ATL10 Product Data Dictionary Date Generated: 2020-10-21T15:57:05 | description | (Attribute) | This data set (ATL10) contains estimates of sea ice freeboard, calculated using three different approaches. Sea ice leads used to establish the reference sea surface and descriptive statistics used in the height estimates are also provided. The data were a | |-----------------------------------|-------------|--| | level | (Attribute) | L3A | | short_name | (Attribute) | ATL10 | | title | (Attribute) | SET_BY_META | | Group: / | | This data set (ATL10) contains estimates of sea ice freeboard, calculated using three different approaches. Sea ice leads used to establish the reference sea surface and descriptive statistics used in the height estimates are also provided. The data were a | | Conventions | (Attribute) | CF-1.6 | | citation | (Attribute) | SET_BY_META | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | creator_name | (Attribute) | SET_BY_META | | date_created | (Attribute) | SET_BY_PGE | | date_type | (Attribute) | итс | | featureType | (Attribute) | trajectory | | geospatial_lat_max | (Attribute) | 0.0 | | geospatial_lat_min | (Attribute) | 0.0 | | geospatial_lat_units | (Attribute) | degrees_north | | geospatial_lon_max | (Attribute) | 0.0 | | geospatial_lon_min | (Attribute) | 0.0 | | geospatial_lon_units | (Attribute) | degrees_east | | granule_type | (Attribute) | ATL10 | | hdfversion | (Attribute) | SET_BY_PGE | | history | (Attribute) | SET_BY_PGE | | identifier_product_doi | (Attribute) | 10.5067/ATLAS/ATL10.001 | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | identifier_product_type | (Attribute) | ATL10 | | institution | (Attribute) | SET_BY_META | | instrument | (Attribute) | SET_BY_META | | keywords | (Attribute) | SET_BY_META | | keywords_vocabulary | (Attribute) | SET_BY_META | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | naming_authority | (Attribute) | http://dx.doi.org | | platform | (Attribute) | SET_BY_META | | processing_level | (Attribute) | L3A | | project | (Attribute) | SET_BY_META | | | | | |--------------------------------|-----------------------------|---|--|---|--|--| | publisher_email | (Attribute) | SET_BY_META | | | | | | publisher_name | (Attribute) | SET_BY_META | | | | | | publisher_url | (Attribute) | SET_BY_META | | | | | | references | (Attribute) | SET_BY_META | | | | | | source | (Attribute) | SET_BY_META | | | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | | | summary | (Attribute) | SET_BY_META | | | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | | | time_coverage_end | (Attribute) | SET_BY_PGE | | | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | | | time_type | (Attribute) | CCSDS UTC-A | | | | | | Group: /ancillary_data | | Contains information and characteristics, instrument | | . This may include product processing constants. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | atlas_sdp_gps_epoch
COMPACT | DOUBLE([1]) | ATLAS Epoch Offset
None | seconds since 1980-
01-
06T00:00:00.0000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. (Source: Operations) | | | | control
CONTIGUOUS | STRING([1]) | Control File
None | 1 | PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. (Source: Operations) | | | | data_end_utc
COMPACT | STRING([1]) | End UTC Time of
Granule (CCSDS-A,
Actual)
None | 1 | UTC (in CCSDS-A format) of the last data point within the granule. (Source: Derived) | | | | data_start_utc
COMPACT | STRING([1]) | Start UTC Time of
Granule (CCSDS-A,
Actual)
None | 1 | UTC (in CCSDS-A format) of the first data point within the granule. (Source: Derived) | | | | end_cycle
COMPACT | INTEGER([1]) | Ending Cycle
None | 1 | The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | | | end_delta_time
COMPACT | DOUBLE([1]) | ATLAS End Time
(Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within | | | | | | | | atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | |----------------------------|--------------|--|---------------------------|---| | end_geoseg
COMPACT | INTEGER([1]) | Ending Geolocation
Segment
None | 1 | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | end_gpssow
COMPACT | DOUBLE([1]) | Ending GPS SOW of
Granule (Actual)
None | seconds | GPS seconds-of-week of the last data point in the granule. (Source: Derived) | | end_gpsweek
COMPACT | INTEGER([1]) | Ending GPSWeek of
Granule (Actual)
None | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. (Source: Derived) | | end_orbit
COMPACT | INTEGER([1]) | Ending Orbit Number
None | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | end_region
COMPACT | INTEGER([1]) | Ending Region
None | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | end_rgt
COMPACT | INTEGER([1]) | Ending Reference
Groundtrack
None | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | granule_end_utc
COMPACT | STRING([1]) | End UTC Time of
Granule (CCSDS-A,
Requested)
None | 1 | Requested end time (in UTC CCSDS-A) of this granule. (Source: Derived) | | 1 | I | <u>I</u> | 1 | 1 | |------------------------------|--------------|--|------------------------------
--| | granule_start_utc
COMPACT | STRING([1]) | Start UTC Time of
Granule (CCSDS-A,
Requested)
None | 1 | Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived) | | release
COMPACT | STRING([1]) | Release Number
None | 1 | Release number of the granule. The release number is incremented when the software or ancillary data used to create the granule has been changed. (Source: Operations) | | start_cycle
COMPACT | INTEGER([1]) | Starting Cycle
None | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | start_delta_time COMPACT | DOUBLE([1]) | ATLAS Start Time
(Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | start_geoseg
COMPACT | INTEGER([1]) | Starting Geolocation
Segment
None | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | start_gpssow
COMPACT | DOUBLE([1]) | Start GPS SOW of
Granule (Actual)
None | seconds | GPS seconds-of-week of the first data point in the granule. (Source: Derived) | | start_gpsweek
COMPACT | INTEGER([1]) | Start GPSWeek of
Granule (Actual)
None | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. (Source: Derived) | | start_orbit
COMPACT | INTEGER([1]) | Starting Orbit Number
None | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | start_region
COMPACT | INTEGER([1]) | Starting Region
None | 1 | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | | |--|-----------------------------|--|--------|--|--|--| | start_rgt
COMPACT | INTEGER([1]) | Starting Reference
Groundtrack
None | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | | | version
COMPACT | STRING([1]) | Version
None | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. (Source: Operations) | | | | Group: /ancillary_data/freeboard_estimation | | Contains ancillary parameters related to the surface classification algorithm. | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | b_fr
COMPACT | FLOAT([1]) | b_fr
None | meters | Bin size of the freeboard histogram (Source: Sea Ice ATBD) | | | | fbswath_fb_hist_max
COMPACT | FLOAT([1]) | Freeboard Histogram
Maximum Height
None | meters | Freeboard histogram maximum height bin center for any swath segment. (Source: Sea Ice ATBD) | | | | fbswath_fb_hist_min
COMPACT | FLOAT([1]) | Freeboard Histogram
Minimum Height
None | meters | Freeboard histogram minimum height bin center for any swath segment. (Source: Sea Ice ATBD) | | | | fill_height_pct
COMPACT | FLOAT([1]) | fill_height_pct
None | 1 | percentile of sorted heights (in fraction) (Source: Sea Ice ATBD) | | | | fill_snow_depth
COMPACT | FLOAT([1]) | fill_snow_depth
None | 1 | snow depth bias for fill segments
(Source: Sea Ice ATBD) | | | | fill_ub_width
COMPACT | FLOAT([1]) | fill_ub_width
None | meters | maximum width for fill segments (width of gaussian from fine tracking) (Source: Sea Ice ATBD) | | | | height_segment_fit_quality_flag_max
COMPACT | INTEGER([1]) | Maximum Fit Quality to
Use
None | 1 | The maximum height segment fit quality flag value for which an ATL07 sea ice segment is considered for use within the freeboard height computations. (Source: Sea Ice ATBD) | | | | height_segment_fit_quality_flag_min
COMPACT | INTEGER([1]) | Minimum Fit Quality to
Use
None | 1 | The minimum height segment fit quality flag value for which an ATL07 sea ice segment is considered for use within the freeboard height computations. (Source: Sea Ice ATBD) | | | | ht_thresh1 | FLOAT([1]) | height threshold 1 | | Refsurf height difference threshold for | | | | | | | | (Source: Sea Ice ATBD) | |------------------------------------|-----------------------------|---|------------------------------|--| | ht_thresh2
COMPACT | FLOAT([1]) | height threshold 2
None | meters | Refsurf height difference threshold for consecutive estimates (Source: Sea Ice ATBD) | | ic_thresh1
COMPACT | FLOAT([1]) | minimum ice
concentration filter 1
None | 1 | Minimum ice concentration for filtering reference surfaces (Source: Sea Ice ATBD) | | ic_thresh2
COMPACT | FLOAT([1]) | minimum ice
concentration filter 2
None | 1 | Reference surfaces estimates filtered below this ice concentration (Source: Sea Ice ATBD) | | I
COMPACT | FLOAT([1]) | fb_seg_len
None | meters | Along track swath segment length for freeboard calculations (Source: Sea Ice ATBD) | | lb_n_f
COMPACT | INTEGER([1]) | lb_n_f
None | 1 | Lower bounds on number of SSH estimates (Source: Sea Ice ATBD) | | lb_refsurf
COMPACT | FLOAT([1]) | lower_bound_refsurf
None | m | Reference surface minimum height (Source: Sea Ice ATBD) | | maxgapht
COMPACT | FLOAT([1]) | max gap height
None | meters | Allowable height separation between refsurf heights across time gap (Source: Sea Ice ATBD) | | maxgaptime
COMPACT | INTEGER([1]) | max gap time
None | seconds | Maximum allowable time gap for interpolation (Source: Sea Ice ATBD) | | min_land_dist
COMPACT | INTEGER([1]) | minimum distance from land None | km | Minimum distance from land for filtering reference surface (Source: Sea Ice ATBD) | | min_segs_count
COMPACT | INTEGER([1]) | Minimum Segments
Count
None | 1 | ATL10 granules with less than this number of strong beam sea ice segments will be marked as failed. (Source: Sea Ice ATBD) | | multi_beam_disable_flag
COMPACT | INTEGER([1]) | miltibeam_disable_flag
None | 1 | disable multi-beam (intra-pair and inter-
pair) freeboard calculations
(Source: Sea Ice ATBD); (Meanings: [0
1]) (Values: ['no' 'yes']) | | n_fillpass
COMPACT | INTEGER([1]) | n_fillpass
None | 1 | Number of passes for gap filling (Source: Sea Ice ATBD) | | refsurf_h_offset1
COMPACT | FLOAT([1]) | h_offset1
None | meters | height offset for fill refsurf bound check (Source: Sea Ice ATBD) | | refsurf_h_offset2
COMPACT | FLOAT([1]) | h_offset2
None | meters | height offset for fill refsurf estimate (Source: Sea Ice ATBD) | | refsurf_sd_fill
COMPACT | FLOAT([1]) | ssh_sd_fill
None | meters | Filled SSH stdev estimate (Source: Sea Ice ATBD) | | refsurf_slope_fill
COMPACT | FLOAT([1]) | ssh_slope_fill
None | degrees | Filled SSH
sloper estimate (Source: Sea Ice ATBD) | | refsurf_slope_ub
COMPACT | FLOAT([1]) | ssh_slope_ub
None | degrees | Upper bound for SSH slope
(Source: Sea Ice ATBD) | | ub_refsurf
COMPACT | FLOAT([1]) | upper_bound_refsurf
None | m | Reference surface maximum height (Source: Sea Ice ATBD) | | Group: /freeboard_swath_segment | | Contains parameters rela | ated to quality and correc | ctions on the the freeboard values | | data_rate | (Attribute) | Data within this group are | e stored at the freeboard | swath segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | GPS elapsed time time | seconds since 2018-
01-01 | The center time assigned to this freeboard swath segment (mean of all | | | | | | freeboard times), in seconds since the ATLAS SDP GPS Epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: ATBD section 5) | |----------------------------------|-------------------------------------|---|--------|--| | ds_si_hist_bins
CHUNKED | INTEGER(['Unlimited']) | Sea Ice Histogram Bins
Dimension Scale
None | 1 | Dimension scale indexing the sea ice histogram bins. The bin heights must be computed from information contained within the same group as the histogram. (Source: Sealce ATBD) | | fbswath_fb_height
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Freeboard height relative to fb_swath_refsurf_height None | meters | Freeboard height relative to fbswath_refsurf_height. (Source: ATBD section 5) | | fbswath_fb_hist
CHUNKED | INTEGER_2(['Unlimited', 200]) | freeboard histogram
None | 1 | Swath Freeboard (using fbswath reference surface height) histogram (distribution) for this freeboard swath-segment (Source: ATBD section 5) | | fbswath_fb_length
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Length of freeboard
swath-segment
None | meters | Length of freeboard swath-segment (Source: ATBD section 5) | | fbswath_fb_sigma
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Freeboard standard
deviation swath-
segment
None | meters | Freeboard standard deviation of the height-segments in freeboard swath-segment (Source: ATBD section 5) | | fbswath_fb_width
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Width of freeboard
swath-segment
None | meters | Width of freeboard swath-segment (Source: ATBD section 5) | | fbswath_lead_n_gt1l
CHUNKED | INTEGER(['Unlimited']) | Number of gt1l leads
None | 1 | Number of gt1l leads used for this swath's reference surface (Source: Sea Ice ATBD) | | fbswath_lead_n_gt1r
CHUNKED | INTEGER(['Unlimited']) | Number of gt1r leads
None | 1 | Number of gt1r leads used for this swath's reference surface (Source: Sea Ice ATBD) | | fbswath_lead_n_gt2l
CHUNKED | INTEGER(['Unlimited']) | Number of gt2l leads
None | 1 | Number of gt2l leads used for this swath's reference surface (Source: Sea Ice ATBD) | | fbswath_lead_n_gt2r
CHUNKED | INTEGER(['Unlimited']) | Number of gt2r leads
None | 1 | Number of gt2r leads used for this swath's reference surface (Source: Sea Ice ATBD) | | fbswath_lead_n_gt3l
CHUNKED | INTEGER(['Unlimited']) | Number of gt3l leads
None | 1 | Number of gt3l leads used for this swath's reference surface (Source: Sea Ice ATBD) | | fbswath_lead_n_gt3r
CHUNKED | INTEGER(['Unlimited']) | Number of gt3r leads
None | 1 | Number of gt3r leads used for this swath's reference surface (Source: Sea Ice ATBD) | | fbswath_lead_ndx_gt1l
CHUNKED | INTEGER(['Unlimited']) | Swath index gt1l first lead None | 1 | 1-based index to first /gt1l/leads lead used in this swath's reference surface (Source: ATBD section 5) | | 1 | | 1 | | 1 | |--|-------------------------------------|--|------------------------------|--| | fbswath_lead_ndx_gt1r
CHUNKED | INTEGER(['Unlimited']) | Swath index gt1r first lead None | 1 | 1-based index to first /gt1r/leads lead used in this swath's reference surface (Source: ATBD section 5) | | fbswath_lead_ndx_gt2l
CHUNKED | INTEGER(['Unlimited']) | Swath index gt2l first lead None | 1 | 1-based index to first /gt2l/leads lead used in this swath's reference surface (Source: ATBD section 5) | | fbswath_lead_ndx_gt2r
CHUNKED | INTEGER(['Unlimited']) | Swath index gt2r first lead None | 1 | 1-based index to first /gt2r/leads lead used in this swath's reference surface (Source: ATBD section 5) | | fbswath_lead_ndx_gt3l
CHUNKED | INTEGER(['Unlimited']) | Swath index gt3l first lead None | 1 | 1-based index to first /gt3l/leads lead used in this swath's reference surface (Source: ATBD section 5) | | fbswath_lead_ndx_gt3r
CHUNKED | INTEGER(['Unlimited']) | Swath index gt3r first lead None | 1 | 1-based index to first /gt3r/leads lead used in this swath's reference surface (Source: ATBD section 5) | | fbswath_refsurf_height
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Reference surface
height for the freeboard
swath-segment
None | meters | Reference surface computed by the weighted mean of leads in freeboard swath-segment. The reference surface height is relative to the tide-free MSS. (Source: ATBD section 5) | | fbswath_refsurf_interp_flag
CHUNKED | INTEGER_2(['Unlimited']) | reference surface
interpolation flag
None | 1 | Identifies swath segments with reference surface height filled through interpolation1 = no valid refrence surface was determined; 0= refsur computed from leads in this swath; 1 = reference surface inferred from data not in this swath; 2 = previous or next adjacent reference surface was used; 3 = filled based on the the upper height minus an offset (Source: ATBD section 5); (Meanings: [-1 0 1 2 3]) (Values: ['no_surf' 'leads_in_swath' 'inferred' 'neighbor_used' 'upper_height_minus_offset']) | | fbswath_refsurf_sigma
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | sigma of freeboard
swath-segment refsurf
None | meters | The sigma (standard deviation) of reference surface for this freeboard swath-segment. weighted combination of the lead sigmas in this beam for this swath segment (Source: ATBD section 5) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Center latitude of freeboard swath-segment latitude | degrees_north | Center latitude of freeboard swath-
segment (mean of all freeboard
latitudes)
(Source: ATBD section 5) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Center longitude of freeboard swath-segment longitude | degrees_east | Center longitude of freeboard swath-
segment (mean of all freeboard
longitudes)
(Source: ATBD section 5) | | seg_dist_x
CHUNKED | DOUBLE(['Unlimited']) | Along Track Distance
None | meters | Along-track distance from the equator crossing to the segment center. (Source: Sea Ice ATBD) | | Group: /freeboard_swath_segment/gtx | | Contains freeboard estim swath reference surface. | nate and associated heig | ht segment parameters computed by the | | Group: /freeboard_swath_segment/ | gtx/swath_freeboard | Contains freeboard estimes wath reference surface. | _ | ht segment parameters computed by the | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS | | | | | | Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:00000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived via Time Tagging) | |------------------------------------|--------------------------------------|---|--|---| | fbswath_fb_confidence
CHUNKED |
FLOAT(['Unlimited'])
INVALID_R4B | Freeboard confidence
None | 1 | Confidence level in the freeboard estimate (Source: ATBD section 5) | | fbswath_fb_height
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Freeboard height relative to fbswath_refsurf_height None | meters | Freeboard height relative to fbswath_refsurf_height. (Source: ATBD section 5) | | fbswath_fb_quality_flag
CHUNKED | INTEGER_1(['Unlimited']) | Flag describing the quality of the freeboard estimate None | 1 | Flag describing the quality of the results of the along-track fit. (-1=height value is invalid; 1=ngrid_w < wlength/2; 2=ngrid_w >= wlength/2; 3=ngrid_dt < dtlength/2; 4=ngrid_dt >= dtlength/2; 5=ngrid_dt >= (dtlength-2): where 1 is best and 5 is poor). (Source: ATBD section 5); (Meanings: [-1 1 2 3 4 5]) (Values: ['invalid' 'best' 'high' 'med' 'low' 'poor']) | | fbswath_fb_sigma
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Freeboard sigma
estimate
None | meters | Sigma (standard deviation) estimate of
the freeboard height
(Source: ATBD section 5) | | fbswath_ndx
CHUNKED | INTEGER(['Unlimited']) | Index to freeboard
swath segment
None | 1 | The 1-based fbswath_nx identifies the swath associated with each element. There are the same number of elements in the group /freeboard_swath_segment and in each of the /GTx/freeboard_beam_segment group. The fbswath_nx identifies the fbswath_refsurf_height used to compute the fbswath_fb_height. It is the same index number that idenitifies the beam_refsurf_height to its swath and the beam_refsurf_height used to computed the beam_fb_height. (Source: ATBD section 5) | | height_segment_id
CHUNKED | INTEGER(['Unlimited']) | Identifier of each height segment None | 1 | Identifier of each height segment (Source: Sea Ice ATBD) | | latitude
CHUNKED | DOUBLE(['Unlimited'])
INVALID_R8B | Latitude
latitude | degrees_north | Latitude, WGS84, North=+, Lat of segment center (Source: section 3.1.9) | | longitude
CHUNKED | DOUBLE(['Unlimited']) INVALID_R8B | Longitude
longitude | degrees_east | Longitude, WGS84, East=+,Lon of segment center (Source: section 3.1.9) | | Group: /gtx | | sequential transmit pulse
track width is approximat
laser spot number that ge | s illuminate six ground to
ely 10m wide. Each grou
enerates a given ground
abered 1, 3 and 5; groun | nd Track. As ICESat-2 orbits the earth, racks on the surface of the earth. The und track is numbered, according to the track. Ground tracks from the strong d tracks from the weak beams are | | Group: /gtx/freeboard_beam_segi | ment | Contains freeboard estimate and associated height segment parameters for only the sea ice segments by beam. | | | | |--|---------------------------------------|---|------------------------------|--|--| | data_rate | (Attribute) | Data within this group are | e stored at the freeboard | I swath segment rate. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | beam_fb_height
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Freeboard height relative to fbswath_refsurf_height None | meters | Freeboard height relative to beam_refsurf_height. (Source: ATBD section 5) | | | beam_fb_hist
CHUNKED | INTEGER_2(['Unlimited', 'Unlimited']) | Beam freeboard
histogram
None | 1 | Beam Freeboard (using beam fbswath reference surface height) histogram (distribution) for this freeboard beam-segment (Source: ATBD section 5) | | | beam_fb_length
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Length ofbeam
freeboard swath-
segment
None | meters | Length of freeboard beam-segment (Source: ATBD section 5) | | | beam_fb_sigma
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Beam Freeboard
standard deviation
swath-segment
None | meters | Freeboard standard deviation of the height-segments in freeboard beam-segment (Source: ATBD section 5) | | | beam_lead_n
CHUNKED | INTEGER(['Unlimited']) | Number of leads
None | 1 | Number of leads used for this beam reference surface (Source: Sea Ice ATBD) | | | beam_lead_ndx
CHUNKED | INTEGER(['Unlimited']) | index first lead
None | 1 | 1-based index to the first /GTx/leads lead used for this beam's reference surface. (Source: Sea Ice ATBD) | | | beam_refsurf_alongtrack_slope
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | reference surface along
track slope
None | degrees | Reference surface height along track slope (Source: ATBD section 5) | | | beam_refsurf_height
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | reference surface mean
None | meters | Reference surface height -weighted combination of leads in this beam for this swath segment. The reference surface height is relative to the tide-free MSS. (Source: ATBD section 5) | | | beam_refsurf_interp_flag CHUNKED | INTEGER_2(['Unlimited']) | reference surface
interpolation flag
None | 1 | Identifies segments with reference surface height filled through interpolation1 = no valid refrence surface was determined; 0= refsur computed from leads in this swath; 1 = reference surface inferred from data not in this swath; 2 = previous or next adjacent reference surface was used; 3 = filled based on the the upper height minus an offset (Source: ATBD section 5); (Meanings: [-1 0 1 2 3]) (Values: ['no_surf' 'leads_in_swath' 'inferred' 'neighbor_used' 'upper_height_minus_offset']) | | | beam_refsurf_sigma
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | reference surface sigma
None | meters | Reference surface height sigma (standard devaition) - weighted combination of lead sigmas in this beam for this swath segment (Source: ATBD section 5) | | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | The center time assigned to this freeboard swath segment (mean of all freeboard times), in elapsed GPS | | | | | | | seconds since the ATLAS SDP GPS Epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01- 06T00:00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: ATBD section 5) | |---------------------------------|----------------------------------|--|----------------------------|---| | ds_si_hist_bins
CHUNKED | INTEGER(['Unlimited']) | Sea Ice Histogram Bins
Dimension Scale
None | 1 | Dimension scale indexing the sea ice histogram bins. The bin heights must be computed from information contained within the same group as the histogram. (Source: Sealce ATBD) | | fbswath_ndx
CHUNKED | INTEGER(['Unlimited']) | Index to freeboard
swath segment
None | 1 | The 1-based fbswath_nx identifies the swath associated with each element. There are the same number of elements in the group /freeboard_swath_segment and in each of the /GTx/freeboard_beam_segment groups. The fbswath_nx identifies the fbswath_refsurf_height used to compute the fbswath_fb_height. It is the same index number that identifies the beam_refsurf_height to its swath and the beam_refsurf_height used to computed the beam_fb_height. (Source: ATBD section 5) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Center latitude of freeboard swath-segment latitude | degrees_north | Center latitude of freeboard swath-
segment (mean of all freeboard
latitudes)
(Source: ATBD section 5) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Center longitude of freeboard swath-segment longitude | degrees_east | Center longitude of freeboard swath-
segment (mean of all freeboard
longitudes)
(Source: ATBD section 5) | | Group: /gtx/freeboard_beam_segr | nent/beam_freeboard | Contains freeboard estim surface. | nate and associated para | ameters computed by its beam reference | | data_rate | (Attribute) | Data within this group are | e stored at the variable s | segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | beam_fb_confidence
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Freeboard confidence
None | 1 | Confidence level in the freeboard estimate (Source: ATBD section 5) | | beam_fb_height
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Freeboard height relative to fbswath_refsurf_height None | meters | Freeboard height relative to fbswath_refsurf_height. (Source: ATBD section 5) | | beam_fb_quality_flag
CHUNKED | INTEGER_1(['Unlimited']) | Flag describing the quality of the freeboard estimate None | 1 | Flag describing the quality of the results of the along-track fit. (-1=height value is invalid; 1=ngrid_w < wlength/2; 2=ngrid_w >= wlength/2; 3=ngrid_dt < dtlength/2; 4=ngrid_dt
>= dtlength/2; 5=ngrid_dt >= (dtlength-2): where 1 is best and 5 is poor). | | | | | | (Source: ATBD section 5); (Meanings: [-1 1 2 3 4 5]) (Values: ['invalid' 'best' 'high' 'med' 'low' 'poor']) | |---------------------------------|-------------------------------------|--|------------------------------|--| | beam_fb_sigma
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Freeboard sigma
estimate
None | meters | estimate of the sigma (standard deviation) for each beam freeboard height (Source: ATBD section 5) | | beam_refsur_ndx
CHUNKED | INTEGER(['Unlimited']) | Index to beam refsur
None | 1 | 1-based index to reference surface used for this freeboard height. Its value is identical to the fbswath_ndx. This index also idenifies the swath segment with which the beam freeboard associated. (Source: ATBD section 5) | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived via Time Tagging) | | geoseg_beg
CHUNKED | INTEGER(['Unlimited']) | Beginning GEOSEG
None | 1 | Geolocation segment (geoseg) ID associated with the first photon used in this sea ice segment (Source: Sea Ice ATBD) | | geoseg_end
CHUNKED | INTEGER(['Unlimited']) | Ending GEOSEG
None | 1 | Geolocation segment (geoseg) ID associated with the last photon used in this sea ice segment (Source: Sea Ice ATBD) | | height_segment_id
CHUNKED | INTEGER(['Unlimited']) | Identifier of each height segment None | 1 | Identifier of each height segment (Source: Sea Ice ATBD) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Latitude
latitude | degrees_north | Latitude, WGS84, North=+, Lat of segment center (Source: Sea Ice ATBD) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Longitude
longitude | degrees_east | Longitude, WGS84, East=+,Lon of segment center (Source: Sea Ice ATBD) | | seg_dist_x
CHUNKED | DOUBLE(['Unlimited']) | Along Track Distance
None | meters | Along-track distance from the equator crossing to the segment center. (Source: Sea Ice ATBD) | | Group: /gtx/freeboard_beam_segm | ent/geophysical | Contains geophysical pa | rameters from ATL07 as | sociated with the freeboard height. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the | | | | | | offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived via Time Tagging) | |---|-------------------------------------|---|---------------|---| | height_segment_dac
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Dynamic Atmosphere
Correction
None | meters | Dynamic Atmospheric Correction (DAC) includes inverted barometer (IB) effect (From ATL07) (Source: Sea Ice ATBD) | | height_segment_earth CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Earth Tide
None | meters | Solid Earth Tide (From ATL07). The solid earth tide height is in the tide-free system. (Source: Sea Ice ATBD) | | height_segment_earth_free2mean
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Earth Tide Free-to-
Mean conversion
None | meters | Additive value to convert solid earth tide from the tide-free system to the mean-tide system. (Add to height_segment_eath to get the solid earth tides in the mean-tide system.) (Source: Sea Ice ATBD) | | height_segment_geoid
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | EGM2008 Geoid
None | meters | Geoid height above WGS-84 reference ellipsoid (range -107 to 86m), based on the EGM2008 model (From ATL07). The geoid height is in the tide-free system. (Source: Sea Ice ATBD) | | height_segment_geoid_free2mean
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | EGM2008 Geoid Free-
to-Mean conversion
None | meters | Additive value to convert geoid heights from the tide-free system to the meantide system. (Add to height_segment_geoid to get the geoid heights in the mean-tide system.) (Source: Sea Ice ATBD) | | height_segment_load
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Load Tide
None | meters | Load Tide - Local displacement due to
Ocean Loading (-6 to 0 cm). (From
ATL07)
(Source: Sea Ice ATBD) | | height_segment_lpe
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Equilibrium Tide
None | meters | Long period equilibrium tide self-
consistent with ocean tide model
(+-0.04m).
(Source: Sea Ice ATBD) | | height_segment_mss CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Mean Sea Surface
None | meters | Mean sea surface height above WGS-84 reference ellipsoid. (From ATL07, includes tide-free geoid and mean dynamic topography.) The MSS height is adjusted to be relative to the tide free system. (Source: Sea Ice ATBD) | | height_segment_ocean CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Ocean Tide
None | meters | Ocean Tides including diurnal and semi-diurnal (harmonic analysis), and longer period tides (dynamic and self-consistent equilibrium). (Source: Sea Ice ATBD) | | height_segment_tide_pole
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Pole Tide
None | meters | Pole Tide -Rotational deformation due
to polar motion (-1.5 to 1.5 cm). (From
ATL07)
(Source: Sea Ice ATBD) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Latitude
latitude | degrees_north | Latitude, WGS84, North=+, Lat of segment center (Source: Sea Ice ATBD) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Longitude
longitude | degrees_east | Longitude, WGS84, East=+,Lon of segment center | | | | | | (Source: Sea Ice ATBD) | |----------------------------------|-------------------------------------|---|------------------------------|--| | Group: /gtx/freeboard_beam_segmo | ent/height_segments | Contains height segment | parameters from ATL07 | associated with the freeboard height. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | asr_25
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Apparent surface reflectance at 25 hz None | 1 | Apparent surface reflectance at 25 hz, average to the sea ice segment (Source: ATL07) | | backgr_calc
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | background count rate
calculated
None | hz | Calculated background count rate based on sun angle, surface slope, unit reflectance (Source: ATL07) | | backgr_r_200
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | background rate 200 hz
None | hz | Background count rate, averaged over
the segment based on ATLAS 50 pulse
counts
(Source: ATL09) | | backgr_r_25
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | background rate 25 hz
None | hz | Background count rate, averaged over
the segment based on 25 hz
atmosphere
(Source: ATL09) | | background_r_norm
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | normalized background
(50 shot)
None | hz | Background rate normalized to a fixed solar elevation angle (Source: ATL07) | | bsnow_con
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Blowing snow
confidence
None | 1 | Blowing snow confidence
(Source: ATL09) | | bsnow_h
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Blowing snow top
height
None | meters | Blowing snow layer top height (Source: ATL09) | | cloud_flag_asr
CHUNKED | INTEGER_1(['Unlimited']) | cloud flag asr
None | 1 | Cloud flag (probability) from apparent surface reflectance. 0=clear with high confidence; 1=clear with medium confidence; 2=clear with low confidence; 3=cloudy with low confidence; 4=cloudy with medium confidence; 5=cloudy with high confidence (Source: ATL09); (Meanings: [0 1 2 3 4 5]) (Values: ['clear_with_high_confidence' 'clear_with_low_confidence' 'clear_with_low_confidence' 'cloudy_with_low_confidence' 'cloudy_with_medium_confidence' 'cloudy_with_high_confidence']) | | cloud_flag_atm
CHUNKED | INTEGER_1(['Unlimited']) | cloud flag atm
None
| 1 | Number of layers found from the backscatter profile using the DDA layer finder (Source: ATL09) | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be | | | | | | computed. (Source: Derived via Time Tagging) | |--------------------------------------|-------------------------------------|---------------------------------------|---------------|---| | height_segment_confidence
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Surface height
confidence
None | 1 | Confidence level in the surface height estimate based on the number of photons; the background noise rate; and the error analysis (ATL07 h_confidence) (Source: Sea Ice ATBD) | | height_segment_height
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | height of segment
surface
None | meters | Mean height from along-track segment fit determined by the sea ice algorithm(ATL07 h_si). The sea ice height is relative to the tide-free MSS. (Source: Sea Ice ATBD) | | height_segment_ib
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | inverted barometer
effect
None | meters | Inverted barometer effect calculated from surface pressure (Source: ATBD section 4.2) | | height_segment_length_seg
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | length of segment
None | meters | Along-track length of segment containing n_photons_actual (ATL07 length_seg) (Source: Sea Ice ATBD) | | height_segment_rms
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | height rms
None | meters | RMS difference between sea ice modeled and observed photon height distribution (ATL07 h_rms) (Source: Sea Ice ATBD) | | height_segment_ssh_flag
CHUNKED | INTEGER_1(['Unlimited']) | Sea Surface Height
Flag
None | 1 | Identifiesthe height segments that are candidates for use as sea surface reference in freeboard calculations in ATL10. The flags are set as follows: 0 = sea ice; 1 = potential reference sea surface height; 2 = used in calculating reference sea surface height (Source: Sea Ice ATBD); (Meanings: [0 1 2]) (Values: ['sea_ice' 'potential_sea_ice_surface' 'new_meaning']) | | height_segment_surf_sigma
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | h surface sigma
None | meters | Sigma (standard deviation) estimate of
the surface height (ATL07
h_surface_error)
(Source: Sea Ice ATBD) | | height_segment_type
CHUNKED | INTEGER_1(['Unlimited']) | Segment surface type
None | 1 | Value that indicates segment surface type as sea ice or different types of sea surface. (0=cloud covered) (Source: ATBD section 4.3); (Meanings: [0 1 2 3 4 5 6 7 8 9]) (Values: ['cloud_covered' 'other' 'specular_lead_low_w_bkg' 'specular_lead_low' 'specular_lead_high_w_bkg' 'specular_lead_high' 'dark_lead_smooth_w_bkg' 'dark_lead_smooth' 'dark_lead_rough_w_bkg' 'dark_lead_rough_y_bkg' 'dark_lead_rough']) | | height_segment_w_gaussian
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | width of best fit
gaussian
None | meters | Width of best fit gaussian (ATL07 w_gaussian) (Source: Sea Ice ATBD) | | ice_conc
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | sea ice concentration
None | 1 | Sea ice concentration percentage (Source: ATL07/ANC31) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Latitude
latitude | degrees_north | Latitude, WGS84, North=+, Lat of segment center (Source: Sea Ice ATBD) | | layer_flag
CHUNKED | INTEGER_1(['Unlimited']) | consolidated cloud flag
None | 1 | This flag is a combination of multiple flags (cloud_flag_atm, cloud_flag_asr, and bsnow_con) and takes daytime/nighttime into consideration. A value of 1 means clouds or blowing snow are likely present. A value of 0 indicates the likely absence of clouds or blowing snow. (Source: ATL09); (Meanings: [0 1]) (Values: ['likely_clear' 'likely_cloudy']) | | |------------------------|-------------------------------------|---|---|--|--| | longitude
CHUNKED | DOUBLE(['Unlimited']) | Longitude
longitude | degrees_east | Longitude, WGS84, East=+,Lon of segment center (Source: Sea Ice ATBD) | | | msw_flag
CHUNKED | INTEGER_1(['Unlimited']) | multiple scattering warning flag None | 1 | Multiple Scattering warning flag. The multiple scattering warning flag (ATL09 parameter msw_flag) has values from -1 to 5 where zero means no multiple scattering and 5 the greatest. If no layers were detected, then msw_flag = 0. If blowing snow is detected and its estimated optical depth is greater than or equal to 0.5, then msw_flag = 5. If the blowing snow optical depth is less than 0.5, then msw_flag = 4. If no blowing snow is detected but there are cloud or aerosol layers detected, the msw_flag assumes values of 1 to 3 based on the height of the bottom of the lowest layer: < 1 km, msw_flag = 3; 1-3 km, msw_flag = 2; > 3km, msw_flag = 1. A value of -1 indicates that the signal to noise of the data was too low to reliably ascertain the presence of cloud or blowing snow. We expect values of -1 to occur only during daylight. (Source: ATL09); (Meanings: [-1 0 1 2 3 4 5]) (Values: ['cannot_determine' 'no_layers' 'layer_gt_3km' 'layer_between_1_and_3_km' 'layer_lt_1km' 'blow_snow_od_lt_0.5' 'blow_snow_od_gt_0.5]) | | | photon_rate
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | photon rate
None | 1 | Photon count rate, averaged over sea ice segment. (Source: ATL07) | | | Group: /gtx/leads | | Contains parameters relating to the freeboard values. | | | | | data_rate | data_rate (Attribute) | | Data within this group are stored at the lead index rate. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Center time of the lead in seconds since the ATLAS SDP GPS Epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived via Time Tagging) | | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Center latitude of lead latitude | degrees_north | Center latitude of lead (mean of all sea
surface height latitudes)
(Source: ATBD section 5) | | | |--------------------------|-------------------------------------|---|------------------------------|---|--|--| | lead_height
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Lead height
None | meters | Lead height - weighted mean of consective sea surface heights used for this lead. The lead height is relative to the tide-free MSS. (Source: ATBD section 5) | | | | lead_length
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Lead size
None | meters | Along-track length of this lead (Source: ATBD section 5) | | | | lead_sigma
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Lead sigma estimate
None | meters | Lead height sigma (standard deviation) estimate - weighted combination of sea surface height sigmas used as leads in this beam for this swath segment (Source: ATBD section 5) | | | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Center longitude of lead longitude | degrees_east | Center longitude of lead (mean of all freeboard longitudes) (Source: ATBD section 5) | | | | ssh_n
CHUNKED | INTEGER(['Unlimited']) | number of sea surface
references
None | 1 | Number of sea surface
height segments used for this lead (Source: ATBD section 5) | | | | ssh_ndx
CHUNKED | INTEGER(['Unlimited']) | index first sea surface
None | 1 | 1-based index to the first freeboard
element (i.e.first sea surface height
segment) used for this lead
(Source: Sea Ice ATBD) | | | | Group: /orbit_info | | Contains orbit information | Contains orbit information. | | | | | data_rate | (Attribute) | Varies. Data are only pro | vided when one of the s | tored values (besides time) changes. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | crossing_time
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node
Crossing Time
time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | | | cycle_number
CHUNKED | INTEGER_1(['Unlimited']) | Cycle Number
None | 1 | A count of the number of exact repeats of this reference orbit. (Source: Operations) | | | | lan
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node
Longitude
None | degrees_east | Longitude at the ascending node crossing. (Source: POD/PPD) | | | | orbit_number
CHUNKED | UINT_2_LE(['Unlimited']) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit. (Source: Operations) | | | | rgt
CHUNKED | INTEGER_2(['Unlimited']) | Reference Ground track
None | 1 | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the | | | | sc_orient
CHUNKED | INTEGER_1(['Unlimited']) | Spacecraft Orientation
None | 1 | RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: POD/PPD) This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. (Source: POD/PPD); (Meanings: [0 1 2]) (Values: ['backward' 'forward' 'transition']) | | |-----------------------------------|-----------------------------|---|------------------------------|--|--| | sc_orient_time CHUNKED | DOUBLE(['Unlimited']) | Time of Last Spacecraft
Orientation Change
time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | | Group: /quality_assessment | | Contains quality assessment data. This may include QA counters, QA along-track data and/or QA summary data. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | qa_granule_fail_reason
COMPACT | INTEGER([1]) | Granule Failure Reason
None | 1 | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output data was generated; 3=TBD Failure; 4=TBD_Failure; 5=other failure. (Source: Operations); (Meanings: [0 1 2 3 4 5]) (Values: ['no_failure' 'PROCESS_ERROR' 'INSUFFICIENT_OUTPUT' 'failure_3' 'failure_4' 'OTHER_FAILURE']) | | | qa_granule_pass_fail
COMPACT | INTEGER([1]) | Granule Pass Flag
None | 1 | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails automatic QA. | | ATL10 Product Data Dictionary (Source: Operations); (Meanings: [0 1]) (Values: ['PASS' 'FAIL'])