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Abstract: Let B, and C,, be the n-th balancing and Lucas-balancing numbers, respectively. We
consider the Diophantine equations az+by = 1(a—1)(b—1) and 1+az+by = 3(a—1)(b—1) for
(a,b) € {(Bn, Bnt1), (Ban_1, Bans1), (B, Cy), (Cy, Cri1)} and present the non-negative integer
solutions of the Diophantine equations in each case.
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1 Introduction
As defined by Behera and Panda [1], a natural number B is a balancing number if
142+---+(B-1)=(B+1)+(B+2)+---+(B+R)

for some natural number R, which is the balancer corresponding to 5. The n-th balancing number
is denoted by B,, and C,, = \/W is called the n-th Lucas-balancing number [11, p. 25].
Customarily, 1 is accepted as the first balancing number, i.e., By = 1. The balancing and
Lucas-balancing numbers satisfy the recurrence relations By = 1, By = 6, B, 41 = 6B, — B,_1
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and C} = 3,Cy = 17,C,41 = 6C,, — C,,_1 for n > 2. On other hand, b is called a cobalancing
number with cobalancer r [11] if

1424 +b=0b+1)+0+2) 4+ (b+r).
The n-th cobalancing number is denoted by b,, and cobalancing numbers satisfy the nonhomogeneous
recurrence by = 0,by = 2,b,,11 = 6b,, — b,,_1 + 2 for n > 2. The Binet forms are

2n _ AQ2n
B, = =0 o
42
where o = 1+\/§andﬁ:1—\/§.
Cyclotomy is the process of dividing a circle into equal parts, which is precisely the effect

a2n+ 2n a2n—l_ 2n—1
T A L

1
NG 2

obtained by plotting the n-th roots of the unity in the complex plane. For n > 1, the n-th
2mmi

cyclotomic polynomial is defined as @, (X) = 1 (mon)=1 (X — e n ), where e+ is the

primitive n-th roots of the unity. When n = pq for some distict primes p and ¢, while computing
the middle term of ®,,(X), Beiter [2] sketched a proof that 1 (p—1)(¢— 1) can be uniquely written
asaq+ Bp+ o, where 0 <a<p—1,0>0,and 6 € {0,1}.

Generalizing the result of Beiter [2], in a recent study by Chu [3] proved that, for any positive
and relatively prime integers a and b, exactly one of the two equations az + by = (a—1)(b—1)
and 1+ az + by = 1(a— 1)(b— 1) has a unique non-negative integer solution. In the same paper,
he considered the above Diophantine equations for a and b chosen from the Fibonacci sequence.

The main results of this paper gives the unique non-negative integer solutions of the
Diophantine equations az + by = 1(a —1)(b — 1) and 1 + az + by = 3(a — 1)(b — 1) for
each (a,b) € {(Bn, Bus1), (Ban-1, Bant1)s (822, 2252), (By, Cp), (Cry Cri1) ).

The sums of balancing and Lucas-balancing numbers has been extensively studied by many
authors (e.g., see [4-9, 12, 13]). For any non-negative integers m and n, the following known
identities will be helpful and used in the main results without further reference.

1. By+1 =3B, = C,, [10, Theorem 2.5]
2. Cpa1 = 3C, £ 8B, [10, Theorem 2.5]
3. ByinBm_n = B2 — B? [10, Theorem 2.1]
4. 370 Oy = Cp By [8, Theorem 2.1]

5.0, Cy = %(34%2 —6) [12, Theorem 4.1]

6. Z?Zo(—l)icm = %(C4n+1 +3) [8, Theorem 2.1]

7. (B, By) = B [10, Theorem 2.13 ].

Note: Throughout the paper, consider the numerical value of Z?Zl t; as zero and greatest
common divisor of a and b is denoted by (a, b).
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2 Non-negative integer solutions of a few Diophantine equations

For a given pair of consecutive balancing numbers, we have (B,,, B,+1) = 1. So we investigate
the non-negative integer solutions to the following Diophantine equations:

(Bn — 1)(Bn1 — 1)

By,x + By = 5 (D)
B, —1)(B,1 —1
The following table provides two cases:
’ n ‘ B, ‘ B, 1 ‘ in which equation ‘ T ‘ Y ‘
1 1 6 (D) 0 0
2 6 35 2) 14 0
3 35 204 (D 17 14
4| 204 | 1189 2) 492 17
5 | 1189 | 6930 (D 594 | 492
6 | 6930 | 40391 2) 16730 | 594

Firstly, we observe Equation (1) and Equation (2) are used alternatively, and secondly there is a
pattern in the values of x and y. This pattern in the table is summarized in the following theorem.

Theorem 2.1. For n > 1, the following equalities are correct

By,_1 — 1 By,_1 —1)(Bsy, — 1
B2n—1(2—1) +B2nb2n—1:( 2l (B2 ) (3)

2 2

: 4

2 2

1+ Boypbong1 + Bonga <L> — (B2 )(Ban 1 )

Proof. Firstly, we prove the equality 209,17 = Bs,+1 — B2, — 1 using the Corollary 3.4.2 by
Ray [11], which states b, 1 — b, = 2B,,.
Consider

2By,—1 — 2Bgy—9 — 2 = (bap, — bap—1) — (ban—1 — ban—2) — 2
= bop, — 2bgp—1 + bop—o — 2
= (bap, + bop—2 — 2) — 2bgy,—y

The proof of (3) follows by considering
Ban-1 (BQn—l - 1) + 2Bopbon—1 = B3, — Bap_1 + Bay[Ban—1 — Ban—o — 1]
= [B3,_1 — BanBan—2] + Ban-1(Ban — 1) — Bay,
=1+ Boy-1Boy — Bap—1 — Ba,
= (Ban—1 — 1)(Ban — 1)
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and the proof of (4) follows by considering

2Bopbans1 + Boni1(Bon—1 — 1) = 2Baybans1 + Bopy1Ban—1 — Bonia
= 2Bopboni1 + B3, — B} — Bopi1
= By, (2b2n11 + Ban) — 1 — Banta
= Bon(Ban+1 — 1) — 1 — Banta
— (Bap — 1)(Bansr — 1) — 2. 0

Given a pair of consecutive odd indexed balancing numbers, we have (Ba,_1, Ba,11) = 1. So
we investigate the non-negative integer solutions to the following Diophantine equations:

(Ban—1—1)(Bany1 — 1)

Bon—1x + Bap1y = 9 Q)
Bop—1 —1)(Bapy1 — 1
1+ Byt 4 Bonpry = 22 >2( s 1), (©6)
The following table provides two cases:
’ n ‘ By, 1 Bsn+1 ‘ in which equation ‘ T ‘ Y ‘

1 1 35 (5) 0 0
2 35 1189 (6) 577 0
3 1189 40391 (5) 577 577
4 | 40391 1372105 (6) 666434 577
5 | 1372105 | 46611179 (5) 666434 | 666434
6 | 46611179 | 1583407981 (6) 769064835 | 666434

The patterns in the table are summarized by the following theorem.

Theorem 2.2. For n > 1, the following equalities hold

n— n— Byn3—1)(Bgn-1 — 1
1. B4n—3 ( Zizll 041) + B4n—1 (Zizll 041) = ( n=3 )2< dnl )

Proof. Noting that """ | Cy; = — (Buy+2 — 6), we prove the first identity

1
12
Byys—6 Byps—6\ 1 1
B3 (L> + Bap—1 (%) = E(B4n—3 + Bin—1)Bin—2 — §(B4n—3 + Bap—1)

1 1
= E(6B§n—2) - §(B4n—3 + Byn-1)
1
= é(an72 - B4n73 - B4n71)
1
= 5(1 + Bin—1Bin—3 — Ban—3 — Ban—1)

1
= §(B4n—1 - 1)<B4n—3 - 1)
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The proof of second identity follows by considering

Bypio — 6 Byp_o — 6
Byp—1 (%) + Bant1 (%)

1 1
=1 —[Ban-1Ban+2 + Bint1Ban—2] — 2347171 — §B4n+1
1 1 1
12[B4n 1(3Ban+1 + Cani1) + Bany1(3Ban—1 — Capn—1)] — §B4n—1 — §B4n+l
1 1 1
12[6B4n 1Bans1 + (Ban—1Cant1 — Bint1Can—1)] — 234%1 — §B4n+1
1 1 1
12 [6B4n 1B4n+1 - 6] 2B4n—1 - §B4n+1
1 1
= -3 _anBn __an __Bn
5 + 5 Pan-1Bant1 = 5 Dan—1 = 5 Bani1
_ (Ban—1 — 1)2(B4n+1 -1) 1 =

Given a pair of consecutive even indexed balancing numbers, we have (B, Ba,12) = 6. So
we investigate the non-negative integer solutions to the following Diophantine equations:

%_1 BZ7L+2 _1
T )| G,

pum 7
6 T 6 Y 2 D
Ban _ ) Bz g
T | G,
1 = . 8
- G T+ G Y 5 ()
The following table provides two cases:
’ n ‘ +Ban ‘ iBany2 ‘ in which equation ‘ x ‘ y ‘
1 1 34 (7 0 0
2 34 1155 (8) 560 0
3| 1155 | 39236 @) 577 | 560
4 139236 | 1332869 ®) 646816 | 577

The patterns in the table are summarized by the following theorem. The proof follows in a similar
manner, so we omit the proof.

Theorem 2.3. For n > 1, the following equalities are true

Lt () + e (S o) = 35 1) (2 1)
2 B () + B (Taycn) = 3 (2 - 1) (B 1),

For a pair of balancing and Lucas-balancing numbers of the same index, we know that
(B,,C,) = 1[10, Lemma 2.9]. So we investigate the non-negative integer solutions to the
following Diophantine equations:

(Bn B 1)(071 B 1)
2

Byx + Chy = ©)
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1+ B,x+ Chy =

(Bn B

The following table provides a single case only.

H(C,—1)
2

’ n ‘ B, ‘ C, ‘ in which equation ‘ T ‘ Y ‘
1] 1 3 ) 010
21 6 |17 9) 1|2
313599 ) 8 |14
4 | 204 | 577 ) 49 | 84

The table results in the following two theorems.

Theorem 2.4. Forn > 1, Bn(Bn,1 + bn,l) + Cyb, =

Proof. Since

2Bn (anl + bnfl) + 2Cnbn = 2Ban71 + Bn(anl -
= Bn—l(BBn - Cn) - Ban—2 + BnCn - Bn - Cn

(B, —1)(C,, = 1)
2

=B’ |, -~ B,B, »+ B,C, — B, —C,
= (B, —1)(C, — 1),

the theorem follows.

(10)

Buo—1)+Co(By — Byy — 1)

]

Since the Diophantine equation B,z + C,,y = £(B, — 1)(C,, — 1) has non-negative integer

solution, we have the following theorem due to Chu’s theorem [3, Theorem 1.1].

Theorem 2.5. For n > 1, the Diophantine equation 1 + B,x + CLy =

solution in non-negative integers.

Since (Cy, Chy1) =
following Diophantine equations:

Cnx + Cn—l—ly -

14+ Chx + Chiy =

The following table provides two cases:

(Cn —1)(Cnya — 1)

(Cn —

2
1)(Cny1 — 1)

2

’ n ‘ C, ‘ Crni1 ‘ in which equation ‘ x ‘ Yy ‘
11 3 17 (12) 5 0
2| 17 99 (11) 171 5
3199 | 577 (12) 186 | 17
4 | 577 | 3363 (11) 594 | 186

=Y has no

1, we can also investigate the non-negative integer solutions of the

(11)

(12)

The pattern in the table is summarized in the following theorem. The proof follows in a similar

manner, so we omit the proof.
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Theorem 2.6. For n > 1, the following equalities are true

-1 1
]. 1 + C2n—1 (an — Z?;Ol 021/) _|_ an ( Z?;ll sz) _ (CZTL 1 2) (CQ?’L )
2. 0217, ( Z?:l 027,) + 02n+1 (BZn _ Z?:—Ol CQ,L) _ (CQn - 1)(2CYQTL+1 — 1) ‘

3 Future work

For any non-negative integer n and k, one can easily verify the following:

* (B, Chi) =1

* (Byp1+2,By, +12) =1

* (Ban +2,Byp1 +12) =1

* (Byp —2,Bypi1 —12) =1

* (Bant1 —2,Bapio —12) =1

* (Bypio — 2, Bz —12) =1

* (Bani2 + 2, Bypys +12) = 1.

One can use the above results or can generate similar results by considering suitable integers
a and b such that (B,, — a, B,,+x — b) = 1 and solve the Diophantine equations:

(Bn —a)z + (Bnyr — b)y = %(Bn —a—1)(Buyr —b—1)
and ]
1+ (B, —a)x + (Buyr —b)y = é(B” —a—1)(Bpir —b—1).
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