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André Pierro de Camargo
Federal University of the ABC Region, Brazil

e-mail: andrecamargo.math@gmail.com

Received: 11 April 2023 Revised: 23 May 2023
Accepted: 24 July 2023 Online First: 27 July 2023

Abstract: We obtain an asymptotic formula for the sum D̃2 of the divisors of all square-free
integers less than or equal to x, with error term O(x1/2+ϵ). This improves the error term O(x3/4+ϵ)

presented in [7] obtained via analytical methods. Our approach is elementary and it is based on
the connections between the function D̃2 and unitary convolutions.
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1 Introduction

One of the oldest unsolved problems in Analytic Number Theory (the classical Dirichlet divisor
problem) is determining the smallest positive number η such that the error term ∆(x) in

D(x) :=
∑
n ≤ x

∑
d|n

1 = x log(x) + (2γ − 1)x+∆(x) (1)

satisfies ∆(x) = O(xη+ϵ) for every ϵ > 0 (γ is the Euler–Mascheroni constant). In 1849,
Dirichlet showed that

∆(x) = O(
√
x) (2)

and many mathematicians have worked on improving Dirichlet’s estimate since. Hardy proved
that η can not be smaller than 1/4 and it is widely conjectured that ∆(x) = O(x1/4+ϵ) ∀ϵ > 0.
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The sharpest known bound ∆(x) = O
(
x131/416+ϵ

)
∀ ϵ > 0 is due to Huxley (see [2] for a recent

survey of the subject).
Variants of the Dirichlet divisor problem can be obtained by imposing some conditions over

the summation index n or/and considering only the divisors d of n that fulfill some requirements.
For instance, in 1874, Mertens considered the problem of estimating the sum

D2(x) :=
∑
n ≤ x

∑
d|n

| µ(d) |

in the left-hand side of (1) only for square-free divisors d of n [9]. In 1932, Hölder [6] considered
the Dirichlet divisor problem for k–free divisors, an extension of the square-free (k = 2) case
(a positive integer n is k-free if n is not divisible by the k-th power of any prime number). Let us
also mention some problems concerning the estimation of sums like∑

n ≤ x

n ∈ A

∑
d|n

1,

when A is a residue class [10] (or some union of residue classes [8]), or, more generally, when
A is the image of some polynomial with positive integer coefficients (see [12], pp. 84–85, or [3]
and the references therein).

Recently, Jakimczuk and Lalı́n [7] estimated the number D̃2(x) of the divisors of all square-free
integers that do not exceed x:

D̃2(x) =
∑
n ≤ x

| µ(n) |
∑
d|n

1 =
∑
n ≤ x

| µ(n) |
∑
d|n

| µ(d) | =
∑
ij ≤ x

| µ(ij) | . (3)

Combining Perron’s formula with an Euler-type-product formula for the Dirichlet series with
coefficients an =| µ(n) |

∑
d|n

1, they proved the following result.

Theorem 1.1 ( [7]). There is β ∈ R such that, for every ϵ > 0,

D̃2(x) =
∏

p prime

[
1− 3

p2
+

2

p3

]
x log(x) + βx + Oϵ

(
x3/4+ϵ

)
. (4)

In this note we present an elementary approach for estimating D̃2 based on its connections
with unitary convolutions [5]. We express the summatory functions of unitary convolutions in
terms of the summatory functions of ordinary Dirichlet convolutions. Using this result, we write
D̃2 in terms of the Dirichlet function (1) and obtain the following improvement over (4).

Theorem 1.2. There is β ∈ R such that, for every ϵ > 0,

D̃2(x) =
1

ζ2(2)

 ∏
p prime

(
1− 1

(p+ 1)2

)x log(x) + βx + Oϵ

(
x1/2+ϵ

)
(5)

(ζ is the Riemann zeta function).
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Using the Euler product for ζ , one can easily check that the leading coefficients of D̃2 in (4)
and (5) are identical. However, the representation of the coefficient c of the leading term x log(x)

of D̃2 in (5) looks more informative because it immediately tells us that c < 1
ζ(2)2

. This is already
expected because

D̃2(x) ≤
∑
ij ≤ x

| µ(i) || µ(j) | ∀j ≥ 1 (6)

and the right-hand side of (6) is easily seen to be asymptotic to 1
ζ(2)2

x log(x).

2 Summatory functions of unitary convolutions

Let χi,. : j 7−→ χi,j denote the Dirichlet principal character modulus i

χi,j =

{
1, (i, j) = 1,

0, (i, j) > 1.

In the beginning of the sixties, Cohen [5] studied the properties of unitary convolutions. The
unitary convolution of the arithmetic functions g and h is defined by

f(n) =
∑
ij = n

g(i)h(j)χi,j, n ≥ 1. (7)

This subject is very close to the divisor problem we are concerned with. In fact,

D̃2(x) =
∑
i ≤ x

∑
j ≤ x/i

| µ(i) | | µ(j) | χi,j (8)

is the summatory function of the unitary convolution of the function | µ | with itself. Cohen
presented asymptotic formulae for the sums∑

j ≤ x

| µ(j) | χi,j and
∑
j ≤ x

j | µ(j) | χi,j

([5], Lemmas 5.2 and 5.3). For instance, we have

∑
j ≤ x

| µ(j) | χi,j = x
1

ζi(2)

(∑
d|i

µ(d)

d

)
+

(∑
d|i

1

)
O
(√

x
)
,

ζi(z) :=
∞∑

j = 1

χi,j

jz
, Re(z) > 1, i ≥ 1.

Using this information in (8), we obtain

D̃2(x) ∼ x
∑
i ≤ x

| µ(i) |
iζi(2)

(∑
d|i

µ(d)

d

)
. (9)

The main problem with this approach is that it is not much clear how to interpret the sum in the
right-hand side of (9). In order to avoid this difficulty, we express the summatory functions of
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unitary convolutions in a more convenient way. Given two arithmetic functions g, h and r ≥ 1,
let

Vr[g, h](x) =
∑

ij ≤ x/r2

g(ri)h(rj), x ≥ 1.

Lemma 2.1. Let g, h : N → C be two arithmetic functions and let f be the unitary convolution
of g and h defined by (7). For x ≥ 1,∑

n ≤ x

f(n) =
∑

r ≤
√
x

µ(r)Vr[g, h](x). (10)

Proof. For x ≥ 1, r ≤
√
x and r′ ≤

√
x/r, we group all i, j with ij ≤ x/r2 and gcd(i, j) = r′:∑

ij ≤ x/r2

g(ri)h(rj) =
∑

rr′ ≤
√
x

∑
i′j′ ≤ x/ (rr′)2

g (rr′i′)h (rr′j′)χi′,j′ .
(11)

In order to simplify the notation, for ℓ = 1, 2, . . . , τ := ⌊
√
x⌋, let

zℓ =
∑

ij ≤ x/ℓ2

g(ℓi)h(ℓj)χi,j, wℓ =
∑

ij ≤ x/ℓ2

g(ℓi)h(ℓj).

The relations (11) for r = 1, 2, . . . , τ can be expressed as the system of linear equations

1 1 1 1 1 1 . . .

0 1 0 1 0 1 . . .

0 0 1 0 0 1 . . .

0 0 0 1 0 0 . . .
...

...
...

...
...

... . . .
0 0 0 0 0 0 . . .


×



z1
z2
z3
z4
...
zτ


=



w1

w2

w3

w4

...
wτ


.

By Cramer’s rule,

z1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1 w2 w3 w4 . . . wτ

1 1 0 0 . . . 0

1 0 1 0 . . . 0

1 1 0 1 . . . 0

1 0 0 0 . . . 0

1 1 1 0 . . . 0
...

...
...

... . . . ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (12)

The right-hand side of (12) is a Redheffer determinant [1, 4, 11]. Hence,

z1 =
τ∑

r = 1

µ(r)wr.

Applying Lemma 2.1 to the functions g and h defined by

g(i) = h(i) = | µ(i) |, (13)

we obtain the following result.

552



Corollary 1.
D̃2(x) =

∑
r ≤

√
x

µ(r)Vr(x), (14)

with
Vr(x) =

∑
ij ≤ x/r2

| µ(ri) | | µ(rj) | . (15)

Remark 1. Note that the indexes i and j do not appear simultaneously as arguments of χ in (15)
(as they do in (8)) and this avoids dealing with expressions like the one in the right-hand side of
(9).

3 Proof of Theorem 1.2

In some previous investigations, we combined (15) and some asymptotic formulae for∑
i ≤ x

| µ(ri) |,
∑
i ≤ x

i | µ(ri) |,
∑
i ≤ x

| µ(ri)
i

|

to estimate D̃2. Curiously, that attempt led to same estimate [7]

O(x3/4 + ϵ)

obtained by Jakimczuk and Lalı́n for the error term. In order to obtain sharper results, we express
Vr(x) directly (see the proof at the end of this section) in terms of the Dirichlet function (1).

Lemma 3.1. If µ(r) ̸= 0, the function Vr defined in (15) satisfies

Vr(x) =
∑

(d,d′,n,n′) ∈ A
µ(d)µ(d′)µ(n)µ(n′) χr,n χr,n′D

(
x/r2

d′dn2(n′)2

)
,

A =

{
(d, d′, n, n′) : d, d′ | r, n ≤

√
x
r2
, n′ ≤

√
x
r2

dd′n2

}
.

The proof of Theorem 1.2 follows directly by Corollary 1 and Lemma 3.1, combined with
Dirichlet estimates (2), after elementary, but somewhat tedious, handwork. For instance, the
coefficient c of the leading term x log(x) in D̃2 is

c =
∞∑
r=1

µ(r)

r2

∑
d, d′ | r

µ(d)

d

µ(d′)

d′

∞∑
n′=1

µ(n) χr,n

n2

∞∑
n′=1

µ(n′)χr,n′

(n′)2

=
∞∑
r=1

µ(r)

r2

∏
p | r

p prime

(
1− 1

p

)2 ∏
p ∤ r

p prime

(
1− 1

p2

)2

=
1

ζ(2)2

∞∑
r=1

µ(r)
∏
p | r

p prime

1

p2

(
1− 1

p

1− 1
p2

)2

=
1

ζ(2)2

∏
p | r

p prime

(
1− 1

(p+ 1)2

)
.
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In the same vein, the coefficient β of x in D̃2 is β = c− c′, with

c′ =
∞∑
r=1

µ(r)

r2

∑
d, d′ | r

µ(d)

d

µ(d′)

d′

∞∑
n′=1

µ(n) χr,n

n2

∞∑
n′=1

µ(n′)χr,n′

(n′)2
log

(
r2dd′n2n′2) . (16)

Using that
∑
d | r

1 = Oϵ(r
ϵ) ∀ϵ > 0, one can readily see that the series in the right-hand side

of (16) is absolutely convergent. In addition, the overall error term E(x) for D̃2 associated to the
error term O(

√
x) in Dirichlet formula satisfies

E(x) ≪
∑

r ≤
√
x

| µ(r) |
∑

d, d′ | r,

n ≤
√

(x/r2)

n′ ≤
√

x/r2

dd′n2

(
x/r2

(n′)2dd′n2

)1/2

≪ϵ

∑
r ≤

√
x

| µ(r) |
∑

d, d′ | r,

n ≤
√

(x/r2)

(
x/r2

dd′n2

)1/2+ϵ

≪ϵ

∑
r ≤

√
x

| µ(r) |
∑

d, d′ | r

(
x/r2

dd′

)1/2+ϵ

≪ϵ x1/2+ϵ
∑

r ≤
√
x

| µ(r) |
∏
p | r

p prime

1

p1+2ϵ

(
1 +

1

p1/2+ϵ

)2

≪ϵ x1/2+ϵ
∏

p prime

[
1 +

1

p1+2ϵ

(
1 +

1

p1/2+ϵ

)2
]

≪ϵ x1/2+ϵ.

(17)

We leave the rest of the details to the interested reader. □

3.1 Proof of Lemma 3.1

Lemma 3.2. Let g : N → C be an arithmetic function. For x ≥ 1,∑
j ≤ x

g(j) |µ(j)| =
∑

n ≤
√
x

µ(n)
∑

i ≤ x/n2

g
(
in2

)
. (18)

Proof. Using ∑
n2|j

µ(n) = |µ(j)|,

we obtain ∑
n ≤ 2√x

µ(n)
∑

i ≤ x/n2

g
(
in2

)
=

∑
j ≤ x

g(j)
∑
n2|j

µ(n) =
∑
j ≤ x

g(j)|µ(j)|.
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Let r ≥ 1 with µ(r) ̸= 0. For x ≥ 1, let

f(x) =
∑
j ≤ x

| µ(rj) | .

We have

Vr(x) =
∑

i ≤ (x/r2)

| µ(i) | f
(
x/r2

i

)
χr,i

(18)
=

∑
n ≤

√
x/r2

µ(n)χr,n

∑
i ≤ (x/r2)/n2

f

(
x/r2

i n2

)
χr,i

=
∑

n ≤
√

x/r2

µ(n)χr,n

∑
d|r

µ(d)
∑

i ≤ x/r2

dn2

f

(
x/r2

din2

)
.

In addition,

f(x) =
∑
j ≤ x

| µ(j) | χr,j
(18)
=

∑
n′≤

√
x

µ(n′)χr,n′

∑
i ≤ x/(n′)2

χr,i

=
∑

n′ ≤
√
x

µ(n′)χr,n′

∑
d′|r

µ(d′)

⌊
x

(n′)2d′

⌋ .

Therefore,

Vr(x) =
∑

d, d′ | r,

n ≤
√

x/r2

i ≤ x/r2

dn2

n′ ≤
√

x/r2

dd′in2

µ(d)µ(d′)µ(n)µ(n′) χr,n χr,n′

⌊
x/r2

(n′)2d′din2

⌋

=
∑

d, d′ | r,

n ≤
√

x/r2

n′ ≤
√

x/r2

dd′n2

µ(d)µ(d′)µ(n)µ(n′) χr,n χr,n′D

(
x/r2

(n′)2dd′n2

)
. □
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