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Abstract: Let Bn and Cn be the n-th balancing and Lucas-balancing numbers, respectively. We
consider the Diophantine equations ax+by = 1

2
(a−1)(b−1) and 1+ax+by = 1

2
(a−1)(b−1) for

(a, b)∈ {(Bn, Bn+1), (B2n−1, B2n+1), (Bn, Cn), (Cn, Cn+1)} and present the non-negative integer
solutions of the Diophantine equations in each case.
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1 Introduction

As defined by Behera and Panda [1], a natural number B is a balancing number if

1 + 2 + · · ·+ (B − 1) = (B + 1) + (B + 2) + · · ·+ (B +R)

for some natural number R, which is the balancer corresponding to B. The n-th balancing number
is denoted by Bn and Cn =

√
8B2

n + 1 is called the n-th Lucas-balancing number [11, p. 25].
Customarily, 1 is accepted as the first balancing number, i.e., B1 = 1. The balancing and
Lucas-balancing numbers satisfy the recurrence relations B1 = 1, B2 = 6, Bn+1 = 6Bn − Bn−1
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and C1 = 3, C2 = 17, Cn+1 = 6Cn − Cn−1 for n ≥ 2. On other hand, b is called a cobalancing
number with cobalancer r [11] if

1 + 2 + · · ·+ b = (b+ 1) + (b+ 2) + · · ·+ (b+ r).

The n-th cobalancing number is denoted by bn and cobalancing numbers satisfy the nonhomogeneous
recurrence b1 = 0, b2 = 2, bn+1 = 6bn − bn−1 + 2 for n ≥ 2. The Binet forms are

Bn =
α2n − β2n

4
√
2

, Cn =
α2n + β2n

2
, bn =

α2n−1 − β2n−1

4
√
2

− 1

2
.

where α = 1 +
√
2 and β = 1−

√
2.

Cyclotomy is the process of dividing a circle into equal parts, which is precisely the effect
obtained by plotting the n-th roots of the unity in the complex plane. For n ≥ 1, the n-th
cyclotomic polynomial is defined as Φn(X) = Πn

m=1, (m,n)=1

(
X − e

2mπi
n

)
, where e

2mπi
n is the

primitive n-th roots of the unity. When n = pq for some distict primes p and q, while computing
the middle term of Φn(X), Beiter [2] sketched a proof that 1

2
(p−1)(q−1) can be uniquely written

as αq + βp+ δ, where 0 ≤ α ≤ p− 1, β ≥ 0, and δ ∈ {0, 1}.
Generalizing the result of Beiter [2], in a recent study by Chu [3] proved that, for any positive

and relatively prime integers a and b, exactly one of the two equations ax+ by = 1
2
(a− 1)(b− 1)

and 1+ ax+ by = 1
2
(a− 1)(b− 1) has a unique non-negative integer solution. In the same paper,

he considered the above Diophantine equations for a and b chosen from the Fibonacci sequence.
The main results of this paper gives the unique non-negative integer solutions of the

Diophantine equations ax + by = 1
2
(a − 1)(b − 1) and 1 + ax + by = 1

2
(a − 1)(b − 1) for

each (a, b) ∈ {(Bn, Bn+1), (B2n−1, B2n+1), (B2n

6
, B2n+2

6
), (Bn, Cn), (Cn, Cn+1)}.

The sums of balancing and Lucas-balancing numbers has been extensively studied by many
authors (e.g., see [4–9, 12, 13]). For any non-negative integers m and n, the following known
identities will be helpful and used in the main results without further reference.

1. Bm±1 = 3Bm ± Cm [10, Theorem 2.5]

2. Cm±1 = 3Cm ± 8Bm [10, Theorem 2.5]

3. Bm+nBm−n = B2
m −B2

n [10, Theorem 2.1]

4.
∑n

i=0C2i = CnBn+1 [8, Theorem 2.1]

5.
∑n

i=1C4i =
1
12
(B4n+2 − 6) [12, Theorem 4.1]

6.
∑2n

i=0(−1)iC2i =
1
6
(C4n+1 + 3) [8, Theorem 2.1]

7. (Bm, Bn) = B(m,n) [10, Theorem 2.13 ].

Note: Throughout the paper, consider the numerical value of
∑0

i=1 ti as zero and greatest
common divisor of a and b is denoted by (a, b).
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2 Non-negative integer solutions of a few Diophantine equations

For a given pair of consecutive balancing numbers, we have (Bn, Bn+1) = 1. So we investigate
the non-negative integer solutions to the following Diophantine equations:

Bnx+Bn+1y =
(Bn − 1)(Bn+1 − 1)

2
(1)

1 +Bnx+Bn+1y =
(Bn − 1)(Bn+1 − 1)

2
. (2)

The following table provides two cases:

n Bn Bn+1 in which equation x y

1 1 6 (1) 0 0

2 6 35 (2) 14 0

3 35 204 (1) 17 14

4 204 1189 (2) 492 17

5 1189 6930 (1) 594 492

6 6930 40391 (2) 16730 594

Firstly, we observe Equation (1) and Equation (2) are used alternatively, and secondly there is a
pattern in the values of x and y. This pattern in the table is summarized in the following theorem.

Theorem 2.1. For n ≥ 1, the following equalities are correct

B2n−1

(
B2n−1 − 1

2

)
+B2nb2n−1 =

(B2n−1 − 1)(B2n − 1)

2
(3)

1 +B2nb2n+1 +B2n+1

(
B2n−1 − 1

2

)
=

(B2n − 1)(B2n+1 − 1)

2
. (4)

Proof. Firstly, we prove the equality 2b2n+1 = B2n+1 − B2n − 1 using the Corollary 3.4.2 by
Ray [11], which states bn+1 − bn = 2Bn.

Consider

2B2n−1 − 2B2n−2 − 2 = (b2n − b2n−1)− (b2n−1 − b2n−2)− 2

= b2n − 2b2n−1 + b2n−2 − 2

= (b2n + b2n−2 − 2)− 2b2n−1

= 6b2n−1 − 2b2n−1

= 4b2n−1.

The proof of (3) follows by considering

B2n−1

(
B2n−1 − 1

)
+ 2B2nb2n−1 = B2

2n−1 −B2n−1 +B2n[B2n−1 −B2n−2 − 1]

= [B2
2n−1 −B2nB2n−2] +B2n−1(B2n − 1)−B2n

= 1 +B2n−1B2n −B2n−1 −B2n

= (B2n−1 − 1)(B2n − 1)
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and the proof of (4) follows by considering

2B2nb2n+1 +B2n+1

(
B2n−1 − 1

)
= 2B2nb2n+1 +B2n+1B2n−1 −B2n+1

= 2B2nb2n+1 +B2
2n −B2

1 −B2n+1

= B2n(2b2n+1 +B2n)− 1−B2n+1

= B2n(B2n+1 − 1)− 1−B2n+1

= (B2n − 1)(B2n+1 − 1)− 2.

Given a pair of consecutive odd indexed balancing numbers, we have (B2n−1, B2n+1) = 1. So
we investigate the non-negative integer solutions to the following Diophantine equations:

B2n−1x+B2n+1y =
(B2n−1 − 1)(B2n+1 − 1)

2
(5)

1 +B2n−1x+B2n+1y =
(B2n−1 − 1)(B2n+1 − 1)

2
. (6)

The following table provides two cases:

n B2n−1 B2n+1 in which equation x y

1 1 35 (5) 0 0

2 35 1189 (6) 577 0

3 1189 40391 (5) 577 577

4 40391 1372105 (6) 666434 577

5 1372105 46611179 (5) 666434 666434

6 46611179 1583407981 (6) 769064835 666434

The patterns in the table are summarized by the following theorem.

Theorem 2.2. For n ≥ 1, the following equalities hold

1. B4n−3

(∑n−1
i=1 C4i

)
+B4n−1

(∑n−1
i=1 C4i

)
=

(B4n−3 − 1)(B4n−1 − 1)

2

2. 1 +B4n−1

(∑n
i=1C4i

)
+B4n+1

(∑n−1
i=1 C4i

)
=

(B4n−1 − 1)(B4n+1 − 1)

2
.

Proof. Noting that
∑n

i=1C4i =
1

12
(B4n+2 − 6), we prove the first identity

B4n−3

(
B4n−2 − 6

12

)
+B4n−1

(
B4n−2 − 6

12

)
=

1

12
(B4n−3 +B4n−1)B4n−2 −

1

2
(B4n−3 +B4n−1)

=
1

12
(6B2

4n−2)−
1

2
(B4n−3 +B4n−1)

=
1

2
(B2

4n−2 −B4n−3 −B4n−1)

=
1

2
(1 +B4n−1B4n−3 −B4n−3 −B4n−1)

=
1

2
(B4n−1 − 1)(B4n−3 − 1).
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The proof of second identity follows by considering

B4n−1

(
B4n+2 − 6

12

)
+B4n+1

(
B4n−2 − 6

12

)
=

1

12
[B4n−1B4n+2 +B4n+1B4n−2]−

1

2
B4n−1 −

1

2
B4n+1

=
1

12
[B4n−1(3B4n+1 + C4n+1) +B4n+1(3B4n−1 − C4n−1)]−

1

2
B4n−1 −

1

2
B4n+1

=
1

12
[6B4n−1B4n+1 + (B4n−1C4n+1 −B4n+1C4n−1)]−

1

2
B4n−1 −

1

2
B4n+1

=
1

12
[6B4n−1B4n+1 − 6]− 1

2
B4n−1 −

1

2
B4n+1

= −1

2
+

1

2
B4n−1B4n+1 −

1

2
B4n−1 −

1

2
B4n+1

=
(B4n−1 − 1)(B4n+1 − 1)

2
− 1.

Given a pair of consecutive even indexed balancing numbers, we have (B2n, B2n+2) = 6. So
we investigate the non-negative integer solutions to the following Diophantine equations:

B2n

6
x+

B2n+2

6
y =

(
B2n

6
− 1

)(
B2n+2

6
− 1

)
2

(7)

1 +
B2n

6
x+

B2n+2

6
y =

(
B2n

6
− 1

)(
B2n+2

6
− 1

)
2

. (8)

The following table provides two cases:

n 1
6
B2n

1
6
B2n+2 in which equation x y

1 1 34 (7) 0 0

2 34 1155 (8) 560 0

3 1155 39236 (7) 577 560

4 39236 1332869 (8) 646816 577

The patterns in the table are summarized by the following theorem. The proof follows in a similar
manner, so we omit the proof.

Theorem 2.3. For n ≥ 1, the following equalities are true

1. 1 + B4n

6

(∑2n
i=1(−1)iC2i

)
+ B4n+2

6

(∑n−1
i=1 C4i

)
= 1

2

(
B4n

6
− 1

)(
B4n+2

6
− 1

)
2. B4n−2

6

(∑n−1
i=1 C4i

)
+ B4n

6

(∑2n−2
i=1 (−1)iC2i

)
= 1

2

(
B4n−2

6
− 1

)(
B4n

6
− 1

)
.

For a pair of balancing and Lucas-balancing numbers of the same index, we know that
(Bn, Cn) = 1 [10, Lemma 2.9]. So we investigate the non-negative integer solutions to the
following Diophantine equations:

Bnx+ Cny =
(Bn − 1)(Cn − 1)

2
(9)
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1 +Bnx+ Cny =
(Bn − 1)(Cn − 1)

2
. (10)

The following table provides a single case only.

n Bn Cn in which equation x y

1 1 3 (9) 0 0

2 6 17 (9) 1 2

3 35 99 (9) 8 14

4 204 577 (9) 49 84

The table results in the following two theorems.

Theorem 2.4. For n ≥ 1, Bn

(
Bn−1 + bn−1

)
+ Cnbn =

(Bn − 1)(Cn − 1)

2
.

Proof. Since

2Bn

(
Bn−1 + bn−1

)
+ 2Cnbn = 2BnBn−1 +Bn(Bn−1 −Bn−2 − 1) + Cn(Bn −Bn−1 − 1)

= Bn−1(3Bn − Cn)−BnBn−2 +BnCn −Bn − Cn

= B2
n−1 −BnBn−2 +BnCn −Bn − Cn

= 1 +BnCn −Bn − Cn

= (Bn − 1)(Cn − 1),

the theorem follows.

Since the Diophantine equation Bnx + Cny = 1
2
(Bn − 1)(Cn − 1) has non-negative integer

solution, we have the following theorem due to Chu’s theorem [3, Theorem 1.1].

Theorem 2.5. For n ≥ 1, the Diophantine equation 1 + Bnx + Cny = (Bn−1)(Cn−1)
2

has no
solution in non-negative integers.

Since (Cn, Cn+1) = 1, we can also investigate the non-negative integer solutions of the
following Diophantine equations:

Cnx+ Cn+1y =
(Cn − 1)(Cn+1 − 1)

2
(11)

1 + Cnx+ Cn+1y =
(Cn − 1)(Cn+1 − 1)

2
. (12)

The following table provides two cases:

n Cn Cn+1 in which equation x y

1 3 17 (12) 5 0

2 17 99 (11) 17 5

3 99 577 (12) 186 17

4 577 3363 (11) 594 186

The pattern in the table is summarized in the following theorem. The proof follows in a similar
manner, so we omit the proof.
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Theorem 2.6. For n ≥ 1, the following equalities are true

1. 1 + C2n−1

(
B2n −

∑n−1
i=0 C2i

)
+ C2n

(∑n−1
i=1 C2i

)
=

(C2n−1 − 1)(C2n − 1)

2

2. C2n

(∑n
i=1 C2i

)
+ C2n+1

(
B2n −

∑n−1
i=0 C2i

)
=

(C2n − 1)(C2n+1 − 1)

2
.

3 Future work

For any non-negative integer n and k, one can easily verify the following:

• (Bn, Cnk) = 1

• (B4n−1 + 2, B4n + 12) = 1

• (B4n + 2, B4n+1 + 12) = 1

• (B4n − 2, B4n+1 − 12) = 1

• (B4n+1 − 2, B4n+2 − 12) = 1

• (B4n+2 − 2, B4n+3 − 12) = 1

• (B4n+2 + 2, B4n+3 + 12) = 1.

One can use the above results or can generate similar results by considering suitable integers
a and b such that (Bn − a,Bn+k − b) = 1 and solve the Diophantine equations:

(Bn − a)x+ (Bn+k − b)y =
1

2
(Bn − a− 1)(Bn+k − b− 1)

and
1 + (Bn − a)x+ (Bn+k − b)y =

1

2
(Bn − a− 1)(Bn+k − b− 1).

Acknowledgements

It is a pleasure to thank the anonymous referees for their valuable comments and suggestions
which improved the presentation of this paper to a great extent.

References

[1] Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers. The Fibonacci
Quarterly, 37(2), 98–105.

[2] Beiter, M. (1964). The midterm coefficient of the cyclotomic polynomial Φpq(X). American
Mathematical Monthly, 71, 769–770.

501



[3] Chu, H. V. (2020). Representation of 1
2
(Fn − 1)(Fn+1 − 1) and 1

2
(Fn − 1)(Fn+2 − 1). The

Fibonacci Quarterly, 58(4), 334–339.

[4] Davala, R. K. (2015). On convolution and binomial sums of balancing and Lucas-balancing
numbers. International Journal of Mathematical Sciences and Engineering Applications,
8(5), 77–83.

[5] Davala, R. K. (2018). Algebraic and geometric aspects of some binary recurrence
sequences. Ph.D. Thesis, National Institute of Technology, Rourkela, India.

[6] Davala, R. K., & Panda, G. K. (2015). On sum and ratio formulas for balancing numbers.
The Journal of the Indian Mathematical Society, 82(2), 23–32.

[7] Davala, R. K., & Panda, G. K. (2016). On sum and ratio formulas for balancing-like
sequences. Notes on Number Theory and Discrete Mathematics, 22(3), 45–53.

[8] Davala, R. K., & Panda, G. K. (2019). On sum and ratio formulas for Lucas-balancing
numbers. Palestine Journal of Mathematics, 8(2), 200–206.

[9] Frontczak, R. (2018). Sums of balancing and Lucas-balancing numbers with binomial
coefficients. International Journal of Mathematical Analysis, 12, 585–594.

[10] Panda, G. K. (2009). Some fascinating properties of balancing numbers. Congressus
Numerantium, 194, 265–271.

[11] Ray, P. K. (2009). Balancing and cobalancing numbers. Ph.D. Thesis, National Institute of
Technology, Rourkela, India.

[12] Ray, P. K. (2015). Balancing and Lucas-balancing sums by matrix methods. Mathematical
Reports, 17(2), 225–233.

[13] Soykan, Y. (2021). A study on generalized balancing numbers. Asian Journal of Advanced
Research and Reports, 15(5), 78–100.

502


