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1 Introduction

Polynomials are an expression that consists of a certain number of independent variables and
fixed numbers. On the polynomials are used the exponentiation of natural numbers, addition,
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subtraction and multiplication. Polynomials are common in science and mathematics. They are
used to solve problems in economics to chemistry, chemistry to physics, physics to cryptology
and social sciences. There are some important sequences whose elements are polynomials.
These are polynomial sequences such as Fibonacci, Lucas, Pell, Jacobsthal, and Padovan. In
this paper, the definition of the bivariate Padovan polynomials sequence and bivariate Padovan
polynomials matrix is given and its various identities are examined. Then, we find the Binet
formula, generating function and exponential generating function of these sequences. Also, we
obtain a sum formula and its series representation. Firstly, the Padovan sequence is defined as
follows. The Padovan sequence {Pn}n≥0 is defined by the third order recurrence

Pn+3 = Pn+1 + Pn

with the initial conditions P0 = 1, P1 = 0 and P2 = 1. The Padovan sequence appears as sequence
A000931 on the On-Line Encyclopedia of Integer Sequences (OEIS) [18]. For convenience, we
define P−1 = P−2 = 0. The first few values of this sequence are given as follows

n −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

Pn 0 0 1 0 1 1 1 2 2 3 4 5 7 9 12 16 . . .

The plastic number is the unique real root of the characteristic equation of Padovan sequence

t3 − t− 1 = 0

with a value of
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≈ 1.324718.

If its roots are denoted by α, β and γ then the following equalities can be derived

α + β + γ = 0,

αβ + αγ + βγ = −1,

αβγ = 1.

More information is available in [19,24] for Padovan numbers. Moreover, the Binet-like formula
for the Padovan sequence is

Pn = aαn + bβn + cγn (1)

where

a =
βγ + 1

(α− β)(α− γ)
, b =

αγ + 1

(β − α)(β − γ)
, c =

αβ + 1

(γ − α)(γ − β)
.

It is well known that from [19], the following identities are valid:

P−n−3 = P 2
n − Pn+1Pn−1, (2)

Pn = Pm−1Pn−m + Pm+1Pn−m+1 + PmPn−m+2. (3)
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Also, in [19] the Padovan matrix is defined by

QP =

 0 1 0

0 0 1

1 1 0


and satisfies the equality

Qn
P =

 Pn−3 Pn−1 Pn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn

 .

By using (2) and (3), the determinant of the Padovan matrix gives an identity as follows

Pn−3P−n−3 + Pn−1P−n−2 + Pn−2P−n−1 = 1.

That is, the determinant of Qn
P is 1, denoted by |Qn

P | = 1.

The Padovan numbers and their some generalizations are investigated in [14, 20]. Moreover,
Deveci and Shannon developed properties of recurrence sequences defined from circulant matrices
obtained from the characteristic polynomial of the Pell–Padovan sequence [3].

There are many studies on special number sequences and their applications in the literature.
Some of these studies were presented by the following authors: Kim et al. presented a new
approach to the convolved Fibonacci numbers arising from the generating function of them
and gave some new and explicit identities for the convolved Fibonacci numbers in [7]. They
derived Fourier series expansions for functions related to sums of finite products of Chebyshev
polynomials of the first kind and of Lucas polynomials, studied sums of finite products of
Chebyshev polynomials of the first kind and Lucas polynomials and represent each of them in
terms of Chebyshev polynomials of all kinds, and also considered sums of finite products of
Chebyshev polynomials of the second kind and of Fibonacci polynomials and derived Fourier
series expansions of functions associated with them in [6,8,10]. They finally defined the Whitney
numbers of the first and second kind for any finite geometric lattice in [9].

2 The bivariate Padovan polynomials

Inspired by the works [1, 2, 11, 16, 17, 21–23] on the bivariate Fibonacci polynomials, we define
the bivariate Padovan polynomials as follows. Recently, several studies have been carried out on
some bivariate sequences [4, 5, 25, 26].

Definition 1. For any integer numbers x > 0 and y ̸= 0 and 27y2 − 4x3 = 0, the bivariate
Padovan polynomials sequence {Pn(x, y)}n≥0 is defined by a third order recurrence,

Pn+3(x, y) = xPn+1(x, y) + yPn(x, y), n ≥ 0 (4)

with the initial conditions

P0(x, y) = 1, P1(x, y) = 0, P2(x, y) = x.

To simplify notation, take Pn(x, y) = Pn. The first few values of this sequence are given as
follows:

409



n −2 −1 0 1 2 3 4 5 6 7 8 . . .

Pn 0 0 1 0 x y x2 2xy x3 + y2 3x2y x4 + 3xy2 . . .

For n < 0, Pn can be defined by rewriting the recurrence relation (4) as

Pn(x, y) =
1

y
Pn+3(x, y)−

x

y
Pn+1(x, y), n < 0 (5)

So, we can establish the negative indexes of Pn.

The recurrence (4) involves the characteristic equality

λ3 − xλ− y = 0. (6)

If its roots are denoted by α(x,y), β(x,y) and γ(x,y) then the following equalities can be derived

α(x,y) + β(x,y) + γ(x,y) = 0,

α(x,y)β(x,y) + α(x,y)γ(x,y) + β(x,y)γ(x,y) = −x,

α(x,y)β(x,y)γ(x,y) = y.

Using the characteristic equation (6) and the equalities above, we can derive the Binet-like formula
for the bivariate Padovan polynomials sequence as follows:

Theorem 2.1. The Binet-like formula for the bivariate Padovan polynomial sequence is

Pn = a(x,y)α
n
(x,y) + b(x,y)β

n
(x,y) + c(x,y)γ

n
(x,y) (7)

where

a(x,y) =
β(x,y)γ(x,y) + x

(α(x,y) − β(x,y))(α(x,y) − γ(x,y))
,

b(x,y) =
α(x,y)γ(x,y) + x

(β(x,y) − α(x,y))(β(x,y) − γ(x,y))
,

c(x,y) =
α(x,y)β(x,y) + x

(γ(x,y) − α(x,y))(γ(x,y) − β(x,y))
.

Proof. Assume that
Pn = a(x,y)α

n
(x,y) + b(x,y)β

n
(x,y) + c(x,y)γ

n
(x,y)

Let us determine the coefficients a(x,y), b(x,y) and c(x,y). For n = 0, 1, 2. We write

P0 = a(x,y) + b(x,y) + c(x,y)

P1 = a(x,y)α(x,y) + b(x,y)β(x,y) + c(x,y)γ(x,y)

P2 = a(x,y)α
2
(x,y) + b(x,y)β

2
(x,y) + c(x,y)γ

2
(x,y).

By The Cramer’s rule, we can easily prove that the coefficient a(x,y), b(x,y) and c(x,y) are in the
desired form.

Proposition 1. Let Pn be n th bivariate Padovan polynomial. Then,

yn+1P−n−3 = P2
n − Pn+1Pn−1. (8)

Proof. We use the principle of mathematical induction. Since

P2
0 − P1P−1 = 1− 0 = yP−3,

P2
1 − P2P0 = 0− x = y2P−4,

the result is true when n = 0, 1.
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Assume that the result is true for all positive integers n ≤ k where k ≥ 2. Then, by (4) and
the hypothesis of mathematical induction, we write

P2
k+1 − Pk+2Pk = (xPk−1 + yPk−2)

2 − (xPk + yPk−1) (xPk−2 + yPk−3)

= x2P2
k−1 + 2xyPk−1Pk−2 + y2P2

k−2 − x2PkPk−2 − xyPkPk−3

− xyPk−1Pk−2 − y2Pk−1Pk−3

= x2ykP−k−2 − xykP−k + yk+1P−k−1

= x2ykP−k−2 + xyk+1P−k−3 − xyk+1P−k−3 − xykP−k + yk+1P−k−1

= xykP−k − xyk+1P−k−3 − xykP−k + yk+1P−k−1

= yk+2P−k−4.

Thus, by the strong version of the principle of mathematical induction, the formula works for all
positive integers n ≥ 3.

Theorem 2.2. The generating function for the bivariate Padovan polynomials is

GP(x, y) =
∞∑
n=1

Pnt
n =

xt2 + yt3

1− xt2 − yt3
.

Proof. Let

GP(x, y) =
∞∑
n=1

Pnt
n = P1t+ P2t

2 + P3t
3 + · · ·+ Pnt

n + . . .

Let us multiplied this equality by −yt3 and −xt2 such as

−yt3GP(x, y) = −yP1t
4 − yP2t

5 − yP3t
6 − · · · − yPnt

n+3 − · · ·

−xt2GP(x, y) = −xP1t
3 − xP2t

4 − xP3t
5 − · · · − xPnt

n+2 − · · ·

Then, we write

(1− xt2 − yt3)GP(x, y) = P1t+ P2t
2 + (P3 − xP1)t

3 + (P4 − xP2 − yP1)t
4 + . . .

+ (Pn − xPn−2 − yPn−3) t
n + . . .

Since P1 = 0, P2 = x, P3 = y, P4 = x2 and Pn − xPn−2 − yPn−3 = 0, we obtain

GP(x, y) =
xt2 + yt3

1− xt2 − yt3
.

Thus, the proof is completed.

Theorem 2.3. The exponential generating function for the bivariate Padovan polynomials is

EP(x, y) =
∞∑
n=1

Pn

n!
tn = a(x,y)e

α(x,y)t + b(x,y)e
β(x,y)t + c(x,y)e

γ(x,y)t (9)

where a(x,y), b(x,y) and c(x,y) are defined in Theorem 2.1, and α(x,y), β(x,y) and γ(x,y) are the roots
of the characteristic equation (4).

Proof. We know that

eα(x,y)t =
∞∑
n=1

αn
(x,y)

n!
tn, eβ(x,y)t =

∞∑
n=1

βn
(x,y)

n!
tn, eγ(x,y)t =

∞∑
n=1

γn
(x,y)

n!
tn.
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Multiplying these equalities by a(x,y), b(x,y) and c(x,y), respectively, and summing side by side,
we obtain

a(x,y)e
α(x,y)t + b(x,y)e

β(x,y)t + c(x,y)e
γ(x,y)t =

∞∑
n=1

a(x,y)α
n
(x,y) + b(x,y)β

n
(x,y) + c(x,y)γ

n
(x,y)

n!
tn.

By the formula (7) we have the desire equality (9).

Theorem 2.4. The series for the bivariate Padovan polynomials is

SP(x, y) =
∞∑
n=0

Pn

tn+1
=

t2

t3 − xt− y

Proof. Let

SP(x, y) =
∞∑
n=0

Pn

tn+1
=

P0

t
+

P1

t2
+

P2

t3
+ · · ·+ Pn

tn+1
+ . . .

Let us multiplied this equality by t3, −xt and −y such as

t3SP(x) = P0t
2 + P1t+ P2 + · · ·+ Pn

tn−2
+ . . .

−xtSP(x, y) = −xP0 − x
P1

t
− x

P2

t2
− · · · − x

Pn

tn
− · · ·

−ySP(x, y) = −y
P0

t
− y

P1

t2
− y

P2

t3
− y · · · − y

Pn

tn+1
− · · ·

Then, we write

(t3 − xt− y)SP(x, y) = P0t
2 + P1t+ P2 − xP0 + (P3 − xP1 − yP0)

1

t

− · · ·+ (Pn+2 − xPn − yPn−1)
1

tn
+ · · ·

Since P1 = 0, P2 = x, P3 = y, P4 = x2 and Pn+2 − xPn − yPn−1 = 0, we obtain

SP(x, y) =
t2

t3 − xt− y
.

Thus, the proof is completed.

Theorem 2.5. The sum of the first n terms of Pn is
n∑

i=0

Pi =
x+ y − Pn+1 − Pn+2 − yPn

1− x− y
, n ≥ 0.

Proof. We know that
Pn = xPn−2 + yPn−3.

So, applying to the identity above, we deduce that

P3 = xP1 + yP0,

P4 = xP2 + yP1,

P5 = xP3 + yP2,
...
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...
Pn−2 = xPn−4 + yPn−5,

Pn−1 = xPn−3 + yPn−4,

Pn = xPn−2 + yPn−3.

Summing the both of sides of the identities above, we obtain
n∑

i=0

Pi = x

n∑
i=0

Pi + y

n∑
i=0

Pi + yP0 + P1 + P2 − Pn+1 − Pn+2 − yPn.

Thus, the proof is completed.

3 The bivariate Padovan polynomials matrix

We investigate the property of bivariate Padovan polynomials in relation with the bivariate
Padovan polynomial matrices formula. So, it allow us to obtain new relations for the bivariate
Padovan polynomial matrices. The bivariate Padovan polynomials matrix QP (x, y) is generated
by the matrix of order 3.

QP (x, y) =

 0 y 0

0 0 1

1 x 0


and the n th powers of QP (x, y) polynomials matrix is given

Qn
P (x, y) =

 yPn−3 yPn−1 yPn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn

 , n ≥ 1. (10)

We investigate a new property of the bivariate Padovan polynomials in relation with the bivariate
Padovan polynomials matrices formula.

Theorem 3.1. For all n ∈ N we have

Qn
P (x, y)

 0

0

1

 =

 0 y 0

0 0 1

1 x 0


n  0

0

1

 =

 yPn−2

Pn−1

Pn

 . (11)

Proof. Let us use the principle of mathematical induction on n. For n = 1, it is easy to see that

Q1
P (x, y)

 0

0

1

 =

 0 y 0

0 0 1

1 x 0


1  0

0

1

 =

 0

1

0

 =

 yPn−2

Pn−1

Pn

 .

Assume that it is true for all positive integer n = k, i.e,

Qk
P (x, y)

 0

0

1

 =

 0 y 0

0 0 1

1 x 0


k  0

0

1

 =

 yPk−2

Pk−1

Pk

 .
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We have to show that the equality is valid for n = k + 1. By the hypothesis of induction, we can
write

Qk+1
P (x, y)

 0

0

1

 = Q1
P (x, y)

Qk
P (x, y)

 0

0

1




=

 0 y 0

0 0 1

1 x 0


 yPk−2

Pk−1

Pk


=

 yPk−1

Pk

yPk−2 + xPk−1

 =

 yPk−1

Pk

Pk+1


Therefore, the result is true for every n ≥ 1.

Let us generalize this observation using the bivariate Padovan polynomial formula matrices.

Proposition 2. For all integers m,n such that 1 ≤ m < n, we have the following relation:

Pn = yPm−1Pn−m−2 + Pm+1Pn−m−1 + PmPn−m (12)

Proof. From the laws of exponent for the square matrices, we have

Qn
P (x, y)

 0

0

1

 = Qm
P (x, y)

Qn−m
P (x, y)

 0

0

1




It follows from (10) and (11) that yPn−2

Pn−1

Pn

 =

 yPm−3 yPm−1 yPm−2

Pm−2 Pm Pm−1

Pm−1 Pm+1 Pm


 yPn−m−2

Pn−m−1

Pn−m


By the equality of the corresponding elements in the matrix equality above, we have

Pn = yPm−1Pn−m−2 + Pm+1Pn−m−1 + PmPn−m

This completes the proof.

Theorem 3.2. The eigenvalues of Qn
P (x, y) are αn

(x,y), β
n
(x,y) and γn

(x,y).

In particular, we have the next corollary.

Corollary 3.1. The eigenvalues of QP (x, y) are α(x,y), β(x,y) and γ(x,y).

Proof.

|QP (x, y)− λI| =

∣∣∣∣∣∣∣
−λ y 0

0 −λ 1

1 x −λ

∣∣∣∣∣∣∣ = λ3 − xλ− y = 0.

By the roots of characteristic equation (6) we prove the desire result.
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Proposition 3. The relations are valid:
1. |Q3

P (x, y) + xQP (x, y) + yI| = 8y3.

2. |Qn
P (x, y)| = yn.

Proof. 1.

Q3
P (x, y) + xQP (x, y) + yI =

 y xy 0

0 y x

x x2 y

+

 0 xy 0

0 0 x

x x2 0

+

 y 0 0

0 y 0

0 0 y


=

 2y 2xy 0

0 2y 2x

2x 2x2 2y

 = 8

 y xy 0

0 y x

x x2 y

 .

So,
|Q3

P (x, y) + xQP (x, y) + yI| = 8y3

2. Using (8) and (12), we have∣∣∣∣∣∣∣
yPn−3 yPn−1 yPn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn

∣∣∣∣∣∣∣ = yn+1 (yPn−3P−n−3 + Pn−1P−n−2 + Pn−2P−n−1)

= yn+1P−3 = yn.

We note that similar results for the Fibonacci matrices are given in [12, 13] the books of T.
Koshy.

Theorem 3.3. The Binet-like formulas for the bivariate Padovan polynomials matrix is

Qn
P (x, y) = a(x,y)α(x,y)α

n
(x,y) + b(x,y)β(x,y)β

n
(x,y) + c(x,y)γ(x,y)γ

n
(x,y), n ⩾ 0 (13)

where

α(x,y) =

 α−3
(x,y) α−1

(x,y) α−2
(x,y)

α−2
(x,y) 1 α−3

(x,y)

α−1
(x,y) α(x,y) 1


β(x,y) =

 β−3
(x,y) β−1

(x,y) β−2
(x,y)

β−2
(x,y) 1 β−3

(x,y)

β−1
(x,y) β(x,y) 1



γ(x,y) =

 γ−3
(x,y) γ−1

(x,y) γ−2
(x,y)

γ−2
(x,y) 1 γ−3

(x,y)

γ−1
(x,y) γ(x,y) 1

 .

Proof. From the definition of the bivariate Padovan polynomials matrix Qn
P (x, y) in (10) and

Binet-like formula for the bivariate Padovan polynomials Pn in (7), we write
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Qn
P (x, y) =

 Pn−3 Pn−1 Pn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn


= a(x,y)

 α−3
(x,y) α−1

(x,y) α−2
(x,y)

α−2
(x,y) 1 α−1

(x,y)

α−1
(x,y) α(x,y) 1

αn
(x,y) + b(x,y)

 β−3
(x,y) β−1

(x,y) β−2
(x,y)

β−2
(x,y) 1 β−3

(x,y)

β−1
(x,y) β(x,y) 1

 βn
(x,y)

+ c(x,y)

 γ−3
(x,y) γ−1

(x,y) γ−2
(x,y)

γ−2
(x,y) 1 γ−3

(x,y)

γ−1
(x,y) γ(x,y) 1

 γn
(x,y)

= a(x,y)α(x,y)α
n
(x,y) + b(x,y)β(x,y)β

n
(x,y) + c(x,y)γ(x,y)γ

n
(x,y)

Thus, the proof is completed.

Theorem 3.4. The generating function for the bivariate Padovan polynomials matrix is

GQP
(x, y) =

∞∑
n=1

Qn
P (x, y)t

n =
1

1− xt2 − yt3

 yt3 yt yt2

t2 xt2 + yt3 t

t xt+ yt2 xt2 + yt3

 .

Proof. Let

GQP
(x, y) =

∞∑
n=1

Qn
P (x, y)t

n = QP (x, y)t+Q2
P (x, y)t

2 +Q3
P (x, y)t

3 + · · ·+Qn
P (x, y)t

n + · · ·

be the generating function of the bivariate Padovan polynomials matrix. Multiplying the equality
by −xt2 and −yt3, respectively, such as

−xt2GQP
(x, y) = −xQP (x, y)t

3 − xQ2
P (x, y)t

4 − xQ3
P (x, y)t

5 − · · · − xQn
P (x, y)t

n+2 − · · ·
−yt3GQP

(x, y) = −yQP (x, y)t
4 − yQ2

P (x, y)t
5 − yQ3

P (x, y)t
6 − · · · − yQn

P (x, y)t
n+3 − · · ·

Then, we write

(1− xt2 − yt3)GQP
(x, y) = QP (x, y)t+Q2

P (x, y)t
2 + (Q3

P (x, y)− xQP (x, y))t
3

+ (Q4
P (x, y)− xQ2

P (x, y)− yQP (x, y))t
4 + · · ·

+ (Qn+3
P (x, y)− xQn+1

P (x, y)− yQn
P (x, y))t

n+3 + · · ·

Using (10), we obtain Qn+3
P (x)− xQn+1

P (x)− yQn
P (x) = 0. So,

GQP
(x, y) =

1

1− xt2 − yt3

 yt3 yt yt2

t2 xt2 + yt3 t

t xt+ yt2 xt2 + yt3

 .

Thus, the proof is completed.
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Theorem 3.5. The exponential generating function for the bivariate Padovan polynomials matrix
is

EQP
(x, y) =

∞∑
n=1

Qn
P (x, y)

n!
tn = a(x,y)α(x,y)e

α(x,y)t + b(x,y)β(x,y)e
β(x,y)t + c(x,y)γ(x,y)e

γ(x,y)t.

Proof. We know that

eα(x,y)t =
∞∑
n=1

αn
(x,y)

n!
tn, eβ(x,y)t =

∞∑
n=1

βn
(x,y)

n!
tn, eγ(x,y)t =

∞∑
n=1

γn
(x,y)

n!
tn.

Let us multiply each side of the first equality by a(x,y)α(x,y), the second equality by b(x,y)β(x,y)

and the third equality by c(x,y)γ(x,y), and summing all of them, we obtain that

EQP
(x, y) = a(x,y)α(x,y)e

α(x,y)t + b(x,y)β(x,y)e
β(x,y)t + c(x,y)γ(x,y)e

γ(x,y)t

=
∞∑
n=1

a(x,y)α(x,y)α
n
(x,y) + b(x,y)β(x,y)β

n
(x,y) + cxγxγ

n
(x,y)

n!
tn

=
∞∑
n=1

Qn
P (x, y)

n!
tn

This completes the proof.

Theorem 3.6. The series for the bivariate Padovan polynomials matrix is

SQP
(x, y) =

∞∑
n=1

Qn
P (x, y)

tn+1
=

1

t3 − xt− y


y
t

yt y

1 x+ y
t

t

t y + xt x+ y
t

 .

Proof. Let

SQP
(x, y) =

∞∑
n=1

Qn
P (x, y)

tn+1
=

QP (x, y)

t2
+

Q2
P (x, y)

t3
+

Q3
P (x, y)

t4
+ · · ·+ Qn

P (x, y)

tn+1
+ . . .

be series of the bivariate Padovan polynomials matrix. Let us multiplying the equality by t3, −xt

and −y, respectively, such as

t3SQP
(x, y) = QP (x, y)t+Q2

P (x, y) +
Q3

P (x, y)

t
+ · · ·+ Qn

P (x, y)

tn−2
+ · · ·

−xtSQP
(x, y) = −x

QP (x, y)

t
− x

Q2
P (x, y)

t2
− x

Q3
P (x, y)

t3
− · · · − x

Qn
P (x, y)

tn
− · · ·

−ySQP
(x, y) = −y

QP (x, y)

t2
− y

Q2
P (x, y)

t3
− y

Q3
P (x, y)

t4
− · · · − y

Qn
P (x, y)

tn+1
− · · ·

Then, we write

(t3 − xt− y)SQP
(x, y) = QP (x, y)t+Q2

P (x, y) +
(
Q3

P (x, y)− xQP (x, y)
) 1
t

+
(
Q4

P (x, y)− xQ2
P (x, y)− yQP (x, y)

) 1

t2
+ · · ·

+
(
Qn+2

P (x, y)− xQn
P (x, y)− yQn−1

P (x, y)
) 1

tn
+ · · ·
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Using (10), we obtain Qn+2
P (x, y)− xQn

P (x, y)− yQn−1
P (x, y) = 0. So,

SQP
(x) =

1

t3 − xt− y


y
t

yt y

1 x+ y
t

t

t y + xt x+ y
t

 .

Thus, the proof is completed.

Theorem 3.7. The sum of the first n terms of Qn
P (x, y) is

n∑
i=1

Qi
P (x, y) =

1

x+ y − 1

Qn+2
P (x, y) +Qn+1

P (x, y) + yQn
P (x, y)−

 y y y

1 x+ y 1

1 x+ y x+ y


 .

Proof. We know that

Qn
P (x, y) = xQn−2

P (x, y) + yQn−3
P (x, y).

So, applying to the identity above, we deduce that

Q3
P (x, y) = xQ1

P (x, y) + yQ0
P (x, y),

Q4
P (x, y) = xQ2

P (x, y) + yQ1
P (x, y),

Q5
P (x, y) = xQ3

P (x, y) + yQ2
P (x, y),

...

Qn−2
P (x, y) = xQn−4

P (x, y) + yQn−5
P (x, y),

Qn−1
P (x, y) = xQn−3

P (x, y) + yQn−4
P (x, y),

Qn
P (x, y) = xQn−2

P (x, y) + yQn−3
P (x, y).

Summing of both of sides of the identities above, we obtain

−Q1
P (x, y)−Q2

P (x, y) +
n∑

i=1

Qi
P (x, y) = −Qn+2

P (x, y)−Qn+1
P (x, y)− yQn

P (x, y) + yQ0
P (x, y)

+ x

n∑
i=1

Qi
P (x, y) + y

n∑
i=1

Qi
P (x, y).

Hence, we get the desired result.

4 Conclusion

In the present work, the bivariate Padovan polynomials are defined. The Binet formula, generating
function and exponential generating function of these polynomials are given. Then, the bivariate
Padovan polynomials matrices are defined. The Binet formula, generating function and exponential
generating function of these polynomials matrices is given. Also, a sum formula and its series
representation of these polynomials are obtained.
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