordingly.

No matter how the specific definitions are made, the essential concept is
the ability to know the environment and the ability to adjust to use vacant
resources.

In a cognitive radio network, there are two coexistent networks, i.e. pri-
mary network and secondary network. The users belonging to the primary
network, called primary users, are licensed users and have a license to ac-
cess a certain spectrum band. Primary users do not need any modification
or additional functions for co-existence with the secondary network. How-
ever, the users belonging to the secondary network, called secondary users,
are non-licensed users. Therefore, additional functionalities are required to
share the spectrum band with primary users. The required tasks form a
cognitive cycle as summarized in Figure 2.1.

The cycle starts from the spectrum sensing process. In this part, the
secondary users sense the available spectrum bands (named spectrum holes),
capture their information, and then detect the vacant spectrum resources.
Based on the sensing results, secondary users can decide which resource they
want to utilize. Then, spectrum sharing is conducted to prevent collisions
between multiple secondary users trying to access the same spectrum. In
addition, secondary users should switch to other vacant bands when the
primary users need the specific portion of spectrum, because secondary
users are visitors to the spectrum. This operation is the so-called spectrum
mobility.
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Figure 2.1: Functionalities in a Cognitive Cycle

2.1.1 Coexistence Architectures

In a cognitive radio system, the primary network and the secondary network
coexist with each other in one architecture. The basic design principle is
that the primary users are as unaffected as possible. In order to fulfill
such coexistence, there are three possible solutions: overlay, underlay and
interweave.

In the overlay architecture, concurrent transmissions between prima-
ry and secondary users are allowed. Secondary users have the ability to
sense primary users’ message, and then use advanced coding schemes (e.g.
dirty paper coding [10]) for interference cancelation, so that primary users’
transmissions remain unaffected.

The underlay architecture also allows simultaneous primary and sec-
ondary transmissions. The secondary users spread their signals over a wide
bandwidth, which is large enough to ensure that the amount of interference
caused to primary transmissions is under the tolerable thresholds. Such
interference constraint restricts the usage of underlay architecture to short
range communications.

The interweave architecture is proposed based on the opportunistic com-
munication. Secondary users have the intelligent to periodically monitor
the spectrum, detect the activities of primary users in time and frequen-
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cy domain, and then opportunistically interweave secondary transmissions
through the sensed spectrum holes. In this scenario, accurate spectrum
sensing is critical to the performance, especially when Signal to Noise Ra-
tio (SNR) is low.

In this work, the interweave architecture is considered, in which sec-
ondary users share the spectrum with primary users by Time Division Mul-
tiple Access (TDMA) mode along time axis and by Frequency Division
Multiple Access (FDMA) mode in frequency domain.

2.1.2 Spectrum Sensing Techniques

As mentioned in the interweave architecture above, spectrum sensing is
of great importance to a cognitive radio network. In reality, however, it
is not easy for a secondary user to detect primary users’ activity in the
absence of interaction between primary users and itself. One of the key
challenging issues is the so-called hidden terminal problem, which refers
to terminals that are out of the range of other terminals. For example, a
terminal B at the edge of an access point’s range, which is known as A,
can see the access point, but it is unlikely that B can see another terminal
C on the opposite end of the access point’s range, as illustrated by Figure
2.2. These terminals are known as hidden terminals. In order to prevent
this problem, it is required that the spectrum sensing sensitivity should
outperform primary user’s receiver by a large margin. In addition, it is also
required that the implementation of the spectrum sensing function has a
high degree of flexibility, because it should work in various environments
with different types of primary network, bandwidth, frequency, propagation
property, interferences and other special characteristics.

A lot of work has been done and many spectrum sensing algorithms
have been proposed (e.g. [11–16]). Generally, these algorithms can be clas-
sified into three categories: transmitter detection, receiver detection and
interference temperature management detection.

In transmitter detection approaches, the detection of primary users
is performed based on the received signal at secondary users. The most
well-known approaches in this category include Matched Filter (MF) detec-
tion [13], Energy detection [17], and Cyclostationary-Feature detection [18].
A matched filter is obtained by correlating a known signal with an unknown
signal to detect the presence of the known signal. The MF detection re-
quires less time to achieve high processing gain on the basis of a priori
knowledge of the primary user signal, such as the modulation type and
order, the pulse shape, and the packet format. This further means, if such
information is not accurate, then the matched filter performs poorly. For
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Figure 2.2: An Example of Hidden Terminal

energy detection, its implementation is easy. It can determine the presence
of the signal but cannot differentiate signal types, and it does not work
for spread spectrum signals. The Cyclostationary-Feature detection has
better performance even in low SNR regions, but has higher computation-
al complexity and requires significantly long observation time. With the
transmitter detection algorithms, the secondary users cannot avoid the in-
terference due to the lack of primary receivers’ information. Moreover, the
transmitter detection cannot prevent the hidden terminal problem.

In receiver detection, secondary users detect the Local Oscillator (LO)
leakage power for the detection of primary users instead of the transmitted
signals. Same methods, such as matched filter, can be used to detect the
LO leakage power. The receiver detection can solve the receiver uncertainty
problem; however, implementation of a reliable detector is challenging since
the LO leakage signal is typically weak.

The interference temperature management detection manages interfer-
ence at the receiver according to the interference temperature limit, which
is represented by the amount of interference that the receiver could tolerate.
As far as secondary users do not exceed this limit by their transmissions,
they can use this spectrum band. It faces several implementation problems.
For example, there is no practical way for a secondary user to measure or
estimate the interference temperature at the primary receiver. In addition,
the interference temperature limit of a primary user is location dependent,
which is not easy to determine.

From the viewpoint of detection behavior, spectrum sensing can be di-
vided into non-cooperative and cooperative detection. In the non-cooperative
detection, secondary users conduct detection independently by themselves.
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While in the cooperative detection, secondary users share their detection
information to improve the detection performance.

In this work, the only aspect that matters is the detection performance
without considering which specific detection approach is used. The per-
formance is represented by average sensing error probability in a time slot,
which is further divided into mis-detection probability and false alarm prob-
ability.

2.2 Network Calculus

Network calculus is a newly developed queueing theory for service guaran-
tee analysis, and it is used to deal with flow problems in networks. The
concept of network calculus was firstly introduced in 1990s [19, 20], in
which arrival curve and service curve concepts were proposed. During the
20-year’s development, network calculus has evolved into two branches: de-
terministic network calculus and stochastic network calculus. At the same
time, some nice properties have been proved, such as output characteristics
and concatenation property, on the mathematical basis of min-plus algebra.
Book [21] and Book [22] give detailed introduction to deterministic network
calculus and stochastic network calculus, respectively.

In this section, a short introduction on min-plus algebra is given. Then,
the traffic model and service model in both deterministic network calculus
and stochastic network calculus are presented, followed by a summary of
several widely-used properties. Lastly, an important approach, i.e. inde-
pendent case analysis, is described in Section 2.2.6.

2.2.1 Min-Plus Algebra

Min-plus algebra is the mathematical foundation of network calculus. This
section will give a brief introduction to min-plus algebra. The definition
of min-plus algebra and comparison with traditional algebra are illustrat-
ed firstly. Then min-plus convolution and de-convolution as well as their
properties are discussed. Thirdly, the vertical and horizontal deviations are
expressed, which are two important quantities in network calculus.

In conventional algebra, the two most common operations are addition
and multiplication, and the algebraic structure is (�,+,×), that is the set of
reals endowed with the two operations of addition and multiplication. Let
us change the operations in the following way: addition becomes computa-
tion of the minimum and multiplication becomes addition. Besides, we also
include +∞ in the set of elements on which min-operations are carried out.
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Then we can obtain the min-plus algebraic structure as (�∪ {+∞},∧,+) ,
where ∧ denotes the infimum (or, when it exists, the minimum).

Min-plus algebra has some operation properties, which are similar with
traditional algebra. Some of the properties are listed below.

• Closure of ∧ and +: For all a, b ∈ {� ∪ {+∞}}, a ∧ b and a+ b also
belong to {� ∪ {+∞}}.

• Associativity of ∧ and +: For all a, b, c ∈ {� ∪ {+∞}}, (a ∧ b) ∧ c =
a ∧ (b ∧ c) and (a+ b) + c = a+ (b+ c).

• Commutativity of ∧: For all a, b ∈ {� ∪ {+∞}}, a ∧ b = b ∧ a.

• Idempotency of ∧: For all a ∈ {� ∪ {+∞}}, we have a ∧ a = a.

• Existence of a zero element for ∧: There is some e = +∞ ∈ {� ∪
{+∞}} such that for all a ∈ {� ∪ {+∞}}, we have a ∧ e = a.

• The zero element for ∧ is absorbing for +: For all a ∈ {� ∪ {+∞}},
we have a+ e = e = e+ a.

• Existence of a neutral element for +: There is some u = 0 ∈ {� ∪
{+∞}} such that for all a ∈ {�∪{+∞}}, we have a+u = u = u+a.

• Distributivity of + with respect to ∧: For all a, b, c ∈ {� ∪ {+∞}},
we have (a+ b) ∧ c = a ∧ c+ b ∧ c.

For functions in min-plus algebra, there are two important ones that are
often used, i.e. min-plus convolution and min-plus de-convolution, defined
as follows.

• Min-plus convolution ⊗: For any functions a and b, a ⊗ b(x) =
inf0≤y≤x[a(y) + b(x− y)].

• Min-plus de-convolution �: For any functions a and b, a � b(x) =
supy≥0[a(x+ y)− b(y)].

2.2.2 Notations

Before going to the details of stochastic network calculus, the important
notations used all over this thesis are described and defined in this section.

A(t) denotes the cumulative amount of traffic generated by an arrival
process during period (s, t]. S(t) represents the cumulative amount of ser-
vice that can be provided by a service process. The arrival process is served

17



2.2. Network Calculus

Figure 2.3: System Elements and Notations

by the service process as depicted in Figure 2.3, where the output process
is denoted by A∗(t). By definition, the backlog in the system at time t is

B(t) = A(t)−A∗(t).

For the delay in the system at time t, it is

D(t) = inf{τ : A(t) ≤ A∗(t+ τ)}.

2.2.3 Traffic Model

Arrival curve is defined to describe the characteristics of a traffic flow based
on the concept of cumulative arrival process, denoted as A(t), which is the
total amount of traffic generated by the flow during time period [0, t). The
deterministic arrival curve gives an upper bound on the generated traffic
defined as:

Definition 1. (Deterministic Arrival Curve.) Given a wide-sense in-

creasing function α(t) defined for t ≥ 0, we say that a flow A is constrained

by α if and only if for all s ≤ t:

A(t)−A(s) ≤ α(t− s),

where A(u) denotes the total amount of traffic from flow A during time

period [0, s). We say that flow A has α as a deterministic arrival curve.

A typical traffic model that is constrained by a deterministic arrival
curve is the Periodic Traffic defined as following.

Example 1. (Periodic Source) A periodic source produces an amount

of workload, denoted by δ, at times {Uτ +nτ, n = 0, 1, 2, ...}, where τ is the
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period time length and U is uniformly distributed on the interval [0, 1]. It

has a deterministic arrival curve as:

α(t) = δ +
δ

τ
t.

For some stochastic arrival processes, deterministic arrival curve is not
applicable, because such stochastic processes are not deterministically up-
per bounded. Stochastic arrival curve is then defined while it has variations,
among them the following one is mostly used in this work. This model, orig-
inally proposed in [23] and generalized in [24], exploits the virtual-backlog-
property of deterministic arrival curve [22], and is now also known in the
literature as sample path envelope [25].

Definition 2. (Stochastic Arrival Curve). A flow A(t) is said to have

a virtual-backlog-centric (v.b.c) stochastic arrival curve (sac) α ∈ F 1 with

bounding function f ∈ F̄ 2, denoted by A(t) ∼sac 〈f, α〉, if for all t ≥ 0 and

all x ≥ 0 there holds:

P

{
sup
0≤s≤t

{A(s, t)− α(t− s)} > x

}
≤ f(x).

For two typical models that are employed in this work, i.e. Poisson
and Compound Poisson traffic model, the v.b.c stochastic arrival curves
are already obtained as follows.

Example 2. (Poisson Traffic.) Suppose all packets of a flow have the

same size L and they arrive according to a Poisson process with mean ar-

rival rate λ. Then the flow has a v.b.c stochastic arrival curve A(t) ∼sac

〈f, α〉 for any r > λL with bounding function [22]:

f(x) = 1− (1− a)

k∑
i=0

[
[a(i− k)]i

i!
e−a(i−k)

]
α(t) = rt,

where a = λL
r and k = � x

L�.
1F : the set of non-negative wide-sensing increasing functions
2F̄ : the set of non-negative wide-sensing decreasing functions
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Example 3. (Compound Poisson Traffic.) Suppose packets of a flow

arrive according to a Poisson process with mean arrival rate λ. If the packet

lengthes L1, L2, .... are independent and exponentially distributed with pa-

rameter σ. Then the flow has a v.b.c stochastic arrival curve A(t) ∼sac

〈f, α〉 for any θ1 ≥ 0 and θ > 0 [26]:

f(x) = e−θθ1e−θx (2.1)

α(t) =
λt

σ − θ
+ θ1t. (2.2)

2.2.4 Server Model

Similar to arrival curve, service curve depicts the properties of a server.
Deterministic service curve gives a deterministic bound on the amount of
service that can be guaranteed by a server, while a stochastic service curve
depicts the probabilistic property of the server with several variations. Here,
the definitions for deterministic service curve and stochastic service curve
are presented.

Definition 3. (Deterministic Service Curve.) Consider a system S

and a flow through S with input function A(t) and output function A∗(t) .

We say that S offers to the flow a deterministic service curve β if β is wide

sense increasing, β(0) = 0 and

A∗ ≥ A⊗ β(t) � inf
0≤s≤t

{A(s) + β(t− s)} ,

where ⊗ denotes the min-plus convolution.

Definition 4. (Stochastic Service Curve3.) A system S is said to

provide a stochastic service curve (ssc) β ∈ F with bounding function g ∈ F̄ ,

denoted by S ∼ssc 〈g, β〉, if for all t ≥ 0 and all x ≥ 0 there holds:

P{A⊗ β(t)−A∗(t) > x} ≤ g(x). (2.3)

3The definition given by Eq.(2.3) is called Weak stochastic service curve in [22]. For
the sake of consistence in this thesis, the name Stochastic Service Curve is used here.
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Note that: The deterministic branch can be considered as a special
case of the stochastic branch, where the bounding functions are ZEROs for
any x. Therefore, the stochastic branch is referred to by default in the
remaining parts.

2.2.5 Properties

This section introduces three basic results of stochastic network calculus,
which play important roles in the analysis of this work. The Backlog Bound
and Delay Bound theorems show bounds on the probabilistic distributions
of backlog and delay based on stochastic arrival curve and stochastic service
curve. The Leftover Service theorem tells how to deal with aggregated
flows. For conciseness, the theorems are summarized below without detailed
deduction steps, which can be found in [22].

Theorem 1. (Backlog Bound.) Consider a server S with input A. Sup-

pose that the input has a v.b.c stochastic arrival curve denoted as A ∼sac

〈f, α〉, and the server provides to the input a stochastic service curve writ-

ten as S ∼ssc 〈g, β〉, then for any t ≥ 0 and x ≥ 0, the backlog B(t) ≡
A(t)−A∗(t) is bounded by

P {B(t) ≥ x} ≤ f ⊗ g(x− α� β(0)), (2.4)

where α� β(x) is de-convolution of functions α and β.

Theorem 2. (Delay Bound.) Consider a server S with input A. Suppose

that the input has a v.b.c stochastic arrival curve denoted as A ∼sac 〈f, α〉,
and the server provides to the input a weak stochastic service curve written

as S ∼ssc 〈g, β〉, then for any t ≥ 0 and x ≥ 0, the delay of traffic arriving

at t, denoted as D(t) = inf{τ ≥ 0 : A(t) ≤ A∗(t+ τ)}, is bounded by

P {D(t) ≥ h(α+ x, β)} ≤ f ⊗ g(x), (2.5)

where h(α + x, β) = supt≥0 {inf{τ ≥ 0 : α(t) + x ≤ β(t+ τ)}} is the maxi-

mum horizontal distance between α(t) + x and β(t).
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Theorem 3. (Leftover Service.) Consider a system S with input A

which is the aggregation of two constituent flows A1 and A2. Suppose A2

has a v.b.c stochastic arrival curve denoted as A2 ∼sac 〈f2, α2〉, and the

system provides to the aggregated input A a stochastic service curve written

as S ∼ssc 〈g, β〉. Then, if β−α2 ∈ F , A1 receives a stochastic service curve

of S1 ∼ssc 〈g ⊗ f2, β − α2〉.

2.2.6 Independent Case Analysis

As it is noticeable by the definitions of arrival/service curve, they are not
unique. Take the deterministic arrival curve as an example: if α(t) is a
deterministic arrival curve, then α(t) + C with C ≥ 0 and kα with k ≥ 1
can also fulfill the definition. In other words, they are also deterministic
arrival curves. Due to this fact, the performance bounds obtained from
Theorem 1 and Theorem 2 are also not unique. Then, a key challenge in
network calculus analysis is to obtain tight bounds. Unfortunately, it has
been shown that the performance bounds in Theorem 1 and Theorem 2 are
still not tight in some cases even optimized arrival/service curves are relied
on, especially when aggregated flows are involved.

Some efforts have been made to improve the performance bounds, a-
mong which an important method is the one named independent case anal-
ysis [22]. It tries to explore the independence between arrivals based on
the concepts of strict server and impairment process.

An impairment process I is a process that its amount during any period
will never exceed the amount of service that can be provided by the server
during this period. The impairment process does not need/have a buffer:
it represents the amount of service that is ”impaired”.

Definition 5. (Strict Service Curve.) A system is said to be a s-

tochastic strict server providing stochastic strict service curve β(t) with

bounding function g(x) ∈ F̄ , denoted by S ∼s−ssc 〈g, β〉, if during any

period (s, t], the amount of service S(s, t) provided by the system satisfies

P{S(s, t) < β(t− s)− x} ≤ g(x) for any x ≥ 0.

The following theorem summarizes results for the independent case,
with particular focus on delay.
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Theorem 4. (Independent Case Analysis).

(i) Consider a stochastic strict server S providing strict service curve

β̂(t) with impairment process I. If the impairment process has a stochastic

arrival curve of I ∼sac 〈g, γ〉, then the server is a stochastic strict server

providing stochastic strict service curve of S ∼s−ssc 〈g, β〉, where β(t) =

β̂(t)− γ(t).

(ii) Consider a flow A served by the stochastic strict server described in

part (i). Suppose the input has a v.b.c stochastic arrival curve of A ∼sac

〈f, α〉. If process A and I are independent, the delay D(t) is guaranteed

such that, for any x ≥ 0,

P{D(t) > h(α+ x, β)} ≤ 1− f̄ ∗ ḡ(x),

where f̄(x) = 1 − [f(x)]1, ḡ(x) = 1 − [g(x)]1, [·]1 = max{0,min{1, ·}} and

f̄ ∗ ḡ(x) ≡ ∫ x0 f̄(x− y)dḡ(y).

2.3 Performance Analysis of a Cognitive Radio

Network

In this section, modeling of the considered cognitive radio network is made,
where several key aspects are taken into account, including system mod-
el, channel model, sensing error model, and re-transmission schemes. The
research results mainly focus on probabilistic backlog distribution, proba-
bilistic delay distribution and delay-constrained capacity.

2.3.1 Modeling of the Considered Cognitive Radio

Network

In a cognitive radio network, secondary users try to make use of the spec-
trum when the primary users are away from the spectrum. Secondary users
should vacant the spectrum when primary users need to use the spectrum
resource. Due to this, a cognitive radio network is naturally modeled as a
priority system with two classes of inputs.
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The spectrum access decision of secondary users is made based on spec-
trum sensing results as depicted in Figure 2.1. However, spectrum detection
is not always reliable, errors may happen sometimes. Spectrum sensing er-
rors can be classified into two types, i.e. mis-detection and false alarm,
which have different impacts on users. A mis-detection happens when a
primary user is actually occupying the spectrum but the sensing result tells
a secondary user that the spectrum is vacant. Then collision between a
primary user and a secondary user will occur, which leads to both trans-
mission failures. In a false alarm, the spectrum is available for a secondary
user while the sensing result indicates the spectrum is occupied. There-
fore, secondary users will miss the transmission opportunity. The impacts
of mis-detection and false alarm should be properly modeled, so that the
system performance can be better evaluated. In this work, sensing error
processes are modeled by the concept of wasted service.

Re-transmission is a normally employed scheme to compensate for trans-
mission failures, and its strategy has particular impacts on delay and loss
probability. Generally, more re-transmission attempts will lead to more re-
liable transmission and longer delay. In this work, three typical schemes are
considered and discussed: without re-transmission (WO-RT), re-transmission
until success (RT-S) and maximum-N-time re-transmission (Max-N-RT).
For WO-RT scheme, a packet will be cleared from the queue when it is
transmitted out, no matter it is received by the receiver or not. For the
RT-S scheme, a packet will be re-transmitted until the receiver sends back
the acknowledge (ACK) signal. In the Max-N-RT scheme, a packet can be
re-transmitted for N times at most, and then it will be removed from the
queue. Based on the working principle, WO-RT scheme has better delay
guarantee, RT-S provides more reliable transmission, where the Max-N-RT
scheme is a tradeoff between delay and loss probability.

For the spectrum sharing policy, it is assumed that there exists a virtual
central control point to coordinate the transmissions from all primary users
in a First-In-First-Out (FIFO) manner, and another point to coordinate all
secondary users by FIFO. Therefore, no collision will happen between two
primary users (or between two secondary users). This assumption may
be too ideal in practical networks, however, it helps to obtain tractable
performance bounds.

In wireless networks, channel fading is also an important aspect to be
modeled. In this work, a constant rate channel without fading is considered
at the beginning. Then, the two-state Gilbert-Elliott channel is employed
to study the impacts of fading, which can also be considered as a constant
channel with an impairment process. A GE channel has two states, i.e.
state ON and state OFF, and the channel transfers between these two
states according to a Markov chain as shown in Figure 2.4.
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Figure 2.4: GE Channel State Transition

Figure 2.5: Considered Network Model

In state ON (state 1), data can be received correctly, while in state
OFF (state 0), the channel is in deep fading and no data can be successfully
received at the receiver. The transition rate from state i(i ∈ {0, 1}) to state
j(j ∈ {0, 1}) is represented by qij .

Figure 2.5 summarizes the considered cognitive radio network. Two
types of users are organized into two independent FIFO buffers. Mis-
detection and false alarm have their impacts on two flows. Packets are
transmitted through the wireless channel, and then receivers send back
their ACK4 signals, which are used by re-transmission scheme to decide
how to schedule the next packet waiting in the queue.

2.3.2 Output Metrics

In this work, performance of a cognitive radio network is evaluated by
network calculus. Main output is given in the form of Complimentary

4ACK delay is ignored in the analysis
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Cumulative Distribution Function (CCDF) bound, which shows the upper
bound on the probability that a real-valued random variable X exceeds
a threshold x. Network calculus provides theoretical basis to obtain the
CCDF bounds for delay and backlog as given in Theorem 2 and Theorem
1, i.e. Pr{D > x} ≤ fD(x) and Pr{B > x} ≤ fB(x).

The CCDF bounding function fD(x) is closely related with several as-
pects, and their impacts on the network performance are studied, such
as characteristics of input traffic, channel condition, channel fading speed,
spectrum sensing error probability, and re-transmission scheme.

Delay-constrained capacity is also an important evaluation aspect in this
work, which is defined as the maximum arrival rate of input traffic when
required delay and its violation probability are still met. Let d denote the
delay threshold and ε denote the maximum violation probability. Then, the
delay-constrained capacity C can be expressed as

C = max {R|Pr{D(R) > d} ≤ ε}

where R represents the arrival rate and its value will influence the delay
distribution D(R).

Furthermore, in order to validate the theoretical analysis, system-level
simulation platform is established to obtain the corresponding simulation
results for comparison with numerical results mentioned above.
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Chapter 3. Publications and Contributions

This thesis consists of six publications, including one book chapter and
five academic papers, which are attached in Chapter A to Chapter F. Each
of these publications has its particular concern and discusses different key
aspects in the considered cognitive radio network. The thesis author played
an active role in research and writing these papers under the supervision of
Prof. Yuming Jiang. Xin Zhang also contributed to the work presented in
Publication C and D. Tao Lin, Jinxing Yang and Wenting Jiang respective-
ly contributed to the running of numerical calculation and simulation in
Publications C, Publication D and Publication F. In the following, a brief
summary of these publications is presented with short descriptions on the
authors’ contributions.

3.1 List of Publications Included in This Thesis

3.1.1 Publication A

• Yuehong Gao and Yuming Jiang; Advanced Cognitive Radio Network:
Chapter 4 Spectrum Allocation; Scientific Research Publishing; ISBN:
978-1-935068-74-7; Sept 2011.

In this book chapter, we study spectrum allocation in cognitive radio
networks, which has the aim of making efficient spectrum utilization. An in-
troduction to the various policies in spectrum sharing is studied first. Then,
the concept of spectrum pooling that represents the idea of merging spec-
tral ranges from possibly different spectrum owners is introduced. After
these, the focus is put on performance aspects of spectrum allocation. The
application of game theory to spectrum allocation is also introduced, be-
cause it provides a well-defined model to describe conflict and cooperation
among intelligent rational decision makers, which has a natural match to
spectrum allocation in cognitive radio networks. Following this, spectrum
utilization efficiency is discussed in more detail, including various measures
in evaluating spectrum utilization efficiency. Before summarizing the chap-
ter with highlighting directions for further research in spectrum allocation,
spectrum allocation algorithms and performance analysis of them are re-
viewed.

3.1.2 Publication B

• Yuehong Gao and Yuming Jiang; Performance Analysis for a Cogni-
tive Radio with Imperfect Spectrum Sensing; IEEE INFOCOM 2010
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Workshop on Cognitive Wireless Communications and Networking,
March 2010.

In this paper, a cognitive radio network with a single constant wireless
channel is studied, where imperfect spectrum sensing and re-transmission
schemes are considered. The concept of wasted service process is used for
modeling the mis-detection process, false alarm process and service process
under three different re-transmission schemes, i.e. without re-transmission
(WO-RT), re-transmission until success (RT-S) and maximum-N-time re-
transmission (Max-N-RT). Then, stochastic service curve for primary flow
and secondary flow is derived on the basis of interference process as shown
in Theorem 2 in the paper. Two types of traffic, (σ, ρ)-constrained traffic
and Poisson traffic, are used as two examples to obtain numerical results.
The backlog and delay distribution bounds are compared and discussed
under different configurations.

3.1.3 Publication C

• Yuehong Gao, Yuming Jiang, Tao Lin and Xin Zhang; Performance
Bounds for a Cognitive Radio Network with Network Calculus Anal-
ysis; 2010 International Conference on Network Infrastructure and
Digital Content, September 2010.

In this paper, the considered cognitive radio network is simplified, where
perfect spectrum sensing and constant rate channel are assumed. Two ap-
proaches, i.e. min-plus convolution and independent case analysis, are ap-
plied for the analysis. Min-plus convolution means that the distribution
bound is obtained after a min-plus convolution between bounding function-
s. The independent case analysis tries to explore the independence between
arrival process and service process, so that the distribution bound can be
improved. One pre-condition of applying independent case analysis is that
the functions should be differentiable. Thus, two stochastic arrival curves
for Poisson traffic are used. Theoretical conduction is made for each ap-
proach, and the mathematical expressions are summarized in Theorem 3
in the paper. Delay distribution bound and backlog distribution bound of
primary flow and secondary flow are obtained both by numerical calcula-
tion and system level simulation. It is shown that these two methods have
the same results for the primary flow, while independent case analysis will
significantly improve the bounds for the secondary flow.
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3.1.4 Publication D

• Yuehong Gao, Jinxing Yang, Xin Zhang and Yuming Jiang; Capacity
Limits for a Cognitive Radio Network under Fading Channel; Springer
Lecture Notes in Computer Science: IFIP Networking 2011 workshop-
s, pp. 42 - 51, May 2011.

In this paper, spectrum sensing errors and channel fading are consid-
ered. Spectrum sensing errors are further divided into mis-detections and
false alarms, and their stochastic arrival curves are obtained. The wireless
channel is modeled as a two-state Gilbert-Elliott channel, and its stochastic
service curve is derived. After that, delay distribution bound is obtained
by stochastic network calculus. A Long Term Evolution (LTE) system
using Orthogonal Frequency Division Multiplexing (OFDM) technology is
relied on to conduct numerical calculations. Two types of QoS requirement
are studied, i.e. Voice over IP (VoIP) and Transmission Control Protocol
(TCP). VoIP has strict requirement on delay budget but it can tolerant
some loss; while TCP requires low loss probability and has larger delay
budget. Then, delay-constrained capacity is defined based on delay budget
and loss probability. The capacity limit of primary flow and the capac-
ity limit of secondary flow under different traffic load are presented and
discussed.

3.1.5 Publication E

• Yuehong Gao and Yuming Jiang; Analysis on the capacity of a cog-
nitive radio network under delay constraints; IEICE Transactions on
Communications; Vol. E95-B, No. 04, 2012.

This paper further extends the work in Publication D with more detailed
deductions and discussions. Delay-constrained capacity is defined for prima-
ry flow and secondary flow respectively, which is decided by the maximum
traffic rate. Furthermore, specific expressions of delay-constrained capacity
are given for Poisson traffic and Periodic traffic. Both numerical results and
simulation results are compared and discussed. Capacity limits for primary
flow are listed, and it is found that numerical results approach to the simu-
lation results, which validates the analysis. The capacity of secondary flow
relies on the traffic load from primary flow, therefore, a capacity region is
depicted with x-axis as the PU’s traffic load. The impacts of mis-detections
are studied under different MD probabilities. It is obvious that higher MD
probability will reduce the capacity. How the channel fading will influence
the capacity is investigated from the viewpoint of fading speed. It is found
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that the capacity limits are reduced when the fading is slow. In addition,
the gap between theoretical results and simulation results increases under
slow fading, especially when the primary network is fed with heavy load.

3.1.6 Publication F

• Yuehong Gao, Wenting Jiang and Yuming Jiang; Guaranteed Service
and Delay-Constrained Capacity of a Multi-Channel Cognitive Sec-
ondary Network; 7th International Conference on Cognitive Radio
Oriented Wireless Networks (CrownCom); June 2012.

In this paper, the considered network has multiple parallel channels
instead of only one channel, and all of these channels are shared by pri-
mary users and secondary users. By assuming that a certain amount of
resource is exclusively reserved and used on each channel by the primary
network, we derive the traffic transportation capacity that is guaranteed
to the secondary network. Then, the traffic delay distribution bound and
the guaranteed capacity of the secondary network in serving traffic with
probabilistic delay requirement are got. Both numerical and simulation
results are obtained, where the secondary network traffic follows a model
taken from an LTE system. The results are compared and discussed by
delay distribution, average delay and delay-constrained capacity. The good
match between numerical and simulation results validates the analysis.

3.2 Summary of Publications and Contributions

All of the publications focus on the performance analysis of cognitive ra-
dio networks with different emphases. Publication A introduces funda-
mental principles of a cognitive radio network with particular description
on spectrum allocation mechanism. Publications B to E investigate the
single-channel scenario, where Publication B studies the impacts of re-
transmission scheme and spectrum sensing errors, Publication C compares
independent case analysis with min-plus convolution, Publication D in-
cludes channel fading, and Publication E gives deep discussions based on
the results in Publications B to D. Multiple-channel scenario is considered
in Publication F. Delay and backlog distribution bounds are the main out-
comes in Publications B and C, while delay-constrained capacity is evalu-
ated in Publications D to F.

The main contributions of this thesis are now summarized as follows:
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Figure 3.1: Connections of Included Publications

• Network calculus is relied on for performance analysis of a cognitive
radio network, which extends the application of network calculus into
wireless networks. At the same time, more results about the prob-
abilistic distributions of delay and backlog are discussed, instead of
average values in most literatures.

• Characteristics of spectrum sensing error process are studied and di-
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vided into mis-detection and false alarm. The arrival processes of
mis-detection and false alarm are modeled, where the stochastic ar-
rival curves are derived. Their impacts on the system performance
are obtained both by numerical calculation and simulation.

• Three typical re-transmission schemes, i.e. WO-RT, RT-S and Max-
N-RT, are modeled, and corresponding stochastic arrival curves are
derived based on the concept of wasted service. The performances
under different re-transmission schemes are studied by numerical cal-
culations.

• In the single channel scenario, the Gilbert-Elliott fading channel is
considered, and its stochastic service curve is derived. The impact of
fading speed on the network’s performance is studied by numerical
and simulation results.

• The service guarantee provided to each type of users is derived based
on the Leftover Service property. For the primary flow, mis-detection
and channel fading are two aspects that influence its service guar-
antee. While for the secondary flow, the arrival of primary flow is
the most significant factor to be considered. Specific expressions of
stochastic service curves are obtained and summarized under different
configurations.

• The research results not only focus on the probabilistic backlog and
delay distribution bounds, but also investigate the delay-constrained
capacity, which is defined as the maximum arrival rate when a certain
probabilistic delay requirement (d, ε) can still be met. The obtained
capacity or capacity region provides reference for the network to con-
duct admission control.

• Independent case analysis is studied and relied on for performance
analysis, where the special requirement on bounding function is also
discussed. Its results are compared with the results got by min-plus
convolution. The presented results validate that independent case
analysis can improve the probabilistic distribution bound significantly,
and its results coincide with simulation results in particular cases.

• A cognitive radio network with multiple channels is modeled and s-
tudied by assuming exclusive resource reservation for primary users.
The upper bound and lower bound on the service guarantee for sec-
ondary users are obtained. Mathematical expressions for the delay-
constrained capacity is also derived. Numerical results and simulation

34



Chapter 3. Publications and Contributions

results are obtained, and their similarity validates the theoretical anal-
ysis.

• Numerical calculation and simulation platforms are established for a
cognitive radio network using LTE parameter setting.

3.3 List of Publications not Included

During the PhD study time, the thesis author also contributed to the fol-
lowing papers. Some of them (i-iv) focus on the radio resource management
and performance evaluation issues of the 3rd Generation (3G) systems. Pa-
per (v) proposes a new cooperative spectrum sensing scheme. Paper (vi)
extends the application of network calculus to analyze the energy consump-
tion problem for wireless terminals. These papers are not included in this
thesis, but the work therein has provided in-depth knowledge to conduct
the research work and to write this thesis.

(i) Yuehong Gao, Li Chen, Xin Zhang and Yuming Jiang; Performance
Evaluation of Mobile WiMAX with Dynamic Overhead; Proceedings
of 2008 IEEE 68th Vehicular Technology Conference (VTC 2008-Fall),
Calgary Canada, 2008.

(ii) Yuehong Gao, Xin Zhang, Dacheng Yang and Yuming Jiang; Uni-
fied Simulation Evaluation for Mobile Broadband Technologies; IEEE
Communications Magazine, March 2009, Page(s): 142–149.

(iii) Yuehong Gao, Xin Zhang and Yuming Jiang; An Evaluation Model
for Call Admission Control Scheme in CDMA System; Proceedings
of 2009 International Forum on Information Technology and Applica-
tions; Chengdu China, May 2009.

(iv) Yuehong Gao, Xin Zhang, Yuming Jiang and Jeong-woo Cho; System
Spectral Efficiency and Stability of 3G Networks: A Comparative S-
tudy; Proceedings of IEEE International Conference on Communica-
tions (ICC), Dresden Germany, June 2009.

(v) Qun Pan, Xin Zhang, Yuehong Gao, Dacheng Yang and Yuming
Jiang; Efficient Quantification Using Local Information for Cooper-
ative Spectrum Sensing Cognitive Radio; Proceedings of the Inter-
national Conference on Cognitive Radio Oriented Wireless Networks
and Communications (CROWNCOM), Cannes France, June 2010.
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(vi) Yuehong Gao and Yuming Jiang; Analysis on the Battery Lifespan
of a Mobile Terminal under Probabilistic Delay Constraint; Proceed-
ings of the 3rd International Conference on Future Energy System-
s: Where Energy, Computing and Communication Meet (e-Energy
2012); Article No. 11, Madrid Spain, May 2012.
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Chapter 4. Research Issues for Future Work

In this work, network calculus is applied to conduct performance anal-
ysis for a cognitive radio network. Although several key aspects are con-
sidered and the corresponding results are obtained, there are still some
interesting issues left for future study.

• In the later part of this thesis work, which consists of Publication
D and Publication E, the fading channel is modeled by a two-state
Gilbert-Elliott channel. This model is simple to be applied since it
has only two states, ON with constant rate R1 (R1 > 0) or OFF
with constant rate R0 = 0. However, it is too rough to catch the
characteristics of a real fading channel, where the channel supports
more that two rate levels. Therefore, advanced channel model, such
as Finite State Markov Channel (FSMC) [27], can be studied in the
future, and the possible difficulty may be how to obtain the stochastic
service curve for such a multiple-rate fading channel. The authors of
[28] present an approach to map a Rayleigh channel to a GE channel.
The work in [29] studies statistical properties of the capacity of mobile
fading channels in various wireless communication systems, and the
results therein may be useful.

• In this work, it is assumed that there exists a virtual central control
point to coordinate transmissions from the same type of users, and
all packets will be served in a FIFO manner without considering any
fairness or QoS requirement. Hence, more scheduling mechanisms can
be studied in the future. In addition, this issue may be connected
with channel model, since scheduling algorithm in a wireless network
is usually linked with channel fading properties. In [30], some results
have recently been obtained along this direction.

• In the theoretical analysis using network calculus, no restrict is as-
sumed for input traffic models as far as their stochastic arrival curves
can be found. However, Poisson traffic and Periodic traffic are main-
ly used in this work in order to simplify the numerical calculation.
Other types of traffic can be evaluated in future work. Some typical
models have been summarized in [22, 31].

• Further study on independent case analysis is needed, especially when
the convolution operation involves several bounding functions. In
addition, more scenarios can be considered to further validate possible
improvements led by applying independent case analysis.

• Multiple parallel channels are considered in this work under the as-
sumption of periodical and exclusive reservation for primary users
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along each channel. This assumption is made in order to obtain the
guaranteed service provided to secondary users, and it greatly restrict-
s the generality of the analysis. The biggest challenge on the way to
remove this assumption is how to derive the stochastic service guar-
antee of parallel servers, and this blank area is waiting to be filled.
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Chapter A. Publication A

A.1 Introduction

With the development of wireless communication technologies, the require-
ments for high speed data services also increase dramatically. This makes
the scarcity of wireless spectrums, which are suitable for wireless commu-
nications, become more and more significant. Therefore, how to enhance
the utilization of limited frequency bands has attracted a lot of research
attention. The proposal of cognitive radio technology provides a possible
solution.

Cognitive radio networks can better utilize the scarce spectrum via het-
erogenous system architecture and flexible spectrum access techniques. In
a cognitive radio network, secondary users (SUs) can sense and access the
available spectrum holes. However, due to the stochastic appearances and
departures of the primary users (PUs), the positions (time and/or band-
width) of available spectrum holes will change. In addition, the wireless
channel capacity also varies and different users/sessions may have distin-
guish Quality-of-Service (QoS) requirements. All these factors lead to the
vast attention paid on spectrum allocation in cognitive radio networks,
which has the aim of making efficient spectrum utilization.

In this chapter, we start with an introduction to the various policies
in spectrum sharing. Then, we introduce the concept of spectrum pooling,
which represents the idea of merging spectral ranges from possibly different
spectrum owners, and the idea of spectrum sharing with spectrum pooling.
After these, we make our focus on performance aspects of spectrum alloca-
tion. Game theory provides a well-defined model to describe conflict and
cooperation among intelligent rational decision makers, which has a natu-
ral match to spectrum allocation in cognitive radio networks. Game theory
basics and its applications to spectrum allocation will be introduced. Fol-
lowing this, we discuss spectrum utilization efficiency in more detail, includ-
ing various measures in evaluating spectrum utilization efficiency. Before
summarizing the chapter with highlighting directions for further research
in spectrum allocation, we review spectrum allocation algorithms and per-
formance analysis of them.

A.2 Spectrum Sharing

In a cognitive radio network, multiple secondary users may compete to
access the available spectrums, and therefore, access coordination of trans-
mission attempts between secondary users is needed in order to prevent
collisions. Spectrum sharing is proposed as a solution to this issue, and
it has similar functionalities as the Media Access Control (MAC) layer
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protocol in traditional wireless networks. However, due to the unique char-
acteristics of cognitive radio networks, such as dynamic changes of available
spectrum resources and co-existence with primary users, the spectrum shar-
ing policy in cognitive radio networks faces many new challenges. A lot of
research effort has been made in this topic, and the existing proposed spec-
trum sharing algorithms can be classified in the following four ways from
different perspectives [1].

• Centralized and Distributed Spectrum Sharing. This classification is
made based on the network architecture. In centralized spectrum
sharing, there exists a central point, which collects the information
about available spectrums and controls the spectrum allocation and
access. In this case, different requirements from different users can be
better considered and coordinated by the central point. In distribut-
ed spectrum sharing, spectrum allocation is performed by each node
distributively.

• Cooperative and Non-cooperative Spectrum Sharing. From the aspect
of allocation behavior, spectrum sharing policies can be divided into
cooperative and non-cooperative policies. In the cooperative mode,
users cooperate with each other so that the impact of interference
can be evaluated and controlled. At the same time, frequent mes-
sage exchanges are needed, which will occupy some system resources.
Compared with the cooperative mode, message exchanges are not re-
quired in the non-cooperative mode, where users operate only based
on their own profits. However, the non-cooperative mode may lead
to reduced utilization efficiency due to lacking cooperation.

• Overlay and Underlay Spectrum Sharing. In this classification, the
adopted co-existence method between primary and secondary users
is the basis to differentiate spectrum sharing algorithms. In overlay
spectrum sharing, secondary users can access some part of the spec-
trum when primary users do not use that part of spectrum, which
can avoid introducing interference to the primary users. On the con-
trast, the spread spectrum technique is used in the underlay method,
where the whole spectrum can be used by secondary users with the
disadvantage of introducing noise to the primary users.

• Intra-network and Inter-network Spectrum Sharing. Based on the
range of spectrum sharing, we can define intra-network and inter-
network policies. When the spectrum sharing policy only occurs a-
mong the secondary users within the same network, it is called an
intra-network policy. In contrast, inter-network spectrum sharing can

50



Chapter A. Publication A

Figure A.1: Centralized Spectrum Sharing

happen between the users of different networks deployed in overlap-
ping areas and spectrums.

In this section, spectrum sharing policies will be discussed in detail from
these four perspectives.

A.2.1 Centralized and Distributed Spectrum Sharing

The key difference between a centralized and a distributed scheme is if
there exists a central entity that performs spectrum allocation in the de-
ployed area. In the centralized scheme, while the measurement and sensing
procedures are performed decentralizedly by secondary users, the central
entity collects the feedback information from each secondary user, based
on which the spectrum allocation decision is constructed, as illustrated in
Fig.A.1. The advantage is that optimal scheduling can be implemented by
the central entity since it knows the characteristics of each node through
some signaling.

In [2], the concept of Spectrum Server is introduced, which coordinates
the transmissions of a group of links sharing a common spectrum by finding
an optimal schedule that maximizes the average sum rate subject to a
minimum average rate constraint for each link. In [3], a centralized method
for managing and coordinating spectrum access, which is called Dynamic
Spectrum Access Protocol, is proposed. This method enables lease-based
dynamic spectrum access through a coordinating central entity and allows
efficient resource sharing and utilization in wireless environments. In [4],
the competition for both spectrum and customers is considered under the
regulation of a spectrum policy server, which mediates spectrum sharing
among communicating devices, and also monitors the relevant spectrum.
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On the contrary, in the distributed scheme, secondary users participate
in spectrum allocation by themselves equally. This approach reduces the
complexity of system deployment while the message exchanges between
users may occupy considerable amount of system resource. Much research
effort has been put on distributed spectrum sharing, such as in [5–8]. In
[5], the authors present the design and realization of a game theory based
solution, which is called price-based distributed spectrum sharing (PDSS)
to achieve optimal spectrum utilization. In [6], the multi-channel scenario is
considered and a Distributed Multichannel Spectrum Sharing algorithm is
proposed to approach the optimal Nash Equilibrium. The distributed media
access strategy with partial spectrum information is discussed from a game
theoretical view in [7]. A busy-burst signaling based dynamic spectrum
assignment algorithm is proposed in [9], which works in a distributed and
short term manner. In [8], the authors focus on the Quality of Service
(QoS) issue by proposing a distributed algorithm which only requires local
feedback information.

Comparisons between the centralized and distributed policies have been
made in [10–12]. In [10], a collaborated distributed approach is proposed,
and it is shown that the distributed approach can provide similar QoS com-
pared with a centralized algorithm using global information. A detailed case
study is conducted in [11], where several typical scenarios are considered
and discussed. Ref. [12] presents a survey of centralized and distributed
spectrum management approaches and discusses technical challenges and
remaining open issues.

A.2.2 Cooperative and Non-cooperative Spectrum Sharing

This classification is made according to the relationship between secondary
user, to be specific, the criteria is whether they share their spectrum sensing
information with the others or not.

In non-cooperative spectrum sharing, secondary users make spectrum
access decisions by themselves without exchanging information with other
users. In [13], by considering different QoS demands and spectrum charac-
terization parameters, the authors propose a demand matching algorithm
based on game theory for a non-cooperative cognitive radio network, which
enables secondary users to make spectrum access decision distributively and
to access multiple appropriate spectrum bands. In [14], a spectrum sharing
problem in an unlicensed band is considered, where results, proved to be
tight and quantify the best achievable performance in a non-cooperative
scenario, are presented.

Compared with non-cooperative algorithms, cooperative (or coordinat-
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Figure A.2: Overlay Spectrum Sharing

ed) spectrum sharing has gained more attention, because via cooperation,
the secondary users can share more information about the environment
and better performance can then be provided. One common method is to
deploy agents on the devices, which can cooperate to improve spectrum u-
tilization. It is shown that multi-agent based cooperative spectrum sharing
can achieve up to 80% of the whole utility [15]. Different design aims can be
set for spectrum sharing, such as to reduce the transmission power or to re-
duce the interference, and corresponding techniques are required in order to
fulfill such aims [16]. Although coordination can improve the performance,
it may result in large amount of coordination delay and overhead [17].

A.2.3 Overlay and Underlay Spectrum Sharing

In overlay spectrum sharing, secondary users access the spectrum holes
opportunistically, and they transmit on some frequency bands only when
they do not find any primary transmission on those bands, as shown in
Fig.A.2. In this way, overlapping transmission with primary users can
be avoided, and hence the interference introduced to the primary users
is minimized. However, information about primary users’ location and
transmission is required, which may be obtained through spectrum sensing.
In underlay spectrum sharing, secondary users spread their signals across
the available bandwidth, which allows simultaneous transmission of both
primary and secondary users, as illustrated in Fig.A.3. With underlay
spectrum sharing, the interference caused to primary users can be treated
as wide-band background noise. As far as the noise level is under a tolerable
threshold, the primary transmissions can be guaranteed.
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Figure A.3: Underlay Spectrum Sharing

Much research has been conducted on these two types of algorithms
from different aspects. The power allocation problem is studied in a joint
spectrum overlay and underlay cognitive radio network in [18, 19]. Joint
power and rate adaptation is considered in [20–22]. A game theoretical rate
allocation scheme for an overlay cognitive radio network is proposed in [23].
In [24], outage probability is used as the evaluation matrix to compare
the performance of different spectrum sharing policies, including spreading-
based underlay and interference avoidance based overlay. Multi-antenna
technique has also been considered for both overlay and underlay scenarios
[25]. The comparisons and improvements between different overlay and
underlay schemes have been covered by [24, 26–28].

A.2.4 Intra-network and Inter-network Spectrum Sharing

When the practical system deployment is considered, sometimes one area
is covered by a single network, while it also happens that several networks
deployed by different operators or multi-mode systems owned by the same
operator coexist in the area. For the former scenario, intra-network spec-
trum sharing is adopted to allocate resources; and for the latter scenario,
inter-network schemes may be used.

A centralized intra-network spectrum sharing is proposed in [29], where
the algorithms have been studied thoroughly and one optimal algorithm
in terms of fairness and throughput has been found. A hybrid scenario
with DS-CDMA and MC-CDMA system, deployed in the same cell, i.e.,
intra-cell inter-vendor case, is considered in [30], and it is shown that the
spectrum utilization can be improved by spectrum sharing compared to the
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Figure A.4: Workflow of Spectrum Pooling

system without sharing. Inter-network spectrum sharing for UMTS, 802.22
system and IMT-Advanced systems has been investigated in [31–33].

A.3 Spectrum Pooling Concepts

A.3.1 Spectrum Pooling: State of the Art

Spectrum pooling, firstly introduced in [34] by Mitola, enables public ac-
cess to those already licensed spectrum bands. It aims to enhance the
spectrum utilization efficiency by allowing new wireless networks to work
overlapped with an existing licensed system without requiring any changes
to the existing system. The basic concept of spectrum pooling is to merge
the unoccupied spectrum gaps owned by different owners into one common
pool, which can be allocated to cognitive radio users for temporary use, as
Fig.A.4 illustrates. Through this way, the under-utilized licensed spectrum-
s can be further allocated to some new users when they are not occupied
by the licensed users, so that the spectrum utilization can be improved.
The basic requirement for the new networks is that they need to be highly
flexible in order to efficiently fill the available spectrum gaps.
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Figure A.5: Overlapping Architecture for OFDM-Based Spectrum Pooling

A.3.2 System Architecture

In the mixed network with spectrum pooling, the primary (or licensed)
network can be Time-Division/Frequency-Division/Code-Division Multiple
Access (TDMA/FDMA/CDMA) based. However, due to the reason that it
is not easy to know the spreading code used in CDMA networks, CDMA-
based primary networks are not widely investigated. As for the secondary
network, high flexibility is required in order to efficiently utilize the spec-
trum gaps. Orthogonal Frequency Division Multiplexing (OFDM) based
physical transmission scheme is a popular candidate because it is possible
to modulate data to spectrum gaps with different bandwidths [35].

In OFDM systems, high-rate serial data stream is transformed into mul-
tiple parallel sub-streams with reduced rate. The purpose of this operation
is to increase the duration of each symbol, so that the system is more
robust to delay spread. By introducing the Cyclic Prefix (CP), the Inter-
Symbol-Interference (ISI) can be eliminated. In addition, each sub-stream
is modulated and transmitted on a separate orthogonal subcarrier. By
changing the scale of serial to parallel transformation, the required number
of sub-carries (equivalent to the required bandwidth) can be adjusted. Also,
it is possible for primary and secondary networks to coexist in the same
spectrum, because the transmission energy on some certain spectrum band-
s from the OFDM-based secondary network can be suppressed by setting
the inputs of the corresponding sub-carriers as zero, and the interference
to primary network will be controlled. Fig.A.5.(b) shows this overlapping
architecture.
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Fig.A.5.(c) shows another example of OFDM-based system spectrum
pooling, where the sub-carriers of secondary network are modulated to those
unoccupied spectrums. In other words, no spectrum overlapping occurs, so
that the coexistence interference between primary and secondary network
can be avoided. Furthermore, it is preferred that the spectrum gaps are
integer multiple of sub-carrier spacing in secondary network, which leads
to higher spectrum utilization.

A.3.3 Spectrum Sharing with Spectrum Pooling

In a spectrum pooling strategy, there are two key factors. They are the
time interval of updating the spectrum gaps stored in the pool and how to
allocate the available resources. The selection of updating interval differs
based on different scenarios. For example, when the traffic density of the
primary network is heaver, shorter update period should be used in order
not to influence the primary transmissions. If the primary transmissions
are sparse, then the updation can be performed infrequently. It has been
studied in [36] that the update time of spectrum pool varies according to
spectrum characteristics and user’s quality of service demands. It is also
shown that tradeoff is needed between many factors in spectrum pooling,
such as access time delay, system efficiency, costs of software and hardware
resources, and complexity in establishing multi-dimensional cost function.

In practical spectrum pooling scenarios, multiple networks may be de-
ployed by different operators. This indicates that it is difficult to have a
central control point, and thus spectrum sharing is preferred to work in a
distributed manner. In [37, 38], how to optimally allocate spectrum among
the networks with spectrum pooling in a distributed and cooperative way is
investigated. In them, the dynamic inter-network spectrum sharing among
multiple networks is formulated as a restless bandits model-based optimiza-
tion system, where the multiple networks cooperate with each other to share
the spectrum dynamically, and therefore no central control point is needed.
It is shown that the proposed scheme in [37, 38] maximizes the utilities of
the networks sharing the spectrum pool, where a utility is defined based on
the price and spectrum efficiency.

Spectrum pooling can also be used in relay systems. In this case, both
the source-relay transmission and relay-destination transmission need to
access the spectrum resource stored in the corresponding spectrum pool.
In [39], the authors propose an optimal solution to maximize the capacity
of an OFDM-based relay system by appropriately choosing the assigned sub-
carriers in the spectrum pools. It is shown in [39] that the capacity of the
system is maximized when the subcarriers’ Signal-Noise-Ratios (SNRs) in

57



A.4. Game-theory and its Application in Spectrum Allocation

the spectrum pool corresponding to the source-relay and relay-destination
are similarly ordered.

Spectrum pooling is mostly considered in the scenarios where the pri-
mary network is deployed in licensed bands. However, spectrum pooling
can also be used in unlicensed bands to compensate for spectrum scarci-
ty caused by fixed licensing rules. In the unlicensed bands, Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) is widely employed.
In [40], the authors studied the performance of a modified CSMA/CA pro-
tocol as the spectrum sharing algorithm for a distributed-overlay cognitive
radio network, where three different backoff algorithms are evaluated.

A.4 Game-theory and its Application in

Spectrum Allocation

Game theory provides a well-defined model describing conflict and coopera-
tion among intelligent rational decision makers. It matches in nature to the
spectrum allocation problem in cognitive radio networks. This has led to its
extensive usage in spectrum allocation in cognitive radio networks. In this
section, some fundamental knowledge on game theory and its application
in spectrum allocation are introduced.

A.4.1 Game Theory Basics

The first known discussion on game theory emerged about three hundred
years ago by James Waldegrave, which is about a two-person card gambling
game (called Le Her). After that, many researchers, such as James Madison,
Antoine Augustin Cournot and John Nash, have contributed a lot to the
flourishing of game theory. From 1950s, game theory began to develop
systematically as a branch of applied mathematics. It has been employed
in many fields, such as social science, biology, political problems as well as
computer and information science. Nowadays, as it is remarked by Aumann
in [41] that, game theory is a sort of umbrella or unified field theory for the
rational side of social science, where social is interpreted broadly, including
human as well as non-human players (computers, animals, plants).

Generally, a game has three elements. They are the set of players,
the strategy space for each player and the payoff function. The strategy
space defines the actions a player can select in every distinguishable state.
The payoff (or utility) function associates the payoff for each player with
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Table A.1: Payoff Matrix for a 2-Player 2-Strategy Normal Game

P1 and S-A1 P1 and S-B1

P2 and S-A2 (4,3) (-1,-1)

P2 and S-B2 (0,0) (3,4)

Figure A.6: Payoff Tree for a 2-Player 2-Strategy Extensive Form Game

every possible combination of actions and thus indicates the motivations of
players.

When each player in a game acts simultaneously or, at least, without
knowing the actions of the others, the game is called a normal (or strategy
form) game. In this scenario, a payoff matrix is usually used to represent the
game for ease of understanding. Table. A.1 shows an example payoff matrix
with 2-player and each player has 2 strategies. There are two numbers in
each matrix element, where the first number represents the payoff for Player
1 (P1) and the second number for Player 2 (P2). Take the element (4,3)
for an example: 4 is the payoff for Player 1 and 3 is the payoff for Player 2
when Player 1 takes strategy A1 and Player 2 takes strategy A2.

When the players have some information about the choices of other
players, the extensive form should be used to formalize the game, where
the action orders are considered. Here, games are often represented by
trees, instead of matrix, as shown in Fig.A.4.1. In this case, element (4,3)
means the payoff for Player 1 and Player 2 are 4 and 3, respectively, when
Player 1 firstly takes Strategy A1 and then Player 2 uses Strategy A2.

Games can also be classified into different types from other aspects, for
example, cooperative and non-cooperative game, simultaneous and sequen-
tial game, perfect information and imperfect information game, and so on.
Each type has its own characteristics, and matches with some problems
encountered in communication systems. Game theory has been widely ap-
plied to modeling and analysis in communication systems, including the
spectrum allocation issues in cognitive radio networks.
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A.4.2 Nash Equilibrium

In game theory, Nash Equilibrium, named after John Forbes Nash, is an
important analysis model to measure the outcome of a non-cooperative
game and has been comprehensively studied. It provides a solution to
a game involving two or more players, where each player is assumed to
know the equilibrium strategies of the other players, and no player can
gain anything by changing only his or her own strategy unilaterally. To be
short, each player makes the best decision that he or she can, taking into
account the decisions of the others in Nash Equilibrium.

In spectrum allocation mechanisms of cognitive radio networks, dis-
tributed non-cooperative spectrum allocation is preferred when it is difficult
to deploy central control entities to reach centralized optimal solution. By
further assuming that each user is aware of the strategies of others through
some mechanisms, the application conditions of Nash Equilibrium are ful-
filled, and game theory analysis is ready to be used.

In [7], non-cooperative distributed media access under two strategy-
aware scenarios is discussed. One scenario is that the base station broad-
casts public spectrum information. Another scenario is that each cognitive
user obtains private spectrum information via individual spectrum sensing.
In the system considered in [7], three types of devices are involved, which
are primary mobile station, cognitive radio mobile station and spectrum
agent. They are mapped to players in game theory. For the cognitive radio
mobile stations, channel access probabilities are defined as the set of strat-
egy profiles, based on which the payoff function can be obtained. Then the
equilibrium strategy profile can be found.

For a game, Nash equilibrium may lead to multiple equilibria. Therefore,
how to judge and select the optimal solution from all equilibria is a crucial
issue. Pareto optimality, among many proposed criteria, is probably the
most important and widely adopted one. An outcome is Pareto optimal if
there doesn’t exist any other outcome that can make at least one player
strictly better off without making any other player worse. In other words, a
Pareto optimality cannot be improved without hurting any player. In many
cases, a Nash equilibrium may not be a Pareto optimality, which means the
payoffs can be further increased. In many works, the Nash equilibrium is
found firstly and then it is proved to be a Pareto optimality, such as in [42].

A.4.3 Bargaining Game

As for the cooperative spectrum allocation schemes, a barging game can be
used to make the analysis. In a barging game, each player has a minimum
expected payoff, and the outcome of each player’s payoff should not be
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smaller than the expected value, otherwise the player will not cooperate.
Among the possible types of solutions, the Nash Barging Solution plays
an important role, which provides a unique Pareto optimal operation point
under certain conditions [43].

For an N -person bargaining problem, let S be a closed and convex
subset of �N representing the set of feasible payoff allocations that the
players can obtain if they all work together. In addition, let umin =
(u1min, u

2
min, ..., u

N
min) be the minimum payoff vector that each player ex-

pects, otherwise, the player will not cooperate. Then, ū = φ(S, umin), is
said to be a Nash bargaining solution in S for umin if the following axioms
are satisfied:
1. Individual rationality: ūi ≥ uimin, ∀i.
2. Feasibility: ū ∈ S.
3. Pareto optimality: For every û ∈ S, if ui ≥ ūi, ∀i, then ûi = ūi, ∀i.
4. Independence of irrelevant alternatives: If ū ∈ S′ ⊂ S, ū = φ(S, umin),
then ū = φ(S′, umin).
5. Independence of linear transformations: For any linear scale transforma-
tion ψ, ψ(φ(S, umin)) = φ(ψ(S), ψ(umin)).
6. Symmetry: If S is invariant under all exchanges of agents, φj(S, umin) =
φj′(S, umin), ∀j, j′.

In a Nash barging solution, the intuitive concept is to fulfill the mini-
mum requirements of each player firstly, and then allocate the remaining
resources to players proportionally to their conditions. This allocation idea
matches well with the design requirement of fair radio resource allocation.
Indeed, the Nash barging solution has been applied to wireless communica-
tion systems broadly, such as in [44, 45].

A.4.4 Auction-based Game

In cognitive radio networks, the primary users may be willing to lease or sell
the unused spectrums to cognitive radio users in order to gain some extra
payoffs. Meanwhile, the primary users do not want to expose their private
information, but on the other hand, the secondary users try to acquire such
information to coordinate and communication with each other, which leads
to a confliction. In addition, the game models described previously assume
that the sets of strategies are known by each player. This assumption can
hardly hold in real cognitive networks. The auction game model, which is
a well-developed and important applied branch of game theory, helps to
formulate and analyze the scenarios discussed here.

In auction games, the players are divided into two groups: auctioneers
and bidders. The auctioneers determine how to allocate the resources and
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how much to charge for the resources based on the bids proposed by bidders.
According to the winner selection criteria, auction games mainly have the
following types, which have been widely adopted in many areas, e.g. in
human society as well as in academic research.

• First-price sealed-bid auction. The bidders submit their bids in a
sealed envelop to the auctioneers simultaneously, the one with the
highest bid wins the auction, and he/she pays the exact amount of
the highest bid.

• Second-price sealed-bid auction. The bidders submit their bids in a
sealed envelop to the auctioneers simultaneously, the one with the
highest bid wins the auction, but he/she pays the exact amount of
second highest bid.

• Open ascending-bid auction. It is also called English auction. The
auctioneer increases the price step by step, until there is only one
bidder who wants to pay the current price. This bidder is the auction
winner.

• Open descending-bid auction. This is also called Dutch auction, and
it operates in an opposite way as English auction. The auctioneer
starts from a sufficiently high price and decreases the price gradually,
until one bidder would like to pay the current price, and he/she wins
the bid.

In cognitive radio networks, primary users are the auctioneers, and sec-
ondary users try to bid for available spectrums. In [46], the first-price and
second-price sealed-bid auction mechanisms in dynamic spectrum allocation
of cognitive radio networks are studied, where the authors show that these
two methods yield similar outcomes in terms of throughput and efficiency.
The out-band sensing time is modeled as the price, which the secondary
users have to pay in order to get the transmission opportunities. The sec-
ondary users consider channel condition, traffic and other payoff-relevant
information before they make a bid decision. An improved auction is also
proposed in [46] by considering the impact of packet deadline checking.

A.5 Concepts of Spectrum Utilize Efficiency

Spectrum utilize efficiency, also called spectral efficiency or bandwidth effi-
ciency, refers to the information rate that can be successfully transmitted
over a certain bandwidth by using some specific transmission techniques. It
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is a vital parameter to measure the effectiveness of transmissions over the
air interface, which has become the bottleneck of wireless communications.
High spectrum utilize efficiency, as one of the most important design objec-
tives of modern wireless systems, helps to alleviate the spectrum scarcity
challenge to some extent. In this section, various definitions of spectrum
utilize efficiency are introduced first, and then its role in system design and
optimization is discussed.

A.5.1 Definition

The definition for spectrum utilize efficiency changes along with the de-
velopment of communication technology, because for some newly emerged
system, the original definition may not be suitable or the related param-
eters are difficult to measure in real systems. For a simple point-to-point
physical link, spectrum utilize efficiency is defined as follows [47].

Definition 1. Link spectrum utilize efficiency is the ratio of effective infor-

mation rate transferred through the link to the occupied spectrum bandwidth,

where the effective information excludes the error-correcting codes. [47]

Usually, the information rate is calculated in the unit of bits/second,
and spectrum bandwidth in the unit of hertz. Therefore, the unit for spec-
trum efficiency is bits/second/hertz, or b/s/hz for short. Note that other
units, such as symbols/second/hertz, can also be used, which depends on
particular cases.

When considering the spectrum utilization of a whole system, the above
definition is not applicable any more. Take a typical cellular network as
an example, as shown in Fig.A.7, in which there are multiple cells, and
the frequencies are reused with reuse factor of 3. In this scenario, more
factors are taken into consideration when defining system spectrum utilize
efficiency [48].

Definition 2. System spectrum utilize efficiency is the ratio of maximum

average throughput for a cell (or sector, or site) to the total bandwidth

in a defined geographic area, which results in the unit of bits/s/hz/cell or

bits/s/hz/m [48].
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Figure A.7: Typical Cellular Network Topology with Frequency Reuse

In Fig.A.7, the system spectrum efficiency is calculated as:

U =

∑i=N
i=1 Thi/N∑j=3

j=1 fi
, (A.1)

where N denotes the number of cells, Thi represents the throughput of cell
i, fj is the bandwidth of jth spectrum bandwidth, and 3 is the frequency
reuse factor, which is also equal to the number of spectrum bands.

In cognitive radio networks, the cognitive users make use of the spec-
trum holes, which may not be continuous or fixed. Therefore, it is difficult
to define and calculate the amount of spectrum bandwidth. Due to this,
several definitions have been proposed for cognitive radio networks. In [49],
the spectrum efficiency calculation is based on outage probability Pout as
follows, where an outage event is considered to occur when the channel
capacity falls below some data rate threshold,

η =
1− Pout

Pa
. (A.2)

Here, 1−Pout is the quantity of spectrum holes that can be utilized by cog-
nitive uses and have satisfactory transmission quality, and Pa denotes the
total amount of spectrum holes available for cognitive users. In other words,
the spectrum efficiency defined here is a measure to show the percentage of
available and usable spectrum holes.

In addition, a definition based on link spectrum efficiency has also been
adopted in some literatures, such as in [50, 51]. Let pb denote the probabili-
ty that the channel is not occupied by the primary users, PP

t and PS
t is the

transmitted power level from the primary and secondary users, respective-
ly, hP represents the channel gain between a pair of primary transmitter
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and receiver, and hS the channel gain between a pair of secondary trans-
mitter and receiver. Then, the spectrum efficiency on a certain band from
Shannon’s formula can be expressed as [50]:

η = (1− pb) log2

(
1 +

h2PP
P
t

N0B

)
+ pb log2

(
1 +

h2sP
S
t

N0B

)
, (A.3)

where B is the frequency bandwidth and N0 is the power spectrum density
of white Gaussian noise.

A more practical model is used in [51], where the impact of adaptive
modulation and coding (AMC) scheme is considered in a cognitive radio
system over a wireless fading interference channel. The range of Signal to
Noise and Interference Ratio (SNIR) of the transmitter is divided into N+1
non-overlapping consecutive segments, expressed as [θ0, θ1, ..., θi, ..., θN+1],
where θ0 is set to 0, and θN is infinity. When the measured SNIR falls in the
interval [θi−1, θi], (i = 1, ..., N), the ith rate in the rate set R1, R2, ..., RN

will be selected. Then the authors define the average spectral efficiency as:

ηavgm =

i=N∑
i=1

Ri × Pr {θm,i ≤ γi < θm,i+1} (A.4)

wherem ∈ {p, s} is the subscript to represent for primary or secondary user,
γi denotes the measured SINR, and Pr {θm,i ≤ γi < θm,i+1} is the proba-
bility that the ith rate is used for transmission. Actually, this definition is
equivalent to average transmission rate, which can be used to evaluate sys-
tems with the same bandwidth. When the impact of different bandwidths
should be considered, we can divide ηavgm by the bandwidth.

A.5.2 Optimization

In the previous subsection, different definitions for spectrum utilize effi-
ciency are introduced. Since the principal advantage of cognitive radio is
to enhance the spectrum efficiency, it has been considered as the ultimate
goal of many optimization problems. Here, system optimization based on
spectrum efficiency will be discussed.

Essentially, how to design an efficient system turns into how to effec-
tively control the interference, and further how to reasonably manage and
allocate the power resources, constrained by the interference level.

The power control problem of secondary users is discussed in [50], where
the spectrum efficiency defined in equation (A.3) is used. When both the
primary and secondary users operate in a greedy manner, the constraint on
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the secondary users’ transmission power is that the introduced interference
should not exceed a threshold, which can be expressed as:

h2sP
S
t +N0B ≤ kTmaxB, (A.5)

where k is a constant, called the Boltzmann’s constant [52], and Tmax is
the allowed upper limit of interference temperature. In order to maximize
the spectrum efficiency in (A.3) under the constraint in (A.5), the highest
transmission power of the secondary user should be:

PS
t =

kTmaxB −N0B

h2s
. (A.6)

Other three spectrum sharing schemes are also discussed in [50] with
corresponding power control expressions for secondary users, which can
optimize the spectrum efficiency.

The selection of adaptive modulation and coding schemes is considered
in [51]. Besides power control, the consideration is based on the scaled
SNIR feedback of primary and secondary transmission links. The optimiza-
tion objective is to maximize the spectrum efficiency of secondary users,
i.e., to maximize kavg2 , under two constraints. Firstly, the average spec-
trum efficiency for primary users, denoted by kavg1 , must be guaranteed
above a minimum level K̄1. Secondly, the available transmission power for
secondary users (denoted by P2) has an upper bound P̄2. This problem can
be summarized as follows:

Objective: max kavg2

Subject to: kavg1 ≥ K̄1 and P2 ≤ P̄2

It has been proved that increasing P2 will increase kavg2 and decrease
kavg1 at the same time. The solution for the above optimization problem
is obtained by increasing P2 from zero up to a point where both the two
constraints are satisfied with equality.

A.6 Spectrum Allocation Algorithms and

Performance Analysis

Much research effort has been put on spectrum allocation mechanisms in
cognitive radio networks, and various types of algorithms have been pro-
posed and studied. In this section, several typical algorithms are selected
as examples to illustrate the spectrum allocation problem. The performance
analysis results are also included.
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A.6.1 Pricing-based Spectrum Allocation

Generally, cognitive radio technology helps to improve the spectrum ef-
ficiency. However, the collusion among selfish users may deteriorate the
efficiency seriously. Therefore, prices should be charged for selfishness and
collusion. In [53], an efficient pricing-based distributive collusion-resistant
dynamic spectrum allocation approach is proposed in order to optimize the
overall spectrum efficiency, where the spectrum allocation problem is mod-
eled as a multistage dynamic game. The authors consider a cognitive radio
network with J primary users and K secondary users, where all users are
assumed to be selfish and are allowed to cheat. All available spectrums
from primary users are collected in a spectrum pool. Secondary users can
lease the spectrums and they must pay for successful leases.

Then, the utility for each primary and secondary user is expressed as:

UPi

(
φAi , α

Ai
i

)
=

ni∑
j=1

(
φ
aji

− cji

)
α
aji
i , (A.7)

USi

(
φA, βA

i

)
=

N∑
j=1

(
vji − φj

)
βj
i , (A.8)

with the following notations:

• Pi: primary user i

• Si: secondary user i

• Ai = {aji}j∈{1,2,...,ni}, where aji represents the channel index in the
spectrum pool, and ni is the total number of channels belonging to
primary user Pi

• φAi = {φ
aji
}j∈{1,2,...,ni}, where φ

aji
is the payment that primary users

Pi obtains from secondary users by leasing channel aji in the spectrum
pool

• αAi
i = {αaji

i }j∈{1,2,...,ni}, where α
aji
i ∈ {0, 1}, which indicates whether

channel j of primary user Pi has been rent by a secondary user or not

• Ci = {cji}j∈{1,2,...,ni}, where cji represents the acquisition cost of the

jth channel belonging to primary user Pi

• Vi = {vji }j∈{1,2,...,ni}, where v
j
i represents the payoff if secondary user

successfully leases the jth channel from primary user Pi
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• φA = {φj}j∈{1,2,...,N}, where N denotes the total number of channels
in the spectrum pool

• βA
i = {βj

i }j∈{1,2,...,ni}, where βj
i ∈ {0, 1} indicates if secondary user

Si has successfully leased the jth channel

It is straightforward that the interest of primary users conflicts with
that of secondary users, because primary users want to earn as much as
possible by leasing spectrums, while secondary users would like to obtain
transmission opportunities by paying as least as possible. When multiple
channels are considered and the selfish users are not willing to share their
own information with the others, the spectrum allocation problem becomes
a multi-stage non-cooperative pricing game, which can be solved by the
auction theory. The auction games have been briefly described in Section
A.4.4. However, the auction problem here is different, because it includes
two scenarios, i.e., not only the secondary users but also the primary users
need to compete with each other to attract secondary users to rent their
spectrums. Hence, optimizations for primary and secondary users need
to be implemented separately, which makes the problem considered here
even more complex. The authors rely on the competitive equilibrium to
solve this problem. Particularly, the objective functions for primary and
secondary users are expressed as:

Õ(Pi) = max
φAi

,t,α
Ai
i,t

E
cji ,v

j
i

[ ∞∑
t=1

γt · UPi,t(φAi , t, α
Ai
i,t )

]
(A.9)

Õ(Si) = max
φA,t,βA

i,t

E
cji ,v

j
i

[ ∞∑
t=1

γt · USi,t

(
φA, t, βA

i,t

)]
(A.10)

where the subscript t denotes the index for time stages.
Based on the multi-stage pricing game model, the impact of user collu-

sion is further discussed and a collusion-resistent spectrum allocation with
multi-secondary and multi-primary users is proposed in [53], where the op-
timal reserve prices are obtained. Nash barging solution is relied on to
derive the performance lower bounds. Simulation results show that the
proposed algorithm can achieve high spectrum efficiency by only using lim-
ited overhead under various situations of user collusion. Fig.A.8 compares
the total utilities of several algorithms with different configurations, such
as the Competitive Equilibrium (CE) without user collusion, Nash Bar-
gaining Solution with all.inclusive collusion and the proposed pricing-based
collusion-resistant algorithm. It is shown that when there is no user collu-
sion, the dynamic pricing scheme without reserve prices is able to achieve
similar performance compared to the theoretical CE outcomes. However,

68



Chapter A. Publication A

Figure A.8: Comparison of total utilities

Figure A.9: Comparison of total utilities

with the presence of user collusion, the proposed scheme with reserves prices
achieves much higher total utilities than those of the scheme without reserve
prices. Fig.A.9 plots the simulation results about overhead, which shows
that the proposed approach substantially decreases the pricing communi-
cation overhead under either the situations with user collusion or without
user collusion.
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A.6.2 Primary-prioritized Markov Spectrum Allocation

In [54], the interactions between primary users and secondary users are
modeled as a continuous-time Markov chains (CTMC), and a primary-
prioritized Markov approach is proposed for dynamic spectrum access. The
optimal access probabilities for secondary users under different fairness cri-
teria are derived.

A basic network with one primary user (denoted by P ) and two sec-
ondary users (denoted by A and B) is considered firstly, where the service
request is modeled as Poisson traffic with rate λP , λA and λB per sec-
ond, and the service duration is negative-exponentially distributed with
mean rate μP , μA and μB per second. The CTMC without/with queue-
ing for the basic network is studied, and the results are extended to the
scenarios with more secondary users. Then the authors propose a primary-
prioritized dynamic spectrum access under different optimality criteria, in-
cluding maximal-throughput, max-min fairness and proportional fair, and
the optimal access probabilities are obtained. Based on these probabilities,
secondary users decide how to access the spectrum. The operation flow for
the proposed mechanism is summarized in Fig.A.10.

Figure A.10: Operation flow of the primary-prioritized Markov Spectrum
Allocation

Simulation results under different configurations are shown and dis-
cussed. By comparisons, the authors conclude that the proposed primary-
prioritized spectrum access with proportional fair criterion can achieve up
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Figure A.11: Overall Throughput Comparison

Figure A.12: Comparison of Fairness

to 95% performance gain over the normally used CSMA-based random ac-
cess approach as indicated by the results of CTMC − 8 in Fig.A.11, where
CTMC−8 means the 8-state Continuous Time Markov Chain. In addition,
related simulation results also show that the proposed algorithm achieves
the optimal tradeoff between efficient spectrum utilization and fairness.
Fig.A.12 compares the throughput for two secondary users under three d-
ifferent optimization goals (PF: Proportional Fair, Maximum Throughput:
Max-thr, Max-min fairness: Max-min) for two secondary users (A and B).
It can be noticed that, the results for Max-min A and Max-min B are the
same, which leads to the fairest allocation, however, it also results in the
lowest efficiency. The difference between Max-thr A and Max-thr B is the
largest, indicating the poorest fairness. The results for PF A and PF B
give a tradeoff between throughput and fairness.
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A.6.3 Evolutionary Algorithms Based Spectrum Allocation

Evolutionary algorithms, which are stochastic search methods that mimic
natural evolution and/or the social behavior of species, has also been ap-
plied to spectrum allocation optimization issues. In [55], the authors use
three algorithms to search for the optimal channel allocation schemes under
different objectives.

A network with N secondary users, who compete with each other among
M non-overlapping channels, is focused on. To describe the spectrum allo-
cation model, the following notations are defined.

• L = {ln,m|ln,m ∈ {0, 1}}N×M : denotes the channel availability, where
ln,m is a binary indicator. When ln,m = 1, the channel m is available
to user n, and ln,m = 0 otherwise.

• B = {bn,m}N×M : is the channel reward matrix, where bn,m represents
the reward that user n obtains by using channel m.

• C = {cn,k,m|cn,k,m ∈ {0, 1}}N×N×M : represents the interference con-
straint, where cn,k,m = 1 means user n and user k will interfere with
each other if they user channel m at the same time, and cn,k,m = 0
otherwise. In addition, cn,n,m = 1− ln,m.

• A = an,m|an,m ∈ {0, 1}}N×M : is the channel assignment matrix,
where an,m indicates that channel m is allocated to secondary user
n. Here, A is a conflict-free channel assignment matrix if the inter-
ference constraints defined by C is satisfied, i.e., an,m · ak,m = 0, if
cn,k,m = 1, ∀1 ≤ n, k ≤ N, 1 ≤ m ≤ M .

• R = {rn}N×1: represents the reward vector, where rn =
∑m=M

m=1 an,m ·
bn,m is the reward user n obtains, given the conflict-free channel as-
signment matrix A and the reward matrix B.

For a given L and C, there may be several conflict-free channel assign-
ment matrixes, and let ΛL,C denote the set of these matrixes. Then, the
optimization objective is to find the conflict-free channel assignment matrix,
that can maximize the network utilization U(R), i.e.,

A∗ = arg max
A∈ΛL,C

U(R). (A.11)

Three definitions for network utilization U(R) are considered, including

• Max-Sum-Reward (MSR): U(R) =
∑N

n=1 rn

• Max-Min-Reward (MMR): U(R) = min1≤n≤Nrn
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Table A.2: Comparison of Average Award

𝑁 = 5,𝑀 = 5) 𝑁 = 20,𝑀 = 20)

• Max-Proportional-Fair (MPF): u(R) = (
∏N

n=1(rn + 10−6))
1
N

Accordingly, three evolutionary algorithms, namely Genetic Algorithm
Spectrum Allocation Algorithm (GA-SAA), Quantum Genetic Algorithm
SAA (QGA-SAA) and Particle Swarm Optimization SAA (PSO-SAA), are
used to solve the above optimization problem. And color sensitive graph col-
oring (CSGC) algorithm is used for performance comparison. Results show
that the proposed methods greatly outperform CSGC under all experiments.
For example, Tabel.A.2 summarizes the average reward for each algorithm
under different objective functions defined above. It can be noticed that
the average rewards obtained by GASAA, QGA-SAA and PSO-SAA after
50 generations are better than CSGC, which validates the effectiveness of
the proposed evolutionary algorithms-based spectrum allocation methods.

A.7 Summary

In this section, the spectrum allocation problem in cognitive radio networks
has been discussed from several aspects, including spectrum sharing policy,
concept of spectrum pooling and spectrum utilize efficiency, game theory
and its applications, and three specific spectrum allocation algorithms. As
for the topics, there are a number of issues that are not discussed or need
further study, such as:

In some spectrum allocation algorithms, it is assumed that the sec-
ondary users can share the spectrum sensing information with each other,
and then spectrum access can be performed based on the overall informa-
tion. However, how to obtain and how to share the spectrum sensing infor-
mation are challenging, since users are vigilant to disclose their information
and the available resource for information sharing is also limited.
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Much research focuses on the scenario with one primary user and multi-
ple secondary users. However, coexistence of multiple primary users in one
system is quite common in reality. Then, more factors should be consid-
ered in the spectrum allocation problem, such as the spectrum allocation
between primary users.

The modeling of wireless fading channel is seldomly included in existing
works on spectrum allocation, which is a vital characteristic of wireless
communications. The channel quality plays an important role in resource
allocation as indicated by tremendous research effort on wireless scheduling.
As for the spectrum allocation among secondary users, the channel quality
should also be considered in order to better utilize the resources.

Another important characteristic of wireless communication is mobility.
The available spectrum resource changes when a user moves from one place
to another. Then how to guarantee continuous allocation and transmission
is challenging.
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Abstract
In this paper, we use stochastic network calculus to analyze a cogni-

tive radio network, where influences of imperfect spectrum sensing and
different retransmission schemes are considered. In particular, stochastic
arrival curves for spectrum sensing error processes are derived firstly, based
on which stochastic service curve for each class of users is obtained under
different retransmission schemes, including without retransmission, retrans-
mission until success and maximum-N-time retransmission. Then backlog
and delay bounds for primary and secondary users are derived. Finally, nu-
merical results are shown for different types of traffic, where the influence
of different retransmission schemes is further discussed.

Keywords
Cognitive radio, Sensing error, Retransmission scheme, Performance

analysis, Stochastic network calculus
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B.1 Introduction

Cognitive radio is a newly proposed wireless communication technology [1],
which can improve spectrum utilization and thus increasing communication
demands can be better fulfilled. In a cognitive radio network, there are t-
wo types of users, namely primary users (PU) and secondary users (SU).
Secondary users have the ability to sense and use available spectrum holes
when primary users do not transmit data on the assigned spectrum. How-
ever, spectrum sensing errors may happen due to uncertainty of wireless
channels and unpredictable interference, and imperfect spectrum sensing
can influence system performance. It is hence important to conduct perfor-
mance analysis for both primary and secondary users taking into consider-
ation the impact of imperfect sensing.

Among existing analysis tools, queueing theory has been proved to be a
useful method to deal with queueing problems in communication networks.
It has also been employed in performance analysis of cognitive radio net-
works [2–4], where some results have been obtained, such as packet waiting
time in queue and delay. However, the focus has mainly been on average
values in steady states. In addition, the current analysis mostly assumes
M/G/1 model with Poisson arrival, and the obtained results cannot be
easily extended to other types of arrival processes. Moreover, the influence
of imperfect spectrum sensing is not well considered either; although some
results based on Monte Carlo simulation are reported in [2], no analytical
research is known. Besides, the impact of retransmission is not found.

The objective of this paper is to conduct performance analysis of cogni-
tive radio network by considering both spectrum sensing and retransmission.
Specifically, stochastic network calculus [5–8] is employed to analyze per-
formance distribution bounds. First, we obtain stochastic arrival curve for
the sensing error process, followed by the derivation of stochastic service
curve for both primary users and secondary users under different retrans-
mission schemes. Then performance analysis is conducted based on stochas-
tic network calculus, where expressions for backlog and delay bounds are
shown. Lastly, numerical results under various configurations are presented
for both Poisson traffic and (σ, ρ)-constrained traffic, where the impact of
retransmission is also discussed.

The paper is organized as following. The cognitive radio network is
modeled as a preemptive queueing system in Section B.2, where basic as-
sumptions, traffic and server models as well as retransmission schemes are
described. In Section B.3, we first derive stochastic arrival curves and
bounding functions for the sensing error process based on different retrans-
mission mechanisms. We then analyze stochastic service guarantees pro-
vided to the primary and secondary users, followed by general expressions
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of performance bounds. Numerical results are shown in Section B.4, from
which more insights are discussed. The summary is given in the last section.

B.2 System Model

B.2.1 System Model

In this paper, we consider a cognitive radio network with two input flows
as illustrated in Fig.B.1, where flP and flS represent the aggregated flows
from primary users and secondary users, respectively. For ease of expression
and with the focus on the impact of sensing error and retransmission, the
wireless channel is assumed to be error free with a constant service rate C.
The analysis can be easily extended to consider stochastical channel that
can be expressed with a stochastic service curve. The primary users’ flow
has preemptive priority over the secondary users’ flow. If one packet arrives
into the system and cannot be transmitted immediately, it will be stored
in the corresponding buffer in a First-In-First-Out (FIFO) manner, where
the buffer is assumed to be large enough and therefore no packet will be
dropped.

The system is supposed to be synchronized and the time is divided into
slots with length T and indexed by [0, 1, ..., s, ..., t, ...]. At the beginning of
each slot, secondary users will try to sense the spectrum to decide whether
it is idle or busy. In this paper, it is assumed that the time period used
for spectrum sensing is small and its effect is not considered. It is also
assumed that PUs and SUs can negotiate respectively among themselves
before transmitting so no collision will happen between PUs or between
SUs. But spectrum sensing errors may occur and they can have significant
influence on the system performance.

Figure B.1: System Model

84



Chapter B. Publication B

Typically, spectrum sensing errors can be classified into two types [9],
i.e., mis-detection (MD) and false alarm (FA). Mis-detection means that
the spectrum is occupied by PUs but the spectrum sensing result says it is
available for SUs, which will result in transmission collision and influence
both PUs’ and SUs’ current transmission. However, false alarm occurs
in the opposite way, when SUs believe that the spectrum is being used
by PUs but actually the spectrum is idle, which will waste transmission
opportunities for SUs. Let pe denote the average probability that a sensing
error (either MD or FA) happens in one time slot. Let φ be the probability
that this error is a mis-detection. Then the average probability in one time
slot for MD and FA can be respectively expressed as pMD

e = pe · φ and
pFA
e = pe · (1− φ).

Generally, packet arrivals and sensing errors are stochastic processes,
which will only lead to stochastic service guarantees. While the system
model described above has already been overly simplified, to the best of
our knowledge, it is difficult (if not impossible) to obtain explicit results
from the traditional queueing theory, particularly when the involving s-
tochastic processes are not Poisson or with exponentially distributed rates.
To address this problem, we resort to stochastic network calculus.

B.2.2 Stochastic Network Calculus Basics

Stochastic network calculus theory is a newly developed queueing theory
for service guarantee analysis (e.g., [6–8] and references therein), which
contains two fundamental concepts, stochastic arrival curve and stochastic
service curve.

In stochastic network calculus, a stochastic arrival curve (SAC) is used
to describe the stochastic characteristics of a flow. There are several def-
initions for SAC, and in this paper the following definition is used, which
explores the virtual backlog property of deterministic arrival curve [7].

Definition 1. (Stochastic Arrival Curve). A flow A(t) is said to have a

virtual-backlog-centric (v.b.c) stochastic arrival curve α ∈ F 1 with bounding

function f ∈ F̄ 2, denoted by A(t) ∼sac 〈f, α〉, if for all t ≥ 0 and all x ≥ 0

there holds:

P

{
sup
0≤s≤t

{A(s, t)− α(t− s)} > x

}
≤ f(x).

1F : the set of non-negative wide-sensing increasing functions
2F̄ : the set of non-negative wide-sensing decreasing functions
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In Definition 1, A(s, t) denotes the cumulative amount of traffic of the
flow during period (s, t], A(t) = A(0, t), and α(t) is a non-decreasing func-
tion. While the stochastic arrival curve describes the traffic, the stochastic
service curve shows the service guarantee provided by a server. Similarly
with SAC, stochastic service curve (SSC) can also be defined in different
ways. In this paper, we use the following one [7].

Definition 2. (Stochastic Service Curve). A system S is said to pro-

vide a stochastic service curve β ∈ F with bounding function g ∈ F̄ , denoted

by S ∼ssc 〈g, β〉, if for all t ≥ 0 and all x ≥ 0 there holds:

P{A⊗ β(t)−A∗(t) > x} ≤ g(x).

Here, A ⊗ β(t) ≡ inf0≤s≤t {A(s) + β(t− s)}, and A∗(t) denote the cu-
mulative output traffic amount up to time t.

Given SAC and SSC, the following bounds have been derived under
stochastic network calculus [7]:

Theorem 1. Consider a system S with input A. Suppose the input has a

v.b.c stochastic arrival curve as A ∼sac 〈f, α〉; and server S provides the

input with a stochastic service guarantee as S ∼ssc 〈g, β〉. Then for any

t ≥ 0 and x ≥ 0, the backlog B(t) and delay D(t) is bounded by:

P{B(t) > x} ≤ [f ⊗ g(x− α� β(0))]1

P{D(t) > h(α+ x, β)} ≤ [f ⊗ g(x)]1

where α � β(0) = supu≥0{α(u)− β(u)}, h(α + x, β) = sups≥0{inf{τ ≥ 0 :

α(s) + x ≤ β(s+ τ)}} and [·]1 denotes max(min(·, 1), 0).

In order to apply stochastic network calculus results to performance
analysis of cognitive radio network, a critical challenge is to find stochastic
service curve for both PUs and SUs. Major contribution of this paper
is in finding out stochastic service curve provided to both PUs and SUs,
considering sensing errors and retransmission schemes, which are presented
below.
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B.2.3 Retransmission Schemes

As discussed above, transmission collisions may happen due to sensing er-
rors, which may significantly influence the system performance. Retrans-
mission technology is a commonly used method to deal with transmission
errors, and different schemes can result in different outcomes. In this paper,
the following three retransmission schemes will be discussed, where the first
two are extreme cases and the third one is a tradeoff.

WithOut-ReTransmission (WO-RT)

In this scheme, it is assumed that there is no physical layer retransmission.
In other words, when one packet is transmitted through the wireless channel,
it will be removed from waiting queue no matter it will be received correctly
or not. Therefore, sensing error process will not influence backlog and delay,
but will affect transmission error.

ReTransmission until Success (RT-S)

Compared with WO-RT, RT-S goes to the other extreme. One packet will
be removed from the waiting queue only if it has been received by the
receiver successfully. Otherwise, it will be backlogged in buffer as long as
needed. Therefore, no transmission error will occur. However, spectrum
sensing impairments will lead to larger backlogged queue and longer waiting
time.

Max-N-time ReTransmission (Max-N-RT)

This scheme is a tradeoff between WO-RT and RT-S, in which one packet
can be retransmitted at most N times. After that, the packet will be
removed from the queue no matter it has been received correctly or not. It
can be expected from Max-N-RT that the transmission error can be reduced
to some extend as compared with WO-RT, while the backlog and delay can
be better guaranteed as compared with RT-S.

B.3 Performance Analysis

In this section, performance analysis of the considered cognitive radio net-
work is conducted. The focus is on finding probabilistic bounds on delay
and backlog of both primary users (PUs) and secondary users (SUs), and

87



B.3. Performance Analysis

the theoretical tool we rely on is stochastic network calculus. As highlight-
ed in Sec.II.B, in order to apply Theorem 1, it is essential to find stochastic
service curves for both PUs and SUs which take into consideration sensing
errors and consider different retransmission schemes. To achieve this, we
present in the following an analytical approach. First, we study the impact
of the sensing error process under different retransmission schemes. Partic-
ularly, if a collision happens due to sensing error and the collided packets
need retransmission, we say the corresponding amount of service (i.e., the
corresponding time slot) has been wasted, and we shall characterize the
wasted service with stochastic arrival curve. Then, we treat the wasted
service process as an interference process, and establish the relationship
between the interference process and the stochastic service curve. Based
these, we conclude stochastic service curves for both PUs and SUs, where
for SUs, we further treat the arrivals from PUs as an interference process
to SUs. Finally, we present delay and backlog bounds for both PUs and
SUs based on stochastic network calculus results. Throughout the analysis,
the three different retransmission schemes are studied.

B.3.1 Impact of Sensing Error

In this subsection, we study the impact of sensing error. Particularly, we
focus on the sensing error impact on the amount of service that will oth-
erwise be delivered to the users successfully. We shall say such service is
wasted to the sender in the sense that it has not helped in reducing the
number of packets in the sending queue. We shall characterize the wasted
service process using stochastic arrival curve.

For WO-RT, interestingly, there is no wasted service to the sending
queue. This is due to that even though the packet under transmission is
collided, the sending queue (no matter whether it belongs to PUs or SUs)
does not care and the packet is still removed from the corresponding buffer.
As a result, from the sending queue viewpoint, it works just as if there had
been no error, and hence the wasted service to the sending queue is zero.
However, if retransmission takes place due to sensing error, some service
will be wasted as seen by the sending queue, since no packet is moved out
of the queue in a wasted service slot.

Assume the sensing error probability is the same on each time slot,
denoted by pe. The average number of errors during any time period (s, t]
will be pe(t − s). Let In(s, t) denote the number of sensing errors during
(s, t], and γn(s, t) = K · pe(t − s), where K > 0 is a constant parameter
facilitating later analysis in obtaining performance bounds.

For RT-S, the equivalent amount of wasted service in (s, t] can be ex-
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pressed as I(s, t) = In(s, t)∗CT . Let MX(θ) denote the moment generating
function of random variable X, i.e., MX(θ) = E[eθX ] for any θ > 0. Then,
we have:

Lemma 1. The wasted service process I under RT-S has a stochastic ar-

rival curve 〈f I , γI〉, where

γI(s, t) = K · pe(t− s) · CT

f I(x) = e−
θx
CT

e−θKpe(pee
θ + 1− pe)

1− e−θKpe(peeθ + 1− pe)

for any θ > 0.

Proof. By using definition of stochastic arrival curve, Boole’s inequation

and Chernoff bound, we have:

P{ sup
0≤s≤t

{I(s, t)− γI(s, t)} > x}

= P{ sup
0≤s≤t

k=t−1∑
k=s

[In(k, k + 1)− γn(k, k + 1)] >
x

CT
}

≤ e−
θx
CT

s=t−1∑
s=0

E[eθ
∑k=t−1

k=s [In(k,k+1)−γn(k,k+1)]]

≤ e−
θx
CT

i=+∞∑
i=1

E[eθ[In(1)−γn(1)]]i

= e−
θx
CT

MIn(1)−γn(1)(θ)

1−MIn(1)−γn(1)(θ)
≡ f I(x).

Since γn(1) = Kpe and In(1) is a Bernoulli distributed random variable,

its moment generating function can be obtained as E[eθ[In(1)−γn(1)]] =

E[eθIn(1)]E[e−θKpe ] = e−θKpe(pee
θ + 1 − pe). Then, the process I has a

stochastic arrival curve as 〈f I , γI〉.
Similarly, the stochastic arrival curve characterization of the correspond-

ing wasted service processes due to mis-detection IMD and false alarm IFA

can be found in the same way by replacing pe in Lemma 1 respectively with
φpe and (1− φ)pe:

IMD ∼sac 〈fMD, γMD〉, IFA ∼sac 〈fFA, γFA〉
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Figure B.2: An Example of Max-N-Time Transmission

Figure B.3: Equivalent Model of Max-N-Time Transmission

For Max-N-RT, before presenting the result, let us consider an example
as shown in Fig.B.2 to see how it works.

Fig.B.2 shows an example of this scheme with N = 3. It is shown
that Packet 4 and Packet 7 are not transmitted successfully after 4 times
transmission, but they will be removed from the buffer and the next packet
will be served. In other words, the result of the 3rd retransmission will not
influence the operation of the sending queue. Therefore, we can use Fig.B.3
as an equivalent model, in which only the shadowed slots will influence the
delay and backlog of the sending queue and are considered as wasted, the 3rd
retransmission slots (such as slot 12 and 21) can be treated as a succeeded
slot like slot 2 and 4.

Let us call all of the shadowed slots in equivalent model as ”wasted
slots”, and let I ′n(s, t) denote the number of such slots in an equivalen-
t system during time period (s, t]. It is easy to find that there are at
least 1

N+1(t− s) succeeded slots during (s, t]. Therefore, we can know that

I ′n(s, t) ≤ N
N+1In(s, t). In addition, the average number of failed slots will

become N
N+1pe(t − s), and γ′n can be expressed as N

N+1γn. Let η = N
N+1

denote the retransmission efficiency. Then, we have

P

{
sup
0≤s≤t

{I ′(s, t)− γI
′
(s, t)} > x

}
≤ P

{
sup
0≤s≤t

{ηIn(s, t)− ηγIn(s, t)} >
x

CT

}
≤ e−

θx
CT

MηIn(1)−ηγI
n(1)

(θ)

1−MηIn(1)−ηγI
n(1)

(θ)
≡ f I′(x)
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where 〈f I′ , γI
′〉 is the stochastic arrival curve characterization of the wasted

service process due to sensing error. Formally, we have proved the following
result:

Lemma 2. The wasted service process I under Max-N-RT has a stochastic

arrival curve 〈f I′ , γI
′〉, where

γI
′
(s, t) = η ·K · pe(t− s) · CT

f I′(x) = e−
θx
CT

e−ηθKpe(pee
ηθ + 1− pe)

1− e−ηθKpe(peeηθ + 1− pe)

for any θ > 0.

In the same way, the stochastic arrival curve characterization of the
corresponding wasted service processes due to mis-detection IMD′

and false
alarm IFA′

under the Max-N-RT scheme can be found by replacing pe in
Lemma 2 respectively with φpe and (1− φ)pe:

IMD′ ∼sac 〈fMD′
, γMD′〉, IFA′ ∼sac 〈fFA′

, γFA′〉.

B.3.2 Stochastic Service Curves of Users

For ease of expression, we have assumed that the channel is error-free. Un-
der this assumption, the channel provides a constant strict service guaran-
tee, i.e., β̂ = Ct (for all t ≥ 0), which can be considered as a special form of
stochastic service curve with bounding function ĝ(x) = 0 for any x ≥ 0. In
the following, we apply a concept called interference process [6, 7] to facil-
itate finding stochastic service curves for PUs and SUs. Particularly, in a
system with interference, the interfered service will be treated as wasted or
cannot be used by the sender. For the considered cognitive radio network,
both the performance of PUs and SUs is influenced by some interference
processes. Particularly, for PUs, the wasted service process due to sensing
error is an interference process. For SUs, in addition to the wasted service
process due to sensing error, the packet arrival process of PUs can also be
treated as an interference process.

The following result establishes the link between the interference process
and the stochastic service guarantee.

Theorem 2. For the considered cognitive radio network, if the interference

process I to an input flow F (either flp or fls) has a stochastic arrival curve
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〈gI , βI(t)〉, then the network provides to the flow a stochastic service curve

〈gI , Ct− βI(t)〉.

Proof. Let R(t) and R∗(t) denote the sum of inputs and outputs from flow

F and interference process I, respectively, i.e., R(t) = F (t) + I(t) and

R∗(t) = F ∗(t) + I∗(t). Since the output traffic will not be larger than the

input traffic, we have F ∗(t) ≤ F (t), I∗(t) ≤ I(t) and R∗(t) ≤ R(t). It is

easy to find that, for any s ≥ 0,

F (s)⊗
(
β̂(s)− βI(s)

)
− F ∗(s)

= (R(s)− I(s))⊗
(
β̂(s)− βI(s)

)
− (R∗(s)− I∗(s))

= inf
0≤u≤s

[
R(u) + β̂(s− u)− βI(s− u)− I(u)

]
− (R∗(s)− I∗(s))

≤ inf
0≤u≤s

[
R(u) + β̂(s− u)

]
−R∗(s)

+I(s)− inf
0≤u≤s

[
βI(s− u) + I(u)

]
≤ sup

0≤u≤s

[
I(u, s)− βI(s− u)

]
where the last step is due to that for a constant rate server with rate C, it

has been shown in the literature (e.g., see [7]) that R ⊗ β̂(t) ≤ R∗(t) for

β̂(t) = C · t which is the case here.

Since the interference process I has stochastic arrival curve 〈gI , βI(t)〉,
then based on the definition of SAC, we have:

P
{
F ⊗ (β̂ − βI)− F ∗(s) > x

}
≤ P

{
sup

0≤u≤s
[I(u, s)− βI(s− u)] > x

}
≤ gI(x)

which ends the proof.

Based on this theorem and different retransmission schemes, we can get
the service guarantees provided to users in each scenario as summarized in
Table B.1.
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Table B.1: Stochastic Service Guarantee

RT Scheme PUs Flow SUs Flow

WO-RT 〈0, β̂〉 〈fP , β̂ − αP 〉
RT-S 〈fMD, β̂ − γMD〉 〈fP ⊗ f I , β̂ − αP − γI〉

MAX-N-RT 〈fMD′
, β̂ − γMD′〉 〈fP ⊗ f I′ , β̂ − αP − γI

′〉

B.3.3 Performance Bounds

With the stochastic service curves obtained above, performance bounds for
each type of users can be immediately obtained from Theorem 3 and are
presented below.

Theorem 3. For the considered network, suppose respectively flow flP

and flow flS have stochastic arrival curves as AP (t) ∼sac 〈fP , αP 〉 and

AS(t) ∼sac 〈fS , αS〉. For the stochastic service curves received by them,

we denote by SP
RT (t) ∼ ssc〈gPRT , β

P
RT 〉 and SS

RT (t) ∼ ssc〈gSRT , β
S
RT 〉, where

RT ∈ {WO−RT,RT −S,MAX−N−RT}, and for each combination, the

corresponding bounding function and service curve are found in Table B.1.

Then the backlog B(t) and delay D(t) distribution bounds can be expressed

as:

P{BU (t) > x} ≤ [fU ⊗ gURT (x− αU � βU
RT (0))]1

P{DU (t) > h(αU + x, βU
RT )} ≤ [fU ⊗ gURT (x)]1

where U ∈ {P, S}.

B.4 Numerical Results

In Section B.3, the stochastic service curve for each flow is obtained. Given
the stochastic arrival curve, performance bounds can be derived by using
Theorem 3. In this section, we consider two types of input traffic: Pois-
son traffic and (σ(ε), ρ(ε))-constrained traffic. The (σ(ε), ρ(ε))-constrained
traffic model is a general traffic and many types traffic can be represented

93



B.4. Numerical Results

by it [5], which include exponential on-off, Markov modulated process and
effective bandwidth. Numerical results under different configurations are
shown and discussed.

B.4.1 Numerical Results for Poisson Traffic

(Poisson Traffic.) Suppose all packets of a flow have the same size L and
they arrive according to a Poisson process with mean arrival rate λ. Then
the flow has a stochastic arrival curve A(t) ∼sac 〈fPois, rt〉 for any r > λL
with bounding function [8]:

fPois(x) = 1− (1− a)

k∑
i=0

[
[a(i− k)]i

i!
e−a(i−k)

]

where a = λL
r and k = � x

L�.
First, the influence of average rate r in Poisson arrival is studied, as

Fig.B.4 shows, where system capacity C is set as 500kbps, packet length
for both PUs and SUs flows is set to be 8kbits, and the arrival rate is 10
packets per second. Spectrum sensing error probability in each slot, i.e., pe,
is 1%, and the probability that this is a mis-detection is 50%. Parameter
K is set as 2.1 and θ is 1.3 for both sensing error process and mis-detection
process. Retransmission is not considered. When applying Theorem 3 in
this case, it is required that the average rate for PUs and SUs flow should
fulfill rP ≤ C and rP + rS ≤ C, otherwise no guarantee will be provided.
Therefore, rP is set to be within [200, C] and rS set to C − rP .

It is obvious that the results for the PUs flow locate lower than SUs flow,
which means the PUs flow is provided with better QoS guarantee, since it is
assigned with high priority. In addition, it is found that smaller bounds will
be provided to the PUs flow when increasing rP , which is straightforward
since rP denotes average service rate. On the other hand, bounds for SUs
flows become smaller first and then larger when increasing rS . This is due
to the fact that the PUs’ bounding function also has effect on SUs’ bounds.
Higher rS means smaller rP , more backlog in PUs buffer, and more time
slots will be occupied by PUs, which will lead to more backlog in the SUs
flow. Therefore, optimal bounds for the SUs flow are tradeoff between PUs’
and SUs’ service guarantees. Under the current configuration, the balance
point locates in the middle where rP = rS = C

2 . As for delay, similar results
can be obtained which are not shown here due to limited space.

Fig.B.5 shows backlog bounds and delay bounds for PUs and SUs con-
sidering sensing errors and retransmission at the same time. When we
consider the results for one flow, it is found that the distribution bounds of
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Figure B.4: Backlog Bounds for Poisson Arrivals with Different rP

WO-RT scheme are smaller than RT-S scheme, and results of Max-N-RT
locate between them, which is consistent with what we can expect from
the description of each scheme. However, WO-RT scheme and Max-N-RT
scheme may introduce transmission errors or retransmissions in higher lay-
ers. In addition, it is straightforward that Max-N-RT scheme converges to
RT-S when the maximum retransmission time N is set to infinity; and here
results for Max-N-RT scheme with N = 20 are also plotted, which lie closer
to the RT-S scheme’s results than Max-N-RT scheme’s results when N = 1.

Furthermore, slot length also has significant influences on the system
performance. If slot is longer, collision caused by mis-detection will lead
to larger backlog and delay because one collision wastes more time; while
on the other side, short slot results in better performance guarantee. The
results when T = 2.5ms and T = 1.5ms are shown, where results with
T = 1.5ms give smaller distribution bounds.

B.4.2 Numerical Results for (σ(ε), ρ(ε))-Constrained Traffic

((σ(ε), ρ(ε))-Constrained Traffic.) If a flow is (σ(ε), ρ(ε)) upper con-
strained, then it has a stochastic arrival curve α(t) = ρ(ε) · t + σ(ε) with
bounding function f(x) = e−εx [7].
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Figure B.5: Numerical Results for Poisson Traffic
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This model can be used to model Markov modulated processes but
cannot be easily analyzed by using traditional queueing theory. However, it
is possible to use stochastic network calculus to obtain distribution bounds
[5, 7].

In the following, average arrival rate ρ(ε) and maximum burst σ(ε)
for both PUs and SUs flow are set to fixed values as 200kbps and 8kbits,
respectively; while ε in the bounding function is set to 1. In addition, the
channel capacity is 500kbps and the slot length is 2ms. Numerical results
are shown in Fig.B.6, where similar trends as Poisson traffic can be found.
In short, WO-RT scheme provides better physical layer backlog and delay
guarantee; while smaller slot length and less retransmission time in RT-S
and MAX-N-RT schemes can improve the bounds.

B.5 Conclusion

In this paper, performance analysis for a cognitive radio network has been
conducted. The network is modeled as a preemptive priority queueing sys-
tem, with imperfect spectrum sensing and different retransmission schemes.
The spectrum sensing error process is modeled as a combination of two pro-
cesses, mis-detection and false alarm, for which stochastic arrival curves of
the corresponding ”wasted” service process are found. Three physical layer
retransmission schemes are discussed, including without retransmission, re-
transmission until success and maximum-N-time retransmission. Stochastic
service curves provided to both PUs and SUs are proved under different re-
transmission schemes together with performance bounds on backlog and de-
lay, which can be applicable to many types of traffic. Numerical results are
shown for two types of input traffic, Poisson traffic and (σ, ρ)-constrained
traffic, where further discussions are made. We believe that these results
will shed light on deeper understanding of cognitive radio networks, and on
the design of optimal retransmission schemes in such networks.
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Figure B.6: Numerical Results for (σ(θ), ρ(θ))-Constrained Traffic
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Abstract
In this paper, we use stochastic network calculus to analyze the perfor-

mance bounds for a cognitive radio network with two classes of input traffic.
First, stochastic service curves for primary users and secondary users are
obtained based on the system model and stochastic network calculus. Then,
we derive the general expressions of backlog and delay bounds for both pri-
mary and secondary users under two methods, i.e., min-plus convolution
and independent case analysis. Finally, numerical results as well as simula-
tion results are compared and discussed.

Keywords
Cognitive radio, Performance bound, Stochastic network calculus
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C.1 Introduction

Spectrum is valuable as well as scarce resource in wireless communication
systems. Currently, the spectrum is assigned in a fixed manner, which has
been found to be quite inefficient, since a large portion of spectrum is under-
utilized. Therefore, cognitive radio network [1] was proposed, in which the
cognitive users (or secondary users, SUs) try to make use of the spectrum
holes when the licensed users (or primary users, PUs) do not transmit data
on the assigned spectrum. By employing these spectrum holes, secondary
users can utilize some unused spectrum resource to transmit data and thus
system utilization can be improved. But some efforts are needed in order
to figure out what service guarantee can be provided to both primary users
and secondary users. It is hence important to conduct performance analysis
for both primary and secondary users.

Queuing theory has been employed in performance analysis of cognitive
radio networks [2–5], where some results have been obtained, such as pack-
et waiting time in queue and delay. However, the focus has mainly been
on average values in the steady states. Some frameworks for performance
evaluation have been proposed. For example, a framework for performance
evaluation of cognitive radios is proposed in [6], where the performance met-
rics, utility function and methodology are discussed. Another framework
for performance evaluation of cognitive radio networks in heterogeneous
environments is presented in [7]. These frameworks show the evaluation
methods, but they don’t provide clear clue about how to obtain the evalu-
ation results.

The objective of this paper is to conduct the performance analysis of a
cognitive radio network from a new viewpoint, which lists out the specific
steps, theorems and results. Specifically, stochastic network calculus [8–11]
is used to analyze performance distribution bounds. We believe our work
is a strong supplement to the existing references.

The paper is organized as follows. First, the cognitive radio network
is modeled as a preemptive queueing problem in Section C.2, where basic
assumptions and stochastic network calculus basics are presented. Then, in
Section C.3, we analyze stochastic service guarantees provided to the pri-
mary and secondary users, followed by general expressions of performance
bounds. Lastly, numerical results are shown in Section C.4 and the sum-
mary is given in Section C.5.
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Figure C.1: System Model

C.2 System Model

C.2.1 System Model

In this paper, we consider a cognitive radio network with two input flows
as illustrated in Fig.C.1, where flP and flS represent the aggregated flows
from primary users and secondary users, respectively. For ease of expression,
the wireless channel is assumed to be error free with a constant service rate
C, which can be thought as a special case of stochastical channel. The
analysis can be easily extended to consider a real stochastical channel that
can be expressed with a stochastic service curve. The primary users’ flow
has preemptive priority over the secondary users’ flow. If one packet arrives
into the system and cannot be transmitted immediately, it will be stored
in the corresponding buffer in a First-In-First-Out (FIFO) manner, where
the buffer is assumed to be large enough and therefore no packet will be
dropped.

Generally, packet arrivals are stochastic processes, which will only lead
to stochastic service guarantees. While the system model described above
has already been overly simplified, to the best of our knowledge, it is difficult
(if not impossible) to obtain explicit results from the traditional queueing
theory, particularly when the involving stochastic processes are not Poisson
or with exponentially distributed rates. To address this problem, we resort
to stochastic network calculus.

C.2.2 Stochastic Network Calculus Basics

Stochastic network calculus theory is a newly developed queueing theory
for service guarantee analysis (e.g., [8–10] and references therein), which
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contains two fundamental concepts, stochastic arrival curve (SAC) and s-
tochastic service curve (SSC).

In stochastic network calculus, a stochastic arrival curve is used to de-
scribe the stochastic characteristics of a flow. There are several definitions
for SAC, and in this paper the following definition is used, which explores
the virtual backlog property of deterministic arrival curve [10].

Definition 1. (Stochastic Arrival Curve). A flow A(t) is said to have

a virtual-backlog-centric (v.b.c) stochastic arrival curve α ∈ F (F : the set of

non-negative wide-sensing increasing functions) with bounding function f ∈
F̄ (F̄ : the set of non-negative wide-sensing decreasing functions), denoted

by A(t) ∼sac 〈f, α〉, if for all t ≥ 0 and all x ≥ 0 there holds:

P

{
sup
0≤s≤t

{A(s, t)− α(t− s)} > x

}
≤ f(x).

In Definition 1, A(s, t) denotes the cumulative amount of traffic of the flow

during period (s, t], A(t) = A(0, t), and α(t) is a non-decreasing function.

While the stochastic arrival curve describes the traffic, the stochastic
service curve shows the service guarantee provided by a server. Similarly
with SAC, stochastic service curve can also be defined in different ways. In
this paper, we use the following one [10].

Definition 2. (Stochastic Service Curve). A system S is said to pro-

vide a stochastic service curve β ∈ F with bounding function g ∈ F̄ , denoted

by S ∼ssc 〈g, β〉, if for all t ≥ 0 and all x ≥ 0 there holds:

P{A⊗ β(t)−A∗(t) > x} ≤ g(x).

Here, A ⊗ β(t) ≡ inf0≤s≤t {A(s) + β(t− s)}, and A∗(t) denotes the cumu-

lative amount of output traffic up to time t.

Given SAC and SSC, the following bounds have been derived under
stochastic network calculus [10]:

Theorem 1. (Performance Distribution Bounds). Consider a system

S with input A. Suppose the input has a v.b.c stochastic arrival curve as
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A(t) ∼sac 〈f, α〉; and server S provides the input with a stochastic service

guarantee as S ∼ssc 〈g, β〉. Then for any t ≥ 0 and all x ≥ 0, the backlog

B(t) and delay D(t) is bounded by:

P{B(t) > x} ≤ [f ⊗ g(x− α� β(0))]1

P{D(t) > h(α+ x, β)} ≤ [f ⊗ g(x)]1

where α�β (0) = supu≥0 {α (u)− β (u)}, h(α+x, β) = sups≥0{inf{τ ≥
0 : α(s) + x ≤ β(s+ τ)}} and [·]1 denotes max (min (·, 1) , 0). This method
is referred as min-plus convolution analysis ”⊗” in this paper.

Furthermore, if the arrival process A and the service process S are
independent with each other, then the backlog and delay bounds can be
expressed as:

P {B (t) > x} ≤ 1− f ∗ g (x− α� β (0))

P {D (t) > h (α+ x, β)} ≤ 1− f ∗ g (x)
where f (x) = 1−[f (x)]1, g (x) = 1−[g (x)]1 and f∗g (x) = ∫ x0 g(x− y)df (y).
We use independent case analysis ”∗” to represent this method.

In order to apply stochastic network calculus results to performance
analysis of cognitive radio network, a critical challenge is to find stochastic
service curve for both PUs and SUs. Major contribution of this paper is in
finding out stochastic service curve provided to both PUs and SUs, which
are presented below.

C.3 Performance Analysis

In this section, performance analysis of the considered cognitive radio net-
work is conducted. The focus is on finding probabilistic bounds on backlog
and delay of both primary users (PUs) and secondary users (SUs), and the
theoretical tool we rely on is stochastic network calculus. As highlighted in
Section C.2.2, in order to apply Theorem 1, it is essential to find stochastic
service curves for both PUs and SUs, as presented below. Then we ob-
tain backlog and delay bounds for both PUs and SUs based on stochastic
network calculus results.

C.3.1 Stochastic Service Curves of Users

For ease of expression, we have assumed that the channel is error-free. Un-
der this assumption, the channel provides a constant strict service guaran-
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tee, i.e., β̂ = Ct (for all t ≥ 0), which can be considered as a special form
of stochastic service curve with bounding function ĝ (x) = 0 for any x ≥ 0.
For the considered cognitive radio network, the performance of PUs is only
influenced by the channel capacity due to the preemptive priority, i.e., flow

flP is provided with a constant service guarantee SP ∼
〈
0, βP = β̂

〉
. While

for SUs, in addition to the channel capacity, the packet arrival process of
PUs can also influence the performance of SUs.

The following result establishes the link between the stochastic arrival
process of PUs and the stochastic service guarantees provided to SUs.

Theorem 2. For the considered cognitive radio network, if flow flP has a

v.b.c. stochastic arrival curve 〈fP , αP 〉, then the network provides to flow

flP a stochastic service curve
〈
fP , β̂ − αP

〉
.

Proof. Let A(t) and A∗(t) denote the sum of inputs and outputs from PUs

and SUs, respectively, i.e., A (t) = AP (t) + As (t) and A∗ (t) = A∗
P (t) +

A∗
s (t). Since the output traffic will not be larger than the input traffic, we

have A(t) ≤ A∗(t), A∗
P (t) ≤ AP (t) and A∗

S(t) ≤ AS(t). It is easy to find

that, for any s ≥ 0,

AS ⊗
(
β̂ − αP

)
−A∗

S (s)

= (A−AP )⊗
(
β̂ − αP

)
(s)− (A∗ −A∗

P ) (s)

= inf
0≤u≤s

[
A (u) + β̂ (s− u)− αP (s− u)−AP (u)

]
− (A∗ (s)−A∗

P (s))

≤ inf
0≤u≤s

[
A (u) + β̂ (s− u)

]
−A∗ (s) +A∗

P (s)

− inf
0≤u≤s

[
αP (s− u) +AP (u)

]
=
[
A⊗ β̂ (s)−A∗ (s)

]
+ sup

0≤u≤s

[
A∗

P (u, s)− αP (s− u)
]

≤ sup
0≤u≤s

[
A∗

P (u, s)− αP (s− u)
]

where the last step is due to that for a constant rate server with rate C, it

has been shown in the literature (e.g., see [10]) that A ⊗ β̂ (t) ≤ A∗ (t) for

β̂ = Ct which is the case here.
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Since the arrival process of the flow flP has stochastic arrival curve〈
fP , αP

〉
, then based on the definition of SAC, we can obtain:

P
{
AS ⊗

(
β̂ − αP

)
−A∗

S (s) > x
}

≤ P

{
sup

0≤u≤s

[
A∗

P (u, s)− αP (s− u)
]
> x

}
= fP (x)

which ends the proof.

C.3.2 Performance Bounds for PUs and SUs Flow

With stochastic service curves obtained above, performance bounds for both
PUs and SUs can be immediately obtained from Theorem 1, which is further
summarized in Theorem 3 presented below.

Theorem 3. For the considered network, suppose respectively flow flP

and flow flS have stochastic arrival curves as AP ∼ 〈fP , αP
〉
and AS ∼〈

fS , αS
〉
. As it is proved above, the network provides flow flP and flow flS

a stochastic service curve as SP ∼ 〈gP = 0, βP = Ct
〉
and SS ∼ 〈gS = fP ,

βS = Ct−αP 〉, respectively. Then backlog B(t) and delay D(t) distribution

bounds can be expressed as:

P {Bu (t) > x} ≤ [fu ⊗ gu (x− αu � βu (0))]1

P {Du (t) > h (αu + x, βu)} ≤ [fu ⊗ gu (x)]1

where u ∈ {P, S}. Furthermore, the bounds can be improved when the PUs

flow and SUs flow are independent:

P {Bu (t) > x} ≤ 1− fu ∗ gu (x− αu � βu (0))

P {Du (t) > h (αu + x, βu)} ≤ 1− fu ∗ gu (x)

C.4 Results Analysis

In Section C.3, the stochastic service curve for each flow is obtained. Given
the stochastic arrival curve, performance bounds can be derived by using
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Theorem 3. In this section, due to the limited space, we only consider
one traffic model, Poisson traffic, which has been widely used in many
literatures. However, the performance bounds obtained above also can be
employed to other types of traffic, such as (σ(θ), ρ(θ))-constrained traffic
model, which is a general traffic and many types of traffic can be represented
by it [11], including exponential on-off, Markov modulated process and
effective bandwidth. Numerical results as well as simulation results are
presented and discussed below.

C.4.1 Poisson Traffic Model

Suppose all packets of a flow have the same size L and they arrive according
to a Poisson process with mean arrival rate λ. Then the flow has a v.b.c
stochastic arrival curve A (t)∼sac 〈f1 (x) , α1 (t)〉 for any r > λL, α1 (t) = rt
with bounding function [9]:

f1 (x) = 1− (1− a)

k∑
i=0

[
[a (i− k)]i

i!
e−a(i−k)

]

where a = λL/r and k = ceiling (x/L).
However, it is easy to know that the bounding function f1(x) is not con-

tinuous and thus non-differentiable, which prevents to use the independent
case analysis. Therefore, we rely on the effective bandwidth and obtain an
approximation modeling for Poisson traffic as shown below [11, 12].

Suppose all packets of a flow have the same size L and they arrive
according to a Poisson process with mean arrival rate λ. Then the flow
has a v.b.c stochastic arrival curve A (t)∼sac 〈f2 (x) , α2 (t)〉 for any θ > 0,
θ1 ≥ 0, and α2 (t) = λt

(
eθL − 1

)/
θ + θ1t , with bounding function

f2 (x) = e−θθ1ee−θx

where θ and θ1 are free parameters and need to be optimized.
In the results presented below, the channel capacity is supposed to be

500kbps, the time slot is set as 10ms, the arrival rate for both PUs flow and
SUs flow is set to 20 packets per second, and the packet length is 5kbits.
Hence, one packet can be served in one time slot. Furthermore, θ and θ1
are optimized so that the bounding function is the tightest.

C.4.2 Results for PUs Flow

For PUs flow, the channel provides a deterministic service guarantee, and
therefore min-plus convolution and independent case analysis result in the
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Figure C.2: Backlog Bounds for PUs Flow
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Figure C.3: Delay Bounds for PUs Flow

same performance distribution bounds. In addition, the theoretical analy-
sis results closely match the simulation results. Particularly, the theoretical
backlog bounds obtained from f1(x) coincides with the simulation results.
The results from f2(x) are relatively loose, since f2(x) is just an approxima-
tion. Fig.C.2 and Fig.C.3 summarize the backlog bounds and delay bounds,
respectively.

C.4.3 Results for SUs Flow

Due to the existence of PUs flow, the service provided to SUs flow is a
stochastic process. Therefore, the theoretical results will not be consistent
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Figure C.4: Backlog Bounds for SUs Flow
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Figure C.5: Delay Bounds for SUs Flow

with the simulation results. Different v.b.c stochastic arrival curves can
be used for the two input flows. When we use the stochastic arrival curve
〈f1(x), α1(x)〉 for both PUs flow and SUs flow, then only the min-plus
convolution method can be employed, which gives a medium bound as
shown in Fig. C.4 and Fig.C.5. While when the 〈f2(x), α2(x)〉 is used for
the two flows, both the min-plus convolution and independent case analysis
can be obtained, and the independent case analysis shows better results.
Besides, a mixture of 〈f1(x), α1(x)〉 and 〈f2(x), α2(x)〉 is also possible for
the independent case analysis, which shows the best bound as we can notice
from Fig.C.4 and Fig.C.5.

Although these bounds are not exactly the same as the simulation re-
sults, they tell us the upper bounds, where the error is controlled within
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one order of magnitude.

C.5 Conclusions

In this paper, performance analysis for a cognitive radio network has been
conducted by using stochastic network calculus under two methods, i.e.,
min-plus convolution and independent case analysis. The network is mod-
eled as a preemptive priority queueing system with two input flows. First,
the stochastic service curves provided to PUs and SUs are proved, which
can be applicable to many types of traffic. Then performance bounds for
both PUs and SUs are obtained. Numerical results and simulation results
are shown and discussed for Poisson traffic. It is found that the network
calculus analysis gives tight (or exact) distribution bounds for the PUs flow.
As for the SUs flow, the independent case analysis, under a mixture usage of
Poisson traffic model, presents better results than the other configurations.
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Abstract
In this paper, performance evaluation of a cognitive radio network is

conducted. The analysis is based on stochastic network calculus. The
system is supposed to work in a Time Division Multiple Access (TDMA)
mode with fixed slot length. The wireless channel is modeled as a Gilbert-
Elliott (GE) fading channel, where the channel quality transits between
state ON and state OFF according to a Markov chain. Spectrum sensing
errors, which can be classified into mis-detection and false-alarm, are taken
into consideration. Particularly, a stochastic arrival curve for spectrum
sensing error process, and a stochastic service curve for GE channel, are
derived. In addition, performance distribution bounds are obtained based
on stochastic network calculus. Furthermore, numerical calculations are
made to show the capacity limits under delay constraints.

Keywords
Capacity, Cognitive radio, GE channel, Performance bound, Stochastic

network calculus
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D.1 Introduction

Nowadays, cognitive radio has become a promising technology, since it pro-
vides a solution to improve the spectrum utilization efficiency. In a cognitive
radio network, the secondary users (SUs) sense the spectrum before trans-
mitting on it, and if they find available spectrum holes, they will make use
of those resources. The sensing results, however, may not exactly match
with the real condition. In other words, spectrum sensing error happens
sometimes, which leads to collision between the primary transmission and
the secondary transmission or waste of transmission opportunities for sec-
ondary users. Therefore, physical layer re-transmission is needed in order
to deal with such collisions.

In this paper, we consider a cognitive radio network with two classes
of input traffic, the aggregated flow from primary users and the one from
secondary users, as shown in Fig.D.1. The system works in a slotted mod-
e with fixed slot length T . The flow from PUs has higher priority over
SUs flow to be served. Secondary users try to sense the channel and act
based on the sensing results. Sensing errors may happen and will affect the
performance.

How to analyze the performance guarantee for each class of users is a
key issue in cognitive radio networks. Some queueing theory based studies
have been made such as in [1], where delay and queue related parameters
are derived. In [2–4], we made some analysis by using network calculus to
derive the backlog and delay distribution bounds for a simplified system
model. Network calculus is an approach to deal with flow problems in
communication networks, which was introduced by Cruz in 1991 [5]. After
about 20-year development, network calculus has evolved into two branches:
the deterministic branch and the stochastic branch. In this study, stochastic
network calculus is employed. In stochastic network calculus, stochastic

Figure D.1: System Model
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arrival curve (sac) and stochastic service curve (ssc) are used to describe
the characteristics of a flow and a server, respectively. Based on sac and
ssc, performance bounds can be derived.

In [2–4], the wireless channel was assumed to be a constant error-free
channel. However, this assumption is not practical in real systems, because
the essential characteristic of a wireless channel is its fading nature. In this
paper, this shortage is overcome by considering the Gilbert-Elliott (GE)
channel model [6, 7], which has two states, Good (G) and Bad (B). In the
discrete time model, these two states transit between each other according
to a Markov chain. In addition, the sensing error process is re-modeled
compared with the model in [2], so that tighter performance bounds can
be obtained.

The paper is organized as follows. In Section D.2, stochastic network
calculus basics are introduced, where the stochastic arrival curve for sensing
error process and the stochastic service curve for GE fading channel are
derived, and the delay bound for each flow is also obtained. Section D.3
discusses the numerical results and capacity limits, followed by a summary
in Section D.4.

D.2 Stochastic Network Calculus Analysis

D.2.1 Traffic Modeling

Stochastic arrival curve can be defined from different aspects [8]. Here, we
explore the virtual-backlog-centric based definition as follows.

Definition 1. (Stochastic Arrival Curve). A flow A(t) is said to have a

virtual-backlog-centric (v.b.c) stochastic arrival curve α ∈ F 1 with bounding

function f ∈ F̄ 2, denoted by A(t) ∼sac 〈f, α〉, if for all t ≥ 0 and all x ≥ 0

there holds:

P

{
sup
0≤s≤t

{A(s, t)− α(t− s)} > x

}
≤ f(x), (D.1)

where A(s, t) denotes the cumulative amount of traffic during period
(s, t], A(0, t) is written as A(t) for short, and α(t) is a non-decreasing func-
tion.

1F : the set of non-negative wide-sensing increasing functions
2F̄ : the set of non-negative wide-sensing decreasing functions
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Stochastic arrival curves of many traffic models have been derived, such
as in [8]. Therefore, we just employ the models directly in this paper, and
put our efforts on other aspects.

D.2.2 Modeling of Spectrum Sensing Error Process

In cognitive radio networks, secondary users sense the spectrum and utilize
the available white spaces for their transmissions. However, sensing errors
may happen, which lead to transmission collision or opportunity waste. To
be specific, sensing errors can be classified into two types, mis-detection
(MD) and false-alarm (FA). Mis-detection means that the spectrum is oc-
cupied by PUs but the spectrum sensing result says it is available for SUs,
which will result in transmission collision and influence both PUs’ and SUs’
current transmission. However, false alarm occurs in the opposite way,
when SUs believe that the spectrum is being used by PUs but actually the
spectrum is idle. As a result, SUs will miss those transmission opportuni-
ties.

Based on the facts described above, the error process can be considered
as a special type of input traffic, which also competes for the transmission
resource and has the highest priority.In this part, the stochastic arrival
curve for sensing error process will be derived.

Here, we consider a slotted system with fixed slot length T , and the
probability that sensing error happens in one time slot is supposed to be
p. By further assuming the independency between the appearances of sens-
ing errors in adjacent slots, the impairment arrival process I(t) is a Lévy
process, where I(t) denotes the number of sensing errors during slot (0, t].
Then, according to Lemma 1 in the appendix, process I(t) has a v.b.c
stochastic arrival curve, denoted by I(t) ∼sac 〈f I , αI〉, where

f I(x) = e−θθ1e−θx (D.2)

αI(t) =

[
1

θ
logE[eθI(1)] + θ1

]
· t ≡ [ρI(θ) + θ1] · t (D.3)

for free parameters ∀θ1 ≥ 0 and ∀θ > 0.
In each slot, the happening of sensing error has a Bernoulli distribution

with parameter p. Therefore, ρI(θ) in Eq.(D.3) can be expressed as

ρI(θ) =
1

θ
log(1− p+ peθσ), (D.4)

where σ denotes the number of packets that are not transmitted successfully
in a slot due to a sensing error. Furthermore, mis-detection process and
false-alarm process have the same characteristic as the sensing error process,
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and the only difference is the happening probability. In later parts, the
following notations are used to represent the stochastic arrival curves of
mis-detection process and false-alarm process:

IMD(t) ∼sac 〈fMD, αMD〉, IFA(t) ∼sac 〈fFA, αFA〉, (D.5)

where fMD and fFA have the same form as in Eq.(D.2), αMD and αFA

can be obtained by replacing the probability p in Eq.(D.3) with pMD and
pFA, respectively.

D.2.3 Server Modeling

Similar to the concept of stochastic arrival curve, stochastic service curve is
defined to describe the service guarantee that a server can provide, and sev-
eral different definitions have been proposed. Here, we employ the following
one [8].

Definition 2. (Stochastic Service Curve). A system S is said to pro-

vide a stochastic service curve β ∈ F with bounding function g ∈ F̄ , denoted

by S ∼ssc 〈g, β〉, if for all t ≥ 0 and all x ≥ 0 there holds:

P{A⊗ β(t)−A∗(t) > x} ≤ g(x). (D.6)

Here, A ⊗ β(t) ≡ inf0≤s≤t {A(s) + β(t− s)}, and A∗(t) denotes the cu-
mulative amount of output traffic up to time t.

The Gilbert-Elliott channel model is named after the originators, which
can be further classified into discrete-time and continuous-time model. In
this paper, the discrete time model is considered, since it matches well with
the slotted system model. Fig.D.2 shows a two-state GE channel, where the
channel can either be in ON state (state 1), in which data can be decoded
error-free (if no collision happens during the transmission), or in state OFF
(state 0), in which the channel quality is too bad to transmit any data.
The channel state transits among the two states as a Markov process with
transition matrix of Q, where qij denotes the transition probability from
state i to state j (i, j ∈ {0, 1}).

Let S(t) denote the service provided by the channel during (0, t]. Then,
there are two cases.

• Case 1: t is not within any backlogged period. In this case, there is
no backlog in the system at time t, which means that all traffic that
arrived up to time t has left the server. Hence, A∗(t) = A(t) and
consequently A⊗ β(t)−A∗(t) = A(t) + β(0)−A∗(t) = 0.

120



Chapter D. Publication D

Figure D.2: Discrete-time two-state Gilbert-Elliott channel model

• Case 2: t is within a backlogged period (t0, tb], where t0 is the start
point of the backlogged period. Then, A∗(t0) = A(t0) and

A⊗ β(t)−A∗(t) ≤ A(t0) + β(t− t0)−A∗(t) (D.7)

= β(t− t0) +A∗(t0)−A∗(t) = β(t− t0)− S(t0, t) (D.8)

Then, we have:

P{A⊗ β(t)−A∗(t) > x} ≤ P{β(t− t0)− S(t0, t) > x}
≤ P{eθ[β(t−t0)−S(t0,t)] > eθx} ≤ e−θxE[eθ[β(t−t0)−S(t0,t)]]

≤ e−θxE[eθ[μ(θ)·(t−t0)−S(t0,t)]]

= e−θxE[eθ[μ(θ)·τ−S(τ)]] ≤ e−θx

where the third step is known as Chernoff bound, and the fourth step
is due to that S(t) is stationary, and

μ(θ) ≡ − 1

θτ
logE[e−θS(τ)]

which is known as the effective bandwidth of process S in the literature
[9] [10]. For the two-state Markov chain of the considered GE channel,
its effective bandwidth has an explicit form [10], which is adopted in
this paper as

μ̂(θ)

=
1

−θ
log

(
q00 + q11e

−cθ +
√

(q00 + q11e−cθ)2 − 4(q11 + q00 − 1)e−cθ

2

)

By combining both cases, a stochastic service curve of GE channel
has been found as:

S(t) ∼ssc 〈g(x) = e−θx, β(t) = μ(θ) · t〉. (D.9)
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D.2.4 Delay Bound

Previous work in [2] has discussed how to obtain the stochastic service curve
that can be effectively provided to each input traffic. Here, by using the
following notations for input traffic,

flP : AP (t) ∼sac 〈fP (x), αP (t)〉 (D.10)

flS : AS(t) ∼sac 〈fS(x), αS(t)〉, (D.11)

and by further assuming Re-Transmission until Success (RT-S) scheme, the
stochastic service curve for PUs’ traffic and SUs’ traffic can be expressed
as:

flP : SP (t) ∼ssc 〈gP (x), βP (t)〉 (D.12)

with gP (x) = fMD ⊗ g(x), βP (t) = β − αMD(t) (D.13)

flS : SS(t) ∼ssc 〈gS(x), βS(t)〉 (D.14)

with gS(x) = f I ⊗ g ⊗ fP (x), βS(t) = β − αI − αP (t) (D.15)

Then, based on the performance bound theorem in [2], the delay distri-
bution bound can be summarized as:

Theorem 1. (Delay Bound)

P{DU (t) > h(αU + x, βU )} ≤ [fU ⊗ gU (x)]1, (D.16)

where U ∈ {P, S}, h(α+ x, β) = sups≥0{inf{τ ≥ 0 : α(s) + x ≤ β(s+ τ)}}
and [·]1 denotes max(min(·, 1), 0)

D.3 Numerical Results

In previous sections, traffic model, server model as well as the considered
cognitive radio network model are described with the delay bound theorem
as an ending. In this section, specific parameters and configurations will be
substituted into the deduction above in order to obtain the capacity limit
under certain delay constraints.

The input packet arrival, flP and flS , are assumed to be Poisson flow.
And the stochastic arrival curve for Poisson traffic is defined as follows.

Definition 3. (Poisson Traffic). Suppose all packets of a flow have

the same size L and they arrive according to a Poisson process with mean
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Table D.1: QoS Requirements for Different Services in LTE System

Traffic Delay Budget Packet Loss Prob

VoIP 50ms 10−2

TCP 250ms 10−4

arrival rate λ. Then the flow has a stochastic arrival curve A(t) ∼sac

〈fPois, rt〉 for any r > λL with bounding function [8]:

fPois(x) = 1− (1− a)

k∑
i=0

[
[a(i− k)]i

i!
e−a(i−k)

]
where a = λL

r and k = � x
L�.

The network is supposed to be a LTE system using OFDM technology
with slot length of 0.5ms. In each slot, there are 7 OFDM symbols in time
domain, 50 resource blocks (RB) in frequency domain with 12 sub-carriers
in each RB. 16QAM and 1/3−rate Turbo code are used as the modulation
and coding scheme. Then, the packet length for Poisson arrival is set as
the effective bits transmitted in an LTE slot, i.e., 5.6kbits. Based on this
assumption, the parameter σ in error process and c in channel model are all
equal to 1 packet per slot. State transition probability q01 and q10 for GE
channel are set as 1 and 0.11, respectively. The free parameters, such as
θ, are optimized numerically with a tradeoff between acceptable accuracy
and tolerable complexity.

Primary traffic flow is supposed to be a VoIP session, which belongs to
the Guaranteed Bit Rate (GBR) bearer in LTE system. While secondary
traffic flow is set as TCP interaction service, which is non-GBR bearer
because of the lower priority in the whole network. Table.D.1 lists the QoS
Class Identifier (QCI) requirements.

In the system model considered here, re-transmission until success mech-
anism is employed, which means no packet is dropped because of collision
or deep channel fading. Packet loss only happens when the sojourn delay
exceeds the delay budget. Therefore, the delay constraints can be written
as:

Constraint 1 : P (DelayP > 100slots) ≤ 10−2 (D.17)

Constraint 2 : P (DelayS > 500slots) ≤ 10−4 (D.18)

In order to fulfill the delay constraints, there exist an upper bound on
the arrival rate λ of input traffic, which is defined as the capacity limit in
this paper.
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The capacity limit of PUs flow can be expressed as:

CP = max{λP , subject to Constraint 1} (D.19)

Fig.D.3(a) shows the delay distribution of PUs input flow calculated
from Theorem 1. We can notice that, there is still some capacity margin
when the arrival rate of PUs traffic is 1600 packets per second; while delay
constraint cannot be met when the arrival rate is increased to 1720 packets
per second. The maximum arrival rate of primary traffic, also called capac-
ity limit CP , is 1690 packets per second when the delay constraint can be
guaranteed at the same time.

As for the secondary traffic, it can be transmitted when there is no
primary traffic. Therefore, the maximum arrival rate of the secondary
network has close relationship with the load η of primary network, which
is defined as the ratio of actual arrival rate over the capacity limit, i.e.,
η = λP /CP . Then, the capacity limit of SUs flow can be expressed as:

CS = max{λS |η, subject to Constraint 2} (D.20)

Fig.D.3(b) shows three delay distribution bounds when η is set as 0.
We can notice that λS = 1738 packets per second is the capacity limit CS

under delay constraint 2.
If we define CP = 1690 and CS = 1738 packets per second as 100%

load of the primary network and secondary network, respectively, Fig.D.4
provides the admissible capacity region of the system, given Poisson arrivals.
It is shown that the maximum arrival rate of secondary flow decreases when
the load of primary flow increases. Particularly, for any point below the
curve, which corresponds to a load of primary traffic and a load of secondary
traffic, the system can guarantee the delay requirement and the required
loss probability.

D.4 Conclusion and Discussion

In this paper, capacity limits, defined as the maximum arrival rate, for both
primary and secondary traffics in a cognitive radio network are obtained
under delay constraints. Stochastic network calculus is relied on to derive
the delay distribution bounds, which includes two fundamental concepts:
stochastic arrival curve and stochastic service curve. The spectrum sens-
ing error process is analyzed with stochastic arrival curve first. Secondly,
Gilbert-Elliott is used to model the fading channel, and its stochastic ser-
vice curve is derived. And then, specific expressions for delay distribution
bounds are obtained. Parameters and configurations in LTE network are
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(a) Primary Traffic

(b) Secondary Traffic

Figure D.3: Delay Tail Distribution

used to calculate the numerical results, where the capacity limit of primary
traffic and the capacity limit of secondary traffic under different traffic load
are discussed.

In this paper, we have only considered Poisson arrival due to space
limitation. However, the analysis can be easily extended to other types
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Figure D.4: Capacity Region

of arrivals. Particularly, for many types of traffic, their stochastic arrival
curves have been found (e.g. see [11]), with which, the corresponding delay
bounds and capacity/throughput regions are readily obtained.
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Appendix

Lemma 1. (v.b.c Stochastic Arrival Curve) If an arrival process A(t)

has independent stationary increments, then it has a v.b.c stochastic arrival

curve α(t) = [ρ(θ) + θ1] · t with bounding function f(x) = e−θθ1e−θx for

∀θ1 ≥ 0, and for ∀θ > 0 and ρ(θ) = 1
θ logE

[
eθA(1)

]
.

Proof. Define a sequence of non-negative random variables {Vs} as

Vs = eθA(t−s,t)−θ[ρ(θ)+θ1]·s. (D.21)

Since A(t) has independent stationary increments, we then have,

Vs+1 = eθA(t−s−1,t)−θ[ρ(θ)+θ1]·(s+1) (D.22)

= eθ
∑t

k=t−s Xk−θ[ρ(θ)+θ1]·(s+1) (D.23)

= Vs · eθXt−s−θ[ρ(θ)+θ1] (D.24)

where Xk = A(k − 1, k) is used to simplify the notations. In addition, it is

easy to know that Xt−s is independent of Xt, Xt−1, ..., Xt−s+1, and it has

stationary increments, there holds:

E[Vs+1|V1, V2, ..., Vs] = E[Vs+1|Xt, Xt−1, ..., Xt−s+1] (D.25)

= E[Vs · eθXt−s−θ[ρ(θ)+θ1]|Xt, Xt−1, ..., Xt−s+1] (D.26)

= E[Vs|Xt, Xt−1, ..., Xt−s+1] · E[eθXt−s−θ[ρ(θ)+θ1]] (D.27)

= Vs · E[eθX1 ]

θρ(θ) + θθ1
≤ Vs (D.28)

128



BIBLIOGRAPHY

Hence, V1, V2, ..., Vt form a non-negative supermartingale. Then based

on an inequality for supermartingale, Doob’s inequality, the definition of

ρ(θ) and A(t) has stationary increments, there holds:

P

{
sup
0≤s≤t

{A(s, t)− [ρ(θ) + θ1] · (t− s)} > x

}
(D.29)

= P

{
sup
0≤s≤t

{eA(s,t)−[ρ(θ)+θ1]·(t−s)} > ex
}

(D.30)

= P

{
sup
1≤s≤t

Vs > eθx
}

≤ P{V1 > eθx} (D.31)

≤ e−θxE[eθA(t−1,t)−θ[ρ(θ)+θ1]] ≤ e−θxe−θθ1 (D.32)

which ends the proof.
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Publication E

Yuehong Gao and Yuming Jiang; Analysis on the capacity of a cognitive
radio network under delay constraints; IEICE Transactions on Communi-
cations; Vol. E95-B, No. 04, 2012.

Abstract
In this paper, performance analysis of a cognitive radio network is con-

ducted. In the network, there is imperfect sensing and the wireless channel
is a Gilbert-Elliott channel. The focus is on the network’s capacity in serv-
ing traffic with delay constraints. Specifically, the maximum traffic arrival
rates of both primary users and secondary users, which the network can
support with guaranteed delay bounds, are investigated. The analysis is
based on stochastic network calculus. A general relationship between de-
lay bounds, traffic patterns and important characteristics such as spectrum
sensing errors and channel fading of the cognitive radio network is derived.
This relationship lays a foundation for finding the capacity under different
traffic scenarios. Two specific traffic types are exemplified, namely periodic
traffic and Poisson traffic. Analytical results are presented in comparison
with simulation results. The comparison shows a good match between them,
validating the analysis.

Keywords Cognitive radio network, Stochastic network calculus, Ca-
pacity, Delay-constrained
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E.1 Introduction

Cognitive radio is a promising wireless communication technology used to
increase the spectrum efficiency [1]. In a cognitive radio network, there
are two types of users, namely primary users (PUs) and secondary users
(SUs). The essential concept is to allow SUs to access available spectrum
resource when PUs are silent. Particularly, secondary users have the ability
to sense and use available spectrum holes when primary users do not trans-
mit data on the assigned spectrum. As a result, an increased capacity in
accommodating communication demands can be expected. A fundamental
and challenging question is hence how much data traffic a cognitive radio
network can serve, particularly when the traffic has delay requirement. To
the best of our knowledge, this is an open question and few results are
available in the literature.

The aim of this paper is to investigate the capacity of a cognitive radio
network in serving data traffic, where the sensing is imperfect and the
wireless channel is a Gilbert-Elliott channel. Particularly, we are interested
in finding the maximum traffic arrival rates of both primary users and
secondary users, which the network can support with guaranteed delay
bounds. Here, a guaranteed delay bound is in the probabilistic setting
and represented by a delay bound and a violation probability. It reads: the
probability that the system delay is larger than the delay bound is bounded
by the violation probability. This probabilistic definition of delay bound
has been widely adopted (e.g. [2]).

In this paper, a newly developed theory - stochastic network calculus -
is relied on to obtain performance bounds of primary users and secondary
users in the considered cognitive radio network. In stochastic network cal-
culus, stochastic arrival curve and stochastic service curve are defined to
model traffic and service, respectively. The contribution of the paper is as
follows. First, a stochastic arrival curve for sensing error process and a s-
tochastic service curve for Gilbert-Elliott fading channel are derived. With
this, stochastic service curves for primary users and secondary users are
obtained. Further on, based on existing stochastic network calculus results,
general relationships between delay bounds, data traffic processes, spec-
trum sensing error processes, and channel fading process is established for
both PUs and SUs. For two specific traffic types, namely periodic traffic
and Poisson traffic, the corresponding maximum traffic arrival rates, which
represent the capacity of the network under delay constraints, are exempli-
fied with numerical results. Comparisons with simulation results are also
provided, showing good match with analytical results and hence validating
the analysis.

The rest of this paper is organized as follows. In Section E.2, we review
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related work. Then, the considered cognitive radio network is modeled in
Section E.3. Section E.4 introduces the basics of stochastic network calculus.
Section E.5 shows the detailed analysis that includes the derivations of
stochastic arrival curves for sensing error processes, stochastic service curves
for both primary users and secondary users, and delay bounds as functions
of the data traffic processes, spectrum sensing error processes, and channel
fading process. Section E.6 shows numerical results and simulation results
demonstrating and validating the analytical results. Finally, the conclusion
is given in the last section.

E.2 Related Work

Cognitive radio network has gained a lot of attention since it was proposed.
Significant effort has been put in this area. Among the various research
issues, performance analysis and evaluation play an important role.

In the literature, the classic queueing theory has been used to conduct
performance analysis of cognitive radio networks. In [3], an M/D/1 priority
queueing system model is used to derive the average waiting times and
average queueing lengths in a cognitive radio network with perfect spectrum
sensing. The authors of [4] relied on the M/G/1 preemptive priority queue
to obtain analytical forms of average delay and throughput for both PUs
and SUs. M/M/1 queueing model is employed to analyze the average
queueing time of secondary users in [5]. In these works, the impact of
spectrum sensing errors on the system performance is not well studied. In
addition, they only provide results in terms of average values with little
investigation on probabilistic delay bounds.

The Markov chain model has also been relied on to conduct performance
analysis. Considering the cognitive radio scenario, the state space of the
Markov chain can be defined in two ways: (1) based on the channel occu-
pancy state (that is, whether a channel is free, occupied by PU, occupied
by SU or collision), and (2) the number of PUs and the number of SUs in
the system. In most literatures, the second is used for indices of the Markov
state space, such as in [6–8], because, with it, the dimensionality and com-
plexity of the Markov model (especially in the multi-channel case) can be
more easily reduced as highlighted by the authors of [7]. The Markov chain
based analysis helps to derive the blocking probability for SUs, average
number of users in the system as well as throughput. However, to the best
of our knowledge, no delay-related results are available from this analysis.

In all the related works, the authors assume Poisson arrival and most
of them also assume exponentially distributed service time, so that existing
queueing theory results, particularly M/G/1 priority queue results, can be
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directly applied, and the Markov chain model can be established. However,
these assumptions are too restrictive for modern wireless communication
networks, where the traffic can be of different types and the channel capacity
can vary over time.

E.3 The System Model

In this paper, we consider a cognitive radio network as shown in Fig.E.1,
where there are two classes of users, primary users (PUs) and secondary
users (SUs), sharing a wireless channel. Primary users are authorized users
and have priority to use the spectrum over secondary users. Secondary
users are equipped with the ability to sense the channel, and transmit data
on the channel only when the channel is sensed idle, indicating that primary
users do not transmit data at the moment.

Figure E.1: System Model

We assume Time Division Multiplexing (TDM) for the channel. The
network is supposed to be synchronized and the time domain is divided
into slots with length T and indexed by [0, 1, 2, . . . ]. It is assumed that
some coordination within the same class of users exists such that their data
are queued and served in the first-in-first-out (FIFO) manner, as indicated
by two parallel FIFO buffer in Fig.E.1, therefore, no collision will happen
between the same class of users1.

However, potential sensing errors between different classes of users are
considered. At the beginning of each slot, secondary users will try to sense
the spectrum to decide whether the current slot is idle or busy. For ease of
exposition, we assume that the time used for spectrum sensing is small and

1These assumptions imply no wasted service due to sensing or collision between the
same class of users, and hence allow to explore the maximum capacity of the network in
serving data traffic.
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Figure E.2: Discrete-time two-state Gilbert-Elliott channel model

its effect is not counted. When the sensing result is different from the real
scenario, a sensing error happens. Typically, spectrum sensing errors can be
classified into two types [9], i.e., mis-detection (MD) and false alarm (FA).
Mis-detection means that the channel is occupied by PUs but the sensing
result says it is available for SUs, which will result in transmission collision
between PUs’ and SUs’ current transmission. However, false alarm occurs
in the opposite way, when SUs believe that the channel is being used by
PUs but actually it is idle, which means that SUs will miss the transmission
slot.

An important feature in wireless systems is channel fading, which can
have great impact on the system performance. In this paper, a widely
adopted fading channel model, the Gilbert-Eliott (GE) channel, is consid-
ered. Fig.E.2 shows the two-state GE channel, where the channel can either
be in ON state (state 1), in which data can be decoded error-free (if no
collision happens during the transmission), or in state OFF (state 0), in
which the channel quality is too bad to transmit any data. The channel
state transits between the two states as a Markov process with transition
matrix Q, where qij denotes the transition probability from state i to state
j (i, j ∈ {0, 1}), and it is at the steady-state from the start.

Note that packet arrivals, sensing errors and the channel service are gen-
erally stochastic processes, which will only lead to stochastic service guar-
antees. While the system model described above has already been overly
simplified, to the best of our knowledge, it is difficult (if not impossible) to
obtain explicit results from the classic queueing theory, particularly when
the involving stochastic processes are not Poisson or with exponentially dis-
tributed rates. Furthermore, when the concern is probabilistic guarantees,
such as the capacity under probabilistic delay constraints studied in this
paper, the difficulty becomes even more challenging. To address this prob-
lem, we resort to stochastic network calculus, and its basics and related
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Figure E.3: Basic Elements of a Traffic Serving System

results are introduced in the next section.

E.4 Stochastic Network Calculus Basics

Network calculus is a newly developed queueing theory for service guarantee
analysis. Since its introduction in early 1990s [10, 11], network calculus has
evolved into two branches: the deterministic branch and the stochastic
branch. In our research, stochastic network calculus is employed because
stochastic processes are involved in the considered network.

Like the classic queueing theory, network calculus also has its founda-
tion on three basic elements, namely input traffic, server and output traffic,
as shown in Fig.E.3. Network calculus provides a set of results, based
on its defined models for these basic elements, that establish relationships
between these models and various performance parameters such as delay
and backlog. In stochastic network calculus, stochastic arrival curve and
stochastic service curve are the essential concepts and models in represent-
ing the traffic and service respectively. Specifically, the traffic of a flow is
modeled by a stochastic arrival curve (sac), while a server is described by a
stochastic service curve (ssc), in stochastic network calculus. Given the sac
of the input traffic and the ssc of the server or system, probabilistic delay
bound and backlog bound can be derived.

While several definition variations of stochastic arrival curve are avail-
able, we adopt the following one, which explores the virtual-backlog-property
of a deterministic arrival curve [2]. This model was originally proposed
in [12] and generalized in [13], and is now also known in the literature as
sample path envelope [14].

Definition 1. (Stochastic Arrival Curve). A flow A(t) is said to have a
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virtual-backlog-centric (v.b.c) stochastic arrival curve α ∈ F 2 with bounding

function f ∈ F̄ 3, denoted by A(t) ∼sac 〈f, α〉, if for all t ≥ 0 and all x ≥ 0

there holds:

P

{
sup
0≤s≤t

{A(s, t)− α(t− s)} > x

}
≤ f(x), (E.1)

where A(s, t) denotes the cumulative amount of traffic of an input flow
during period (s, t], A(t) = A(0, t).

For some commonly used traffic models, their stochastic arrival curves
have been found, (see, e.g. [13]). Here, the stochastic arrival curves of pe-
riodic traffic and Poisson traffic are introduced below, which will be used
later in the paper.

Periodic Traffic: A periodic source produces an amount of workload,
denoted by δ, at times {Uτ + nτ, n = 0, 1, 2, ...}, where τ is the period
time length and U is uniformly distributed on the interval [0, 1]. It has a
stochastic arrival curve A(t) ∼sac 〈fPeri(x), αPeri(t)〉 as:

fPeri(x) = 0 (E.2)

αPeri(t) = δ +
δ

τ
t, (E.3)

where the bounding function fPeri(x) = 0 means that the stochastic arrival
curve regresses to a deterministic arrival curve, also indicates the traffic
generation of a Periodic source is quite smooth.

Poisson Traffic: Suppose all packets of a flow have the same size L and
they arrive according to a Poisson process with mean arrival rate λ. Then
the flow has a stochastic arrival curve A(t) ∼sac 〈fPois, αPois〉 for any r >
λL with bounding function [2]:

fPois(x) = 1− (1− a)

k∑
i=0

[
[a(i− k)]i

i!
e−a(i−k)

]
(E.4)

αPois(t) = rt, (E.5)

where a = λL
r and k = � x

L�.
Similar to the concept of stochastic arrival curve, stochastic service

curve is defined to describe the service guarantee that a server can pro-
vide. While several definition variations are available [2] [14], we adopt the
following one in this paper.

2F : the set of non-negative wide-sensing increasing functions
3F̄ : the set of non-negative wide-sensing decreasing functions
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Definition 2. (Stochastic Service Curve). A system S is said to pro-

vide a stochastic service curve β ∈ F with bounding function g ∈ F̄ , denoted

by S ∼ssc 〈g, β〉, if for all t ≥ 0 and all x ≥ 0 there holds:

P{A⊗ β(t)−A∗(t) > x} ≤ g(x). (E.6)

Here, A⊗ β(t) ≡ inf0≤s≤t {A(s) + β(t− s)}, A∗(t) denotes the cumula-
tive amount of output traffic up to time t.

When the input traffic has been described by a stochastic arrival curve,
and the service provided by a server is characterized by a stochastic service
curve, various performance bounds have derived in the stochastic network
calculus literature (see e.g. [2]). In this paper, we are particularly interested
in the delay bound summarized in the following theorem, whose proof can
be found e.g. from [2] and is omitted for conciseness.

Theorem 1. (Delay Bound). Consider a server S with input A. Suppose

that the input has a v.b.c stochastic arrival curve denoted as A ∼sac 〈f, α〉,
and the server provides to the input a stochastic service curve written as

S ∼ssc 〈g, β〉, then for any t ≥ 0 and x ≥ 0, the delay of traffic arriving at

t, denoted as D(t) = inf{τ ≥ 0 : A(t) ≤ A∗(t+ τ)}, is bounded by

P {D(t) ≥ h(α+ x, β)} ≤ f ⊗ g(x), (E.7)

where h(α + x, β) is the maximum horizontal distance between functions

α(t) + x and β(t) and can be expressed as

h(α+ x, β) = sup
t≥0

{inf{τ ≥ 0 : α(t) + x ≤ β(t+ τ)}} .

E.5 The Analysis

In this section, we provide an analysis on the capacity of the considered cog-
nitive radio network. The key idea is to make use of Theorem 1 to establish
a relationship between the required probabilistic delay guarantee, the traffic
process, the sensing error processes, and the channel fading process. With
this relationship, a capacity bound is readily obtained.

As highlighted in the previous section, in order to apply Theorem 1, it
is essential to find stochastic service curves for both PUs and SUs which
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take into consideration sensing errors and two-state GE channel. To achieve
this, we present in the following an analytical approach. First, we study
the stochastic service curve characterization of the GE channel. Then, we
characterize the sensing error processes using the stochastic arrival curve
concept. Third, we investigate the impact of the sensing error processes on
the service provided to PUs and that to SUs, and derive stochastic service
curves for both PUs and SUs, with which Theorem 1 is applied to establish
the desired relationship. Finally, the capacity of the network in serving
traffic under delay constraints is studied, where two specific traffic types,
namely periodic traffic and Poisson traffic, are exemplified in defining the
capacity.

E.5.1 Stochastic Service Curve of the GE Channel

Considering the GE channel described in Section E.3, the following lemma
summarizes its stochastic service curve.

Lemma 1. For a two-state GE channel with state ON (state 1) and OFF

(state 0), let qij denote the transition probability from state i to state j

(i, j ∈ {0, 1}), and c denote the transmission rate when the channel is ON.

Then, the service provided by the channel during (0, t], denoted by S(0, t)

(S(t) for short), has a stochastic service curve β̂(t) with bounding function

ĝ(x), denoted by S(t) ∼ 〈ĝ(x), β̂(t)〉, where

ĝ(x) = e−θx, β̂(t) = μ̂(θ) · t (E.8)

for ∀θ > 0 and

μ̂(θ) ≡ − 1

θτ
logE[e−θS(τ)]

= −1

θ
log

(
q00
2

+
q11
2
e−cθ+√

(q00 + q11e−cθ)2 − 4(q11 + q00 − 1)e−cθ

2

) (E.9)

Proof. To prove, let us consider any time t ≥ 0. There are two cases.

Case 1: t is not within any backlogged period. In this case, there is no

backlog in the system at time t, which means that all traffic that arrived
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up to time t has left the server. Hence, A∗(t) = A(t) and consequently

A⊗ β̂(t)−A∗(t) = A(t) + β̂(0)−A∗(t) = 0.

Case 2: t is within a backlogged period (t0, tb], where t0 is the start

point of the backlogged period. Then, A∗(t0) = A(t0) and

A⊗ β̂(t)−A∗(t) ≤ A(t0) + β̂(t− t0)−A∗(t)

= β̂(t− t0) +A∗(t0)−A∗(t) = β̂(t− t0)− S(t0, t),

where S(t0, t) = A∗(t0) − A∗(t) represents the amount of service provided

by the channel during the backlogged period (t0, t]. Then, for the service

process S(s, t) with stationary increments, by using Chernoff bound and by

the definition of β̂(t), we have:

P{A⊗ β̂(t)−A∗(t) > x} ≤ P{β̂(t− t0)− S(t0, t) > x}
= P{eθ[β̂(t−t0)−S(t0,t)] > eθx}
≤ e−θxE[eθ[β̂(t−t0)−S(t0,t)]]

= e−θxE[eθ[μ̂(θ)·(t−t0)−S(t0,t)]]

= e−θxE[eθ[μ̂(θ)·τ−S(τ)]] = e−θx,

where μ̂(θ) = − 1
θτ logE[e−θS(τ)] is known as the effective bandwidth of

process S in the literature [15] [16]. For the two-state Markov chain of the

considered GE channel, its effective bandwidth has an explicit form [16] as

expressed by (E.9) above.

Combining both cases, the stochastic service curve of the GE channel

is obtained.

E.5.2 Modeling of Sensing Error Processes

We assume independent sensing in each slot. For each slot, the sensing gives
three possible outcomes, namely mis-detection (MD), false-alarm (FA) and
correct sensing (CS). Let C(t) and W (t) denote the real channel occupancy
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state and the sensed occupancy state in slot t, respectively, and 1 means
the channel is occupied, 0 not occupied. Then, the probabilities in each
slot of the three possible sensing outcomes are defined as:

pMD = P{W (t) = 0|C(t) = 1}P{C(t) = 1}
pFA = P{W (t) = 1|C(t) = 0}P{C(t) = 0}
pCS = P{W (t) = 1|C(t) = 1}P{C(t) = 1}

+ P{W (t) = 0|C(t) = 0}P{C(t) = 0}.

It is worth highlighting that MD and FA have different effects on PUs
and SUs. Specifically, while MD affects both PUs and SUs, FA does not
affect PUs at all. Note that if mis-detection happens in a slot, a collision
between PUs’ transmission and SUs’ transmission will happen. Throughout
this paper, we assume that after collision, retransmission will take place
until the transmission is successful4. In addition, pMD and pFA are also
correlated with the channel fading state. But in the following deductions
of this subsection, the channel is supposed to be always in state ON, which
leads to an upper bound of sensing error process.

From the PUs’ perspective, the sensing only has two states: MD or not,
and the corresponding probabilities are pMD and p̄MD = 1− pMD. Due to
this, for PUs, we are only interested in the MD process that is defined to
be MD(t) ≡ ∑t−1

s=0MD(s, s + 1) where MD(s, s + 1) denotes the amount
of wasted service due to mis-detection in slot s + 1, which is denoted as
σ in the following. Note that, the mis-detection event in a slot only has
two states: state HAPPEN with probability pMD and σ amount of wasted
service, and state NOT-HAPPEN with probability 1 − pMD, where there
is no wasted service. Therefore, the moment generating function (MGF)
E[eθMD(1)] can be obtained as pMDeθσ + 1− pMD.

For SUs, both MD and FA take effect, so we combine both MD and
FA at each slot and simply use sensing error (SE) to denote the combined
event. It is clear that in each slot, SE is also a two-state event as MD and
the probability that SE happens is simply pSE = pMD + pFA. For SUs,
we are interested in this combined sensing error process and denote it by
SE(t) ≡∑t−1

s=0 SE(s, s+1) where SE(s, s+1) denotes the wasted amount
of service due to sensing error in slot s+ 1. Similarly, the MGF E[eθSE(1)]
has the same form as that of MD(1), where probability parameter pSE is
used.

4Various policies may be employed when collisions happen. In [17], we discussed
three retransmission policies and studied their impacts on the services provided to both
PUs and SUs. Results in [17] can be incorporated in the analysis in this paper, but for
ease of exposition and without loss of the principle of the introduced analytical approach,
we assume retransmission until success in this paper.
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The following lemma summarizes the stochastic arrival curves of MD
process and SE process.

Lemma 2. Consider an interference process I(t) ≡ ∑t−1
s=0 I(s, s + 1), I ∈

{MD,SE}, where I(s, s + 1) has two states in each slot: HAPPEN with

probability pI and σ amount of wasted service, and NOT HAPPEN with

probability 1 − pI and no wasted service. In addition, I(s, s + 1) is in-

dependent of I(k, k + 1) (∀s �= k). Then, the process I(t) has a stochas-

tic arrival curve αI(t) with bounding function f I(x), denoted as I(t) ∼sac

〈f I(x), αI(t)〉, where

f I(x) = e−θx (E.10)

αI(t) =
1

θ
log(1− pI + pIeθσ) · t, (E.11)

for any θ > 0.

Proof. To prove, let us define a sequence of non-negative random variables

{Vs} as

Vs = eθI(t−s,t)−θρ(θ)·s,

where ρ(θ) = 1
θ log(1− pI + pIeθσ).

Since I(t) is the cumulation of independent identically distributed ran-

dom variables and has independent stationary increments, we then have,

Vs+1 = eθI(t−s−1,t)−θρ(θ)·(s+1)

= eθ
∑t

k=t−s Xk−θρ(θ)·(s+1)

= Vs · eθXt−s−θρ(θ),

where Xk = I(k − 1, k) is used to simplify the notations. In addition, it is

easy to know that Xt−s is independent of Xt, Xt−1, ..., Xt−s+1, because we
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have assumed that the channel is always in ON state and so the correlation

of ON and OFF is ignored. There holds:

E[Vs+1|V1, V2, ..., Vs] = E[Vs+1|Xt, Xt−1, ..., Xt−s+1]

= E[Vs · eθXt−s−θ·ρ(θ)|Xt, Xt−1, ..., Xt−s+1]

= E[Vs|Xt, Xt−1, ..., Xt−s+1] · E[eθXt−s−θ·ρ(θ)]

= Vs · E[eθX1 ]

eθ·ρ(θ)
≤ Vs,

where the last step is due to that X1 = I(0, 1) and

E[eθI(0,1)] = 1− pI + pIeθσ = eθρ(θ).

Hence, V1, V2, ..., Vt form a non-negative supermartingale. Then based

on Doob’s inequality for supermartingales [20], the definition of ρ(θ), and

that I(t) has independent stationary increments, we obtain:

P

{
sup
0≤s≤t

{I(s, t)− ρ(θ) · (t− s)} > x

}
= P

{
sup
0≤s≤t

{eI(s,t)−ρ(θ)·(t−s)} > ex
}

= P

{
sup
1≤s≤t

Vs > eθx
}

≤ e−θxE[eθI(t−1,t)−θρ(θ)]

= e−θxE[eθI(0,1)−θρ(θ)]

= e−θx.

This ends the proof.

E.5.3 Stochastic Service Curves to PUs and SUs

Having obtained the stochastic service curve of the channel and the stochas-
tic arrival curves of the sensing error processes, we are now ready to present
stochastic service curves for the services provided to PUs and SUs.

Let us denote by SPU (t) and SSU (t) the service processes that the
network successfully provide to PUs and SUs respectively. In addition,
throughout the rest of this paper, we suppose the traffic of PUs, denoted
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by APU (t), has a stochastic arrival curve and so does the traffic of SUs,
denoted by ASU (t). Specifically, there are:

APU (t) ∼sac 〈fPU (x), αPU (t)〉 (E.12)

ASU (t) ∼sac 〈fSU (x), αSU (t)〉. (E.13)

Then, we have the following result:

Theorem 2. For the considered cognitive radio network, the channel is

modeled as a GE channel with stochastic service curve of 〈ĝ(x), β̂(t)〉 given
in Lemma 1, while mis-detection process and sensing error process are char-

acterized by stochastic arrival curves 〈fMD(x), αMD(t)〉 and 〈fSE(x), αSE(t)〉
in Lemma 2, then

(i) The service successfully provided to PUs has a stochastic service curve

βPU (t) with bounding function gPU (x), denoted by

SPU (t) ∼ssc 〈gPU (x), βPU (t)〉,

where

βPU (t) = β̂(t)− αMD(t) (E.14)

gPU (x) = ĝ ⊗ fMD(x). (E.15)

(ii) The service successfully provided to SUs has a stochastic service curve

βSU (t) with bounding function gSU (x), denoted by

SSU (t) ∼ssc 〈gSU (x), βSU (t)〉,

where

βPU (t) = β̂(t)− αSE(t)− αPU (t) (E.16)

gSU (x) = ĝ ⊗ fSE ⊗ fPU (x). (E.17)

Proof. We first prove Part (i) for PUs. Let R(t) denote the sum of the

amount of traffic from PUs A(t) and the amount of service of the time
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slots up to time t where mis-detection sensing errors happened, which is

denoted by I (t). The channel is characterized by its stochastic service curve

〈g(x), β(t)〉. From the channel viewpoint, R(t) is its input that consumes

service from the channel. Correspondingly, we denote by R∗(t) the sum of

the amount of successfully transmitted traffic from PUs, denoted by A∗(t),

and the amount of actually collided service due to mis-detection, denoted

by I∗(t). Again from the channel viewpoint, R∗(t) is its output that has

received service from the channel.

R(t) = A(t) + I(t), R∗(t) = A∗(t) + I∗(t). (E.18)

In real scenarios, the output will not exceed the input. Therefore, the

following inequalities hold for any time t ≥ 0:

R(t) ≥ R∗(t), A(t) ≥ A∗(t), I(t) ≥ I∗(t). (E.19)

Let us now consider any time s ≥ 0. We have:

A(s)⊗ (β(s)− αI(s)
)−A∗(s)

= (R(s)− I(s))⊗ (β(s)− αI(s)
)

− (R∗(s)− I∗(s))

= inf
0≤u≤s

[
R(u) + β(s− u)− I(u)− αI(s− u)

]
− (R∗(s)− I∗(s))

≤ inf
0≤u≤s

[R(u) + β(s− u)]−R∗(s) + I(s)

− inf
0≤u≤s

[
I(u) + αI(s− u)

]
= inf

0≤u≤s
[R(u) + β(s− u)]−R∗(s)

+ sup
0≤u≤s

[
I(s, u)− αI(s− u)

]
.
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Then, the distribution probability can be derived as:

P
{
A(s)⊗ (β(s)− αI(s)

)−A∗(s) > x
}

≤ P {R⊗ β(s)−R∗(s) > y}
+P

{
sup

0≤u≤s

[
I(s, u)− αI(s− u)

]
> x− y

}
≤ g(y) + f I(x− y),

which holds for ∀y, (0 ≤ y ≤ x). Hence, we have

P
{
A(s)⊗ (β(s)− αI(s)

)−A∗(s) > x
}

≤ inf
0≤y≤x

{
g(y) + f I(x− y)

}
= g ⊗ f I(x),

which ends the proof.

Note that in the above proof, we have intentionally dropped out the
superscript PU in A(t), A∗(t), MD in I(t) and I∗(t). This is because
the above proof steps can also be followed to prove Part (ii). Particularly,
by treating A(t) and A∗(t) as from SUs and process I(t) as the integrated
process of the arrival process of PUs and the combined sensing error process,
the second part is similarly obtained and the details are omitted.

E.5.4 Delay-Constrained Capacity

Suppose the required probabilistic delay constraints for PUs and SUs are
respectively represented as:

Constraint 1 (C1): P{DPU (t) > d1 ≤ ε1 (E.20)

Constraint 2 (C2): P{DSU (t) > d2 ≤ ε2. (E.21)

Denote by RPU and RSU the average traffic rates of PUs and SUs
respectively, which are:

RPU = lim
t→∞

APU (t)

t
(E.22)

RSU = lim
t→∞

ASU (t)

t
. (E.23)
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Definition 3. The capacity of the cognitive radio network is the maximum

RPU and RSU that the network can support subject to constraints (C1) and

(C2).

It is worth highlighting that finding the exact delay-constrained capacity
under bursty traffic condition is not easy in general, which indeed has been
identified as a critical challenge in the field of network information theory
[18].

With the analysis so far above, we are able to present an analytical
limit on the capacity. Particularly, having derived the stochastic service
curves provided by the network to both PUs and SUs, the probabilistic
delay guarantees of both PUs and SUs immediately follows from Theorem
1, which are summarized here:

P
{
DU ≥ h(αU + x, βU )

} ≤ fU ⊗ gU (x), (E.24)

where U ∈ {PU, SU} and αU , βU , fU and gU are found from (E.12)–
(E.17).

Finally, we have the following result for the capacity of the considered
cognitive radio network under delay constraints.

Theorem 3. The considered cognitive radio network has a guaranteed ca-

pacity within which the delay constraints (C1) and (C2) are met, which is

decided by rates ΛPU and ΛSU with

ΛPU = max

{
rPU :

h(αPU + x, βPU ) ≤ d1

fPU ⊗ gPU (x) ≤ ε1

}
(E.25)

ΛSU = max

{
rSU :

h(αSU + x, βSU ) ≤ d2

fSU ⊗ gSU (x) ≤ ε2

}
, (E.26)

where rU ≡ limt→∞
αU (t)

t , u ∈ {PU, SU}.

E.6 Numerical and Simulation Results

In this section, specific parameters and configurations are substituted into
the analysis above to obtain numerical results. In addition, simulations were
conducted to find the capacity of the cognitive radio network. Simulation
results are obtained and compared with numerical results. The focused
results are in terms of capacity under various settings.
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E.6.1 System Configurations

The network is supposed to work in the Long Term Evolution (LTE) mode
using OFDM technology with slot length of 0.5ms. In each slot, there are
7 OFDM symbols in time domain, 50 resource blocks (RB) in frequency
domain with 12 sub-carriers in each RB. 16QAM and 1/3 − rate Turbo
code are used as the modulation and coding scheme. Based on these con-
figurations, at most 5.6kbits can be transmitted in one slot. Here, it is
supposed that all input packets have fixed length of 5.6kbits. State transi-
tion probability q01 and q10 of GE channel are set as 1 and 0.11, respectively.
In Section E.6.3 and E.6.4, mis-detection probability pMD and false-alarm
probability pFA are set to 0.5%, which leads to an overall sensing error
probability pSE to be 1%. The free parameters, such as θ, are optimized
numerically with a tradeoff between acceptable accuracy and tolerable com-
plexity.

In LTE standard, pre-defined QoS classes are specified into two cate-
gories: Guaranteed Bit Rate (GBR) and Non-Guaranteed Bit Rate (Non-
GBR). Each class is assigned with several parameters, such as delay budget
and packet loss probability [19]. Table E.1 lists four examples of the pre-
defined QoS classes.

Table E.1: QoS Requirements of Different Services in LTE System

Resource Type Packet Delay Budget Packet Loss Rate

GBR < 50ms High (e.g. 10−1)

GBR 50ms Medium (e.g. 10−2)

Non-GBR Low (∼ 50ms) 10−3

Non-GBR Medium (∼ 250ms) 10−4

In this research, primary users are supposed to use GBR, while sec-
ondary users use Non-GBR. It is assumed that physical layer retransmission
is made until a packet is received successfully, and buffer size is assumed
to be large enough so that no packet will be dropped because of overflow.
Therefore, packet is lost only when the delay exceeds the required delay
budget. Particularly, the corresponding delay constraints are as:

Constraint 1 (C1): P{DPU > 50ms} ≤ 10−2 (E.27)

Constraint 2 (C2): P{DSU > 250ms} ≤ 10−4. (E.28)

Two specific traffic models are used, which are periodic traffic and Pois-
son traffic. Their stochastic arrival curves have been exemplified in Section
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E.4. For these two types of traffic, we have

{RU , rU} ∼ 1

τU

for periodic traffic, where τU denotes the periodic time length, U ∈ {PU, SU};
{RU , rU} ∼ λU

for Poisson traffic, where λU denotes the average packet arrival rate of the
Poisson process, U ∈ {PU, SU}.

E.6.2 PUs’ Capacity Limits

An important design goal of cognitive radio networks is that secondary users
should not introduce interference to primary users. By setting pMD = 0,
the capacity limits in perfect sensing case can be obtained as shown in
Table.E.2.

Table E.2: Capacity Limits without Mis-detection Errors

Traffic Model
Theoretical Results Simulation Results

(packets per second) (packets per second)

Periodic 1786 1815

Poisson 1715 1765

In practical scenarios, however, mis-detection is not avoidable, which
will degrade PUs’ service guarantee and decrease the capacity limit. Fig.E.4
presents the relationship between PUs’ capacity limit and mis-detection
probability pMD for both Periodic traffic and Poisson traffic, where the y-
axis is normalized by the corresponding capacity listed in Table.E.2 when
there is no mis-detection error. It is shown that the difference between
theoretical results and simulation results is not significant, which validates
the tightness of delay distribution bound.

It is intuitive that higher mis-detection probability leads to smaller ca-
pacity limit. For example, by considering the theoretical results, the capac-
ity is reduced by about 12% for Periodic traffic and 16% for Poisson traffic,
when mis-detection probability in each slot is 10%. Furthermore, an upper
bound of mis-detection probability can be found conversely based on the
maximum capacity loss of PUs’ traffic. In Fig.E.4, 10% capacity deteriora-
tion corresponds to a maximum mis-detection probability of pMD = 8.6%
for Periodic traffic and pMD = 6% for Poisson traffic, which can be used as
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an upper bound on pMD when designing spectrum sensing algorithms. Sim-
ulation results are also plotted in Fig.E.4. It is seen that the theoretical
analysis gives tight bound compared with simulation results for Periodic
traffic. For Poisson traffic, while the theoretical results still match with
simulation results, they are more conservative than for Periodic traffic.
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Figure E.4: Impact of Mis-detections on PUs’ Capacity Limit

E.6.3 SUs’ Capacity Limits

Some SUs’ traffic can be accommodated by the network only when there is
still some capacity margins. Therefore, SUs’ capacity limits depend on PUs’
actual input load η. When there is no primary user, then the secondary
users can make use of the whole radio resource, and the maximum capacity
is obtained and used for normalization purpose in plotting the results.

By increasing the traffic load from PUs, the supportable capacity limit
of SUs traffic decreases as shown in Fig.E.5 for Periodic traffic and in Fig.E.6
for Poisson traffic, where the capacity limits are normalized with respect
to the case that there is no traffic from PUs and no mis-detection. The
area below the curve forms the admissible capacity region of the network.
Particularly, for any point below the curve, which corresponds to a load of
primary traffic and a load of secondary traffic, the system can guarantee
the delay requirement and the required loss probability. In addition, both
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theoretical results and simulation results are plotted. It can be noticed that
the theoretical results locate closely to the simulation results for Poisson
traffic, and they are almost the same with the simulation results for Periodic
traffic, which indicates the tightness of the capacity limits obtained through
the delay analysis of stochastic network calculus.
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Figure E.5: Normalized Capacity of SUs (Periodic Traffic)

E.6.4 Slow Fading Channel

In the previous results, the state transition probability q01 and q10 of GE
channel are set to 1 and 0.11, respectively, which indicates fast fading speed.
In this part, the capacity limits under slow fading are studied. Particularly,
we now set q01 = 0.1 and q10 = 0.011.

First, the capacity limits of PUs’ traffic by theoretical analysis are sum-
marized and compared in Table.E.3, where mis-detection probability is set
to zero. It is found that capacity limit decreases when fading speed is slow.
This is because the GE channel is likely to stay in state OFF for a longer
time in slow fading, which may lead to a large delay for packets arrived
during this period, weakening the ability in meeting the delay constraints.

The capacity limits of SUs traffic with Periodic model are plotted in
Fig.E.7. It is seen that the capacity limits are reduced when the fading
is slow. In addition, the gap between theoretical results and simulation
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Figure E.6: Normalized Capacity of SUs (Poisson Traffic)

Table E.3: Capacity Limits of PUs under Fast and Slow Fading Channel

Traffic Fading Capacity Limit Capacity Loss

Model Speed (packets per second) (%)

Periodic
Fast 1786

6.55
Slow 1669

Poisson
Fast 1715

22.6
Slow 1328

results increases under slow fading, especially when the primary network
is fed with heavy load. Fig.E.8 shows the results for Poisson traffic, which
indicate the same trend. In all cases, the analytical capacity results match
well with the simulation results.

E.7 Conclusion and Discussion

In this paper, capacity analysis of a cognitive radio network under delay
constraints is conducted. Stochastic network calculus is applied to obtain
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Figure E.7: Capacity Limits of SUs under Slow and Fast Fading (Periodic
Traffic)

probabilistic delay bounds for both PUs and SUs, based on which analyti-
cal capacity limits are obtained. A crucial part is to find stochastic service
curves for both PUs and SUs which take into consideration sensing errors
and two-state GE channel. The analysis builds on several steps. First, we s-
tudy the stochastic service curve characterization of the GE channel. Then,
we characterize the sensing error processes using the stochastic arrival curve
concept. Third, we investigate the impact of the sensing error processes on
the service provided to PUs and that to SUs, based on which stochastic ser-
vice curves for both PUs and SUs are then derived. Finally, relationships
between delay, traffic processes, sensing error processes and two-state GE
channel process are established for both PUs and SUs, with which, analyt-
ical results on the capacity are presented. Both numerical and simulation
results are presented and discussed by considering an LTE parameter set-
ting. Two specific traffic types, namely periodic traffic and Poisson traffic,
are used to exemplify the results. The comparison between analytical and
simulation results shows a good match between them, indicating the effec-
tiveness of using stochastic network calculus analysis to find capacity limits.
These results are ready to be extended to other channel models, such as
Finite State Markov Channel, by substituting the stochastic service curve
of the concerned channel into 〈ĝ, β̂〉. In addition, the results obtained by
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Figure E.8: Capacity Limits of SUs under Slow and Fast Fading (Poisson
Traffic)

stochastic network calculus can be further improved by using the concept
of stochastic strict server and impairment process, which will form part of
our ongoing work.

We stress that in order to obtain tractable analytical results, the cog-
nitive radio network has been greatly simplified. While this will certainly
restrict the application of results obtained in this paper, our work pro-
vides a first attempt in finding delay-constrained capacity for cognitive
radio networks, which also sheds light on how delay-constrained capacity
analysis may be conducted for more complex or realistic settings such as
multi-channel and none ideal coordination among the same type of users
in channel accessing. For such scenarios, additional and likely significant
effort will be needed. We leave this as future work.
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Abstract
In this paper, we consider a multi-channel cognitive radio system serving

a primary network and a secondary network, and analyze the quality of ser-
vice and delay-constrained capacity of the secondary network. Specifically,
by assuming that a certain amount of resource is exclusively reserved and
used on each channel by the primary network, we derive the traffic trans-
portation capacity that is guaranteed to the secondary network. Based on
this, we analyze the traffic delay distribution in the secondary network and
derive an upper bound on it, which allows us to further obtain a guaranteed
capacity of the secondary network in serving traffic with probabilistic delay
requirement. Both numerical and simulation results are presented for an
example where the secondary network traffic follows a model taken from
3GPP LTE. The delay distribution, average delay and delay-constrained
capacity of the secondary network are compared. The excellent match
between analytical results and simulation results validates the theoretical
analysis.
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F.1 Introduction

Cognitive radio is a promising technique for efficiently making use of wire-
less spectrum [1]. Its fundamental idea is to allow a secondary network to
coexist with the primary network in the system, and the secondary network
can also access the system resource (or wireless channels) as far as the per-
formance of the primary network is not affected. In this paper, we consider
such a cognitive radio system with focus on the quality of service (QoS)
performance of the secondary network. Specifically, we analyze the traffic
transportation capacity that can be guaranteed to the secondary network,
investigate its delay performance, and obtain its capacity in serving traffic
with delay requirement.

In the literature, several attempts have been made to conduct perfor-
mance analysis of the secondary network. Some of them make use of clas-
sical queueing theory [2, 3]. In order to directly apply existing results,
typically M/G/1/ Priority analysis, Poisson arrival and single channel s-
cenario are assumed with average delay and average queue length as the
performance metrics of interest. In some other works, e.g. [4, 5], a classic
stochastic process analysis technique is used, which establishes its basis on
the states of each channel occupancy, i.e. whether a channel is occupied
by which network, and uses a Markov chain to model this process. With
such Markov chains, the dropping probability and blocking probability are
derived. Although multi-channel is considered in these works, it is often
assumed that the arrivals (to each channel) form a Poisson process and
the service time (of each channel occupancy) follows some negative expo-
nential distribution in order to ensure the Markov property of the channel
occupancy process. In addition, some results on outage/ergodic capaci-
ty are available, e.g. [6, 7], under various constraints that include power
constraints and peak interference power constraints. However, study on
the maximum arrival rate under probabilistic delay constraint (defined as
guaranteed delay-constrained capacity in this paper) is very limited.

Furthermore, the problem becomes even challenging when the cognitive
radio network is supposed to have multiple parallel channels. For analyz-
ing multi-channel/multi-server systems, another novel approach has been
adopted, which lays on the network calculus theory [8, 9]. For example,
in [10, 11], service guarantee analysis of multi-server Weighted Fair Queue-
ing and multi-server Round Robin scheduling systems have been respec-
tively studied. However, the considered multi-server scenarios therein do
not encompass the priority issue, which is typically inherent in cognitive
radio systems. To the best of our knowledge, an analysis of multi-channel
cognitive radio system with general traffic model and probabilistic delay
requirement is yet to be found, which has motivated the present work.
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The objective of this paper is to analyze the quality of service and ca-
pacity of a cognitive radio secondary network. Specifically, by assuming
that a certain amount of resource is exclusively reserved and used on each
channel by the primary network, we first derive the traffic transportation
capacity that is guaranteed to the secondary network. Then, we analyze
the traffic delay distribution in the secondary network and derive an upper
bound on it. This delay distribution bound allows us to further obtain a
guaranteed capacity of the secondary network in serving traffic with delay
requirement. To validate the analysis, both numerical and simulation re-
sults are presented by using a 3GPP LTE scenario as an example. The
delay distribution, average delay and capacity of the secondary network
are compared and discussed. The comparison shows an excellent match
between numerical and simulation results.

The rest is organized as follows. Sec.F.2 describes the considered system
model. Sec.F.3 presents a backlog period analysis and derives the guaran-
teed service provided to the secondary network. Then, delay analysis is
conducted in Sec.F.4. Sec.F.5 presents numerical results and compares
with simulation results. Finally, further discussion and concluding remarks
are made in Sec.F.6 and Sec.F.7, respectively.

F.2 The System Model

In this paper, we consider a cognitive radio system with multiple indepen-
dent channels indexed by i (1 ≤ i ≤ N) as shown in Fig.F.1. In this system,
all channels are slotted1 and synchronized, where T denotes the slot time
length. Only at the beginning of a slot, scheduling is made and transmis-
sion can start. On each channel i, a certain number of slots are reserved2

periodically and exclusively for the primary network in order to guarantee
its service. Here, by exclusively, we mean that such slots are never used
by the secondary network. When there is traffic, the primary network will
always try to use such slots first.

Throughout the rest of this paper, we assume that both the primary
network and the number of reserved slots are properly planned such that
no additional slots are needed for traffic of the primary network. While
this assumption is rather conservative, it guarantees a certain amount of
service available to the secondary network, which we believe is reasonable
and can be expected particularly when the secondary network needs to

1One slot is defined as the smallest transmission unit in time domain.
2The considered reservation works in the time domain, but, we would like to empha-

size that the analysis can also be applied/extended when the reservation is made in other
domains such as in the frequency domain.
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pay the primary network. Under this channel reservation, each channel
becomes an ON-OFF process from the viewpoint of the secondary network.
With this information, we believe channel sensing will work much more
effectively and correctly. Due to this, sensing error is ignored in this paper.
Recall that, the objective of the paper is to find the traffic transportation
capacity that is guaranteed to the secondary network, which also implies
perfect sensing.

We suppose each wireless channel has constant transmission rate Ci.
We define Ri as the length (in number of slots) of a reservation period on
channel i, and Ron

i as the number of slots reserved by the primary network

in each reservation period on channel i. In addition, ηi =
Ron

i
Ri

is called as
the active factor of the primary network on channel i. Fig.F.1 depicts the
aforementioned cognitive radio system, where the traffic generated by the
primary and secondary networks are denoted by flp and fls, respectively.

Figure F.1: Considered Cognitive Radio Network

F.3 Guaranteed Service Analysis

By observing the considered system, we notice that every channel provides
a deterministic amount of service during any given period. In addition,
there also exists an upper bound on the amount of resource reserved for
the primary network during any period. Therefore, the amount of service
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that can be utilized by the secondary network is lower bounded. Intuitively,
one may guess the long term average service rate of each channel i, which
is available to the secondary network, is (1 − ηi) · Ci and hence, the total
long term average service rate, which the secondary network can maximally
get, is

∑N
i=1(1− ηi) · Ci. In this section, we present results on the amount

of service that can be provided to the secondary network, which not only
leads to a rigorous validation of the average service rate intuition, but also
allows us to view this service on short time scale, which is crucial for QoS
analysis of the secondary network.

The following theorem presents the main result, which lays the founda-
tion for later delay analysis of the secondary network.

Theorem 1. (Guaranteed Service.) For the considered cognitive radio

system, the amount of service provided to the secondary network during its

any backlogged period (τ, τ + t], denoted by W s(τ, τ + t), satisfies,

Cs · t+ U s ≥ W s(τ, τ + t) ≥ Cs · (t− Ls)+

where Cs =
∑i=N

i=1 (1− ηi)Ci, L
s = max1≤i≤N (2Ron

i T +2T ), U s =
∑N

i=1Ci

(Ron
i + 1)T , and x+ ≡ max{x, 0}.

Before proving Th.1, we first discuss how this result can help prove the
long term average service rate of the secondary network. Note that the max-
imum long term average service rate is achieved when there is always traffic
to send from the network, and hence can be written as limt→∞

W (τ,τ+t)
t .

Then, with the first part of Th.1, we get

lim
t→∞

W (τ, τ + t)

t
≤ lim

t→∞
Cs · t+ U s

t
= Cs

and with the second part of Th.1, we get

lim
t→∞

W (τ, τ + t)

t
≥ lim

t→∞
Cs · (t− Ls)+

t
= Cs.

Summing up, we conclude:

Corollary 1. (Long Term Average Service Rate.) The long-term

average service rate that the secondary network can maximally provide is

Cs =
∑i=N

i=1 (1− ηi)Ci.
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F.3.1 Proof of Theorem 1

The rest of this section is devoted to the proof of Th.1. In this paper,
we assume that the amount service of a slot is delivered or received by
a network when and only when the slot ends and it is allocated to this
network at the start of this slot. The rationale of this assumption is that in
packet-switched networks, a packet is considered to be serviced when and
only when its last bit has been serviced.

Since all channels are independent with each other, the analysis on each
channel is the same. Hence, we start by considering an arbitrary channel
indexed with i, and later, the analysis will be extended to the whole system.
Consider any backlog time period (s, t] (0 ≤ s ≤ t) for the secondary flow
fls, which means that there is always traffic waiting to be served in the
secondary network during this period. Therefore, we have

W s
i (s, t) = Wi(s, t)−W p

i (s, t), (F.1)

where Wi(s, t) denotes the total amount of service that can be provided by
channel i, W p

i (s, t) the amount of service that may maximally occupied by
flp, and W s

i (s, t) the amount of service occupied by fls. Note that W p
i (s, t)

essentially denotes the amount of service of the reserved slots in (s, t] by
the primary network, and due to exclusive reservation, these slots are not
used by the secondary network though they may not carry traffic from the
primary network.

We first prove the second part of Th.1.

In Eq.(F.1), Wi(s, t) can be easily obtained asWi(s, t) ≥ Ci·(t−s−2T )+.
The amount of service provided within two slot Ci·2T are deducted, because
the worse case happens when the time point s (or t) locates just after (or
before) a slot starts (or ends), indicating the first slot and the last slot
during (s, t] are not complete slots. In addition, (·)+ is due to the fact that
the amount of service cannot be negative.

Regarding the specific expression for W s
i (s, t), there are two scenarios

to be analyzed.

• Scenario 1: The time length (t− s) is no longer than one reservation
period, i.e., t− s ≤ RiT .

In this scenario, service reserved for fls is upper bounded by Ci ·Ron
i T

as shown in Fig.F.2(a). Therefore, we have

W s
i (s, t) = Wi(s, t)−W p

i (s, t)

≥ [Ci · (t− s− 2T )− Ci ·Ron
i T ]+

= Ci · (t− s− 2T −Ron
i T )+. (F.2)
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• Scenario 2: The time length (t− s) lasts longer than one reservation
period, i.e., t− s > RiT .

In this scenario, let s′ denote the start time of the next period just
after s, and t′ denote the end time of the latest period just before t,
as illustrated by Fig.F.2(b). Then, the amount of service provided to
the secondary network consists of three parts:

W s
i (s, t) = W s

i (s, s
′) +W s

i (s
′, t′) +W s

i (t
′, t), (F.3)

where the length of (s′ − s) and (t − t′) are shorter than one period
cycle RiT , and therefore, W s

i (s, s
′) and W s

i (t
′, t) fall into the range of

Scenario 1. Then, there hold:

W s
i (s, s

′) ≥ Ci · (s′ − s−Ron
i T − T )+ (F.4)

W s
i (t

′, t) ≥ Ci · (t− t′ −Ron
i T − T )+. (F.5)

Note that, only one slot length is deducted in (F.4) and (F.5) com-
pared with (F.2), because s′ and t′ are at the edge of a slot.

Intuitively from the definition, we know the time length between s′

and t′ is integer times of one period RiT , and hence, the service left for
the secondary network during [s′, t′] can be obtained deterministically
as

W s
i (s

′, t′) =
t′ − s′

RiT
· Ci · (RiT −Ron

i T ). (F.6)

Combining these scenarios together, we have

W s
i (s, t) = W s

i (s, s
′) +W s

i (s
′, t′) +W s

i (t
′, t)

≥ Ci ·
(
s′ − s−Ron

i T − T
)+

+Ci · (1− Ron
i

Ri
)(t′ − s′)

+Ci ·
(
t− t′ −Ron

i T − T
)+

≥ (1− ηi)Ci · (t− s− 2Ron
i T − 2T )+.

Considering the fact of Ron
i ≥ 1 and ηi ≤ 1, the result of Scenario 1

and Scenario 2 can be further merged as

W s
i (s, t) ≥ (1− ηi)Ci · (t− s− 2Ron

i T − 2T )+

� Cs
i · (t− s− Ls

i )
+

for any backlog period (s, t].
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(a) Scenario 1

(b) Scenario 2

Figure F.2: Illustration of Two Scenarios

Then, an lower bound on the amount of service provided by the whole
system to the secondary network can be obtained by making a summation
as

W s(s, t) =
i=N∑
i=1

W s
i (s, t)

≥
i=N∑
i=1

Cs
i (t− s− Ls

i )
+

≥ (
i=N∑
i=1

Cs
i ) · (t− s− max

1≤i≤N
Ls
i )

+

� Cs · (t− s− Ls)+ = βs(t− s), (F.7)

which ends the proof of the second part.
For the first part, the prove follows similarly. Particularly, it can be

easily verified that Wi(s, t) ≤ Ci · (t − s + T ). In addition, in any time
interval (s, t], the number of reserved slots for the primary network is not
smaller that � t−s

RiT
�Ron

i and hence the corresponding time length not shorter

than ( t−s
RiT

− 1)+ · (Ron
i T ). We then have

W p
i (s, t) ≥ (

t− s

RiT
− 1)+ · (Ron

i T )Ci

and hence

W s
i (s, t) ≤ (1− ηi)Ci · (t− s) + Ci · T · (Ron

i + 1)

with which the first part is proved by summing up all channels’ service.
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F.4 Delay Distribution Analysis

Th.1 fundamentally indicates the amount of service that can be guaran-
teed for the secondary network. With this, the following theorem presents
that, if the traffic arrival process of the secondary network is stochastically
bounded, the traffic delay (including queueing delay and transmission time)
in the secondary network is probabilistically upper bounded.

Theorem 2. (Delay Distribution.) For the considered cognitive radio

system, if the amount of traffic of the secondary network As(s, t) is stochas-

tically bounded by an arrival function αs(t) ∈ F 3 and a probability distribu-

tion function f(x) ∈ F̄ 4, i.e., there holds

P{ sup
0≤s≤t

{As(s, t)− αs(t− s)} > x} ≤ f(x), (F.8)

then the system delay for any traffic from the secondary network is proba-

bilistically upper bounded by

P{ds > h(αs(t) + x, βs(t− Lσ))} ≤ f(x), (F.9)

where βs(t) ≡ Cs · (t − Ls)+, h(αs(t) + x, βs(t − Lσ) is the maximum

horizontal distance between αs(t) + x and βs(t − Lσ), and Lσ = σs
max/C

s

is the latency of serving the largest unit of traffic denoted as σs
max.

Here we would like to remark the difference between Ls and Lσ in Th.2.
Ls is given in Th. 1, denoting the latency term if the service would have
been defined using the Latency Rate server model [12]. However, Lσ is a
time length related to serving the largest traffic unit, such as maximum
length packet or maximum length file, in the secondary network. This
difference is clearly seen from the example given in the next section. In
addition, we would like to highlight that the literature has proved that a
lot types of traffic satisfy (F.8) and extensive discussion on this can be
found from e.g. [9, 13].

Define delay-constrained capacity as the maximum long term traffic rate
that can be supported by a network under delay constraint (D, ε), denoted

3F : the set of non-negative wide-sensing increasing functions
4F̄ : the set of non-negative wide-sensing decreasing functions
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by C(D,ε). Specifically, for the secondary network, the delay-constrained
capacity Cs

(D,ε) is defined as

Cs
(D,ε) ≡ max lim

t→∞
A(τ, τ + t)

t
such that P{ds > D} = ε.

With Th.2, the following result is immediately obtained:

Corollary 2. (Guaranteed Delay-Constrained Capacity.) It is guar-

anteed that the delay-constrained capacity of the secondary network is not

smaller than max limt→∞
α(t)
t , where x = f−1(ε) is the inverse function of

ε and α(t) satisfies

P{h(αs(t) + x, βs(t− Lσ) ≤ D} ≤ ε.

F.4.1 Proof of Theorem 2

Consider any traffic unit σs
j that arrives at the secondary network at time

t. There exists a time point 0 ≤ t0 ≤ t which is the start of the backlog
period containing time t. We can always find such t0, because at least the
arrival of itself will start the backlog period. Then, the system delay can
be expressed as

dsj = inf{τ : As(t0, t) ≤ As
out(t0, t+ τ)}. (F.10)

We can prove that for any x ≥ 0, if dsj > x, there must be As(t0, t) >
As

out(t0, t + x), since otherwise if As(t0, t) ≤ As
out(t0, t + x), then dsj ≤ x

should hold, which will contradict the condition dsj > x. To sum up, event
dsj > x implies event As(t0, t) > As

out(t0, t+ x). Therefore, it holds:

P{dsj > x} ≤ P{As(t0, t) > As
out(t0, t+ x)}. (F.11)

Note that As
out(t0, t + x)} ≤ W s(t0, t + x), because the system may be

busy severing previous traffic unit σs
k ≤ σs

max at time t0, which is the last
one sent to the system and empties the buffer before time t0. Therefore,
we have

W s(t0, t+ x)− σs
max ≤ As(t0, t+ x) ≤ W s(t0, t+ x). (F.12)
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Then, the following steps hold:

P{As(t0, t) > As
out(t0, t+ x)}

≤ P{As(t0, t) > W s(t0, t+ x)− σs
max}

≤ P{As(t0, t) > βs(t+ x− t0)− σs
max}

≤ P{As(t0, t) > βs(t+ x− t0 − σs
max

Cs
)}

= P{As(t0, t)− αs(t− t0) >

βs(t+ x− t0 − Lσ)− αs(t− t0)},

where αs(t) is a non-negative wide-sensing increasing function, and Lσ

is the latency term introduced by serving σs
max. When limt→∞

αs(t)
t <

limt→∞
βs(t)
t holds, there exists a maximum horizontal distance between

αs(t) + y and βs(t− Lσ) for ∀y > 0, defined as:

h(αs(t) + y, βs(t− Lσ)) (F.13)

= sup
t≥0

{inf{ζ ≥ 0 : αs(t) + y ≤ βs(t− Lσ + ζ)}}.

By setting x = h(αs(t) + y, βs(t− Lσ)) and by definition (F.13), we have:

P{dsj > h(αs(t) + y, βs(t− Lσ))}
≤ P{As(t0, t)− αs(t− t0) > y}
≤ P{ sup

0≤t0≤t
{As(t0, t)− αs(t− t0)} > y}. (F.14)

where the sup0≤t0≤t{·} in (F.14) is used to remove the randomness of t0.
When the arrival process As(s, t) is stochastically bounded as defined

in (F.8), there holds

P{ds > h(αs(t) + y, βs(t− Lσ))} ≤ f(x), (F.15)

which ends the proof.

F.5 Numerical and Simulation Results

In this section, we provide both numerical results and simulation results
for the uplink of a FDD LTE system. As specified by [14], the uplink trans-
missions are organized into radio frames with duration of 10 ms, which is
employed as the smallest transmission unit here, i.e., T = 10 ms. The num-
ber of slots in a reservation period (i.e., Ri) is set to 10 frames. The active
factor ηi varies within the range of [0.1, 0.2, ..., 0.9]. Along the frequency
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axis, the system is “grided” into Resource Blocks (RB), and hereafter, each
RB is considered as a single channel (i.e., N = NRB), which varies depend-
ing on the system bandwidth within {15, 25, 50, 75, 100} channels. Each
RB in frequency domain contains 12 sub-carriers and the channel rate Ci

is 224 kbps under 1/3 coding rate and 16QAM modulation.

The traffic generated by the secondary network is considered to follow
a non-full buffer FTP model as suggested by [15]. Specifically, file is the
concerned traffic unit with fixed length of σs = 4Mbits indicating bursty
traffic. The bursty file is divided into small packets to fill each slot when
transmitted on channels. The arrival process of files is supposed to be a
Poisson process5. The delay to be presented later is defined as the time
length between the arrival of a file and the end point of the slot containing
the last bit of this file. This arrival process is a compound Poisson process.
It can be proved that the considered process is stochastically bounded by
Eq.(F.8) with the following setting [16, 17]:

αs(t) =
λs

θ

(
eσ

sθ − 1
)
t

f(x) = e−θx

where θ > 0 is a free parameter and can be used to optimize the results
presented later.

By applying Th.1 and the aforementioned configurations into Th. 2,
the probabilistic delay distribution bound can be expressed as:

P{ds > x} ≤ f
(
Cs(x− Ls − Lσ)+

)
, (F.16)

subject to

λs

θ

(
eσ

sθ − 1
)
≤ Cs, (F.17)

where Cs = (1− ηi)NCi, L
s = 2(Ron

i + 1)T and Lσ = σs/Cs.

Fig.F.3 compares the upper bound of delay distribution probabilities ob-
tained by the theoretical analysis with simulation results, where the number
of channels is 50, the average file arrival rate from the secondary network
is 0.5 files per second and the active factor of the primary network is 0.1
and 0.5, respectively. Though a gap exists between the theoretical and cor-
responding simulation results, the probabilities obtained by the theoretical
analysis are close to and in the same order of magnitude as the simulation
results.

5Note that, we are talking about the service demand of flow arrival (not packet level)
that has Poisson property.
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Figure F.3: Delay Distribution Probability

Fig.F.4 plots the average delay under different configurations. Firstly,
the influence of Ron

i is investigated. It is obvious that the average delay
of secondary files increases when more resource is reserved for the primary
network. In addition, the average delay goes to infinity when Ron

i = 9,
which is not included in the figure. Similar trend can be found when the
average file arrival rate from the secondary network increases. On the
contrary, more channels (equivalent to larger bandwidth) will guarantee
better delay requirements. In addition, the theoretical results locate close to
the simulation results, especially when the system is heavily loaded. Those
heavily loaded points are usually utilized to find the guaranteed capacity
for admission control.

Finally, Fig.F.5 compares the guaranteed capacity under the constraint
that the delay exceeding 3 seconds has a probability less than 1%. The
figure shows that the theoretical results match well with the simulation
results, which validates the effectiveness of the presented analysis.

F.6 Discussion

We would like to further discuss several key issues in this work. First, the
theoretical analysis here finds its root in the area of network calculus [8, 9].
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The guaranteed service βs(t) in Th.1 is indeed the so-called Latency-Rate
Service Curve [12], which is an important type of service curve in network
calculus. In addition, in characterizing the stochastic arrival process of
the secondary network for delay analysis, the definition in (F.8) is known
as the virtual-centric-backlog stochastic arrival curve in stochastic network
calculus [9], and sup{·} in (F.8) cannot be omitted. Importantly, while
at a first glance, one might think to apply the leftover service property in
network calculus to find the service guaranteed to the secondary network,
we stress that this cannot be done easily. The fundamental reason is that
the available network calculus leftover service property is applicable only
to single server systems. Furthermore, while much of the existing multi-
channel analysis literature (e.g. [10, 11]) is also based on network calculus,
the considered systems therein do not match with the considered cognitive
radio system. All these have motivated the present work, which also imply
the challenge in the analysis.
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F.7 Conclusion

In this paper, performance analysis of a multi-channel cognitive radio sec-
ondary network is conducted. In order to ensure a certain level of service
guarantee in the cognitive radio system, it is assumed that some amount
of resource is reserved for the primary network. With this assumption, we
derive the guaranteed amount of service that can be provided to the sec-
ondary network. Then, an upper bound on delay distribution probability
in the secondary network is obtained if its traffic arrival process is stochas-
tically bounded. In addition, a delay-constrained capacity of the secondary
network is derived. Both numerical and simulation results are presented
and discussed by considering an LTE parameter setting. Specifically, delay
distribution probabilities, average delay and capacity are compared, which
shows a good match between the analytical results and the simulation re-
sults, indicating the effectiveness of the theoretical analysis.

We stress that in order to move forward in multi-channel cognitive radio
analysis, several assumptions are made. While this will certainly restrict
the application of results in this paper, the work still sheds light on how
multi-channel cognitive radio systems may be analyzed. For more complex
scenarios, such as fading channel and random primary traffic arrival, more
effort is needed, which are our on-going work.
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