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Abstract: In this paper, we define the Fibonacci-Pell p-sequence and then we discuss the
connection of the Fibonacci—Pell p-sequence with the Pell and Fibonacci p-sequences. Also,
we provide a new Binet formula and a new combinatorial representation of the Fibonacci—Pell
p-numbers by the aid of the n-th power of the generating matrix of the Fibonacci—Pell p-sequence.
Furthermore, we derive relationships between the Fibonacci—Pell p-numbers and their permanent,
determinant and sums of certain matrices.
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1 Introduction
The well-known Pell sequence { P, } is defined by the following recurrence relation:

P,.o=2PFP, 1+ P, forn > 0in which Fy =0and P, = 1.
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There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence
[22,23] is one of them:

F,(n)=F,(n—1)4+F,(n—p—1) forp=1,2,3,... andn > p

in which F}, (0) =0, F, (1) = --- = F}, (p) = 1. When p = 1, the Fibonacci p-sequence { F}, (n) }
is reduced to the usual Fibonacci sequence { F,, }.

It is easy to see that the characteristic polynomials of the Pell sequence and Fibonacci
p-sequence are f) (r) = 2? — 2z — 1 and f, (z) = 2P — 2P — 1, respectively. We use these in
the next section.

Let the (n + k)-th term of a sequence be defined recursively by a linear combination of the
preceding k terms:

Qpik = Colyp + C1Opi1 + - - + Cp10p k1,

in which cg, c1,...,cx_1 are real constants. In [12], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:
Let the matrix A be defined by

0O 1 O 0 0
0O 0 1 0 0
0O 0 O 0 0
A = [alyj]ka = : : : .. : : ?
0O 0 O 0 1
L o €1 C2 -+ Cp2 Ck-1 |
then
ao Qp,
An Cl'l _ Anp41
ag—1 Apyk—1
forn > 0.

Several authors have used homogeneous linear recurrence relations to deduce miscellaneous
properties for a plethora of sequences: see for example, [1,4,8-11,19-21,24]. In [5-7,14-16,22,
23,25], the authors defined some linear recurrence sequences and gave their various properties by
matrix methods.

In the present paper, we discuss connections between the Pell and Fibonacci p-numbers.
Firstly, we define the Fibonacci—Pell p-sequence and then we study recurrence relation among
this sequence, Pell and Fibonacci p-sequences. In addition, we obtain their generating matrices,
Binet formulas, permanental, determinantal, combinatorial, exponential representations, and we
derive a formula for the sums of the Fibonacci—Pell p-numbers.
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2 Main results

Now we define the Fibonacci—Pell p-sequence {F,f P } by the following homogeneous linear
recurrence relation for any given p (3,4,5,...)andn > 0

Pp _ P,p Pp Pp Pp Pp Pp
Fn+p+3 - 3Fn+p+2 - Fn+p+1 - Fn+p + Fn+2 - 2Fn+1 - Fn ’ (1
: : Pp _ . _ pPp _ Pp _
in which /"' =---=F '} =0and F, 7, = 1.

First, we consider the relationship between the Fibonacci—Pell p-sequence which is defined
above, Pell, and Fibonacci p-sequences.

Theorem 2.1. Let P, F3 (n) and F, f 3 be the n-th Pell number, Fibonacci 3-number, and Fibonacci—
Pell 3-numbers, respectively. Then, forn > 0

Popo = F 54205+ F(n+2) + Fs ().
Proof. The assertion may be proved by induction on n. It is clear that
Py=FP 4 2% + F5(2) + F5(0) = 2.

Suppose that the equation holds for n > 1. Then we must show that the equation holds for n 4 1.
Since the characteristic polynomial of Fibonacci—Pell p-sequence {Ff ’p}, is

g(z) =Pt =3Pt Pt 4 a? — 22 4 22+ 1
and
g(x) = fi(x) f2(2),

where f; (x) and fo(x) are the characteristic polynomials of Pell sequence and Fibonacci
p-sequence, respectively, we obtain the following relations:

Pov6 =3P5 — Poya— Poyzs + Popa — 28,11 — By
and
Fs(n+6)=3F(n+5)—F3(n+4) —F3s(n+3)+ Fs(n+2) —2F;(n+1) — F3(n)
for n > 1. Thus, the conclusion is obtained. ]

Theorem 2.2. Let P, and F'? be the n-th Pell number and Fibonacci—Pell p-numbers. Then, for
n>0andp > 3.
i. Let p be a positive integer, then

_ Pp Pp Pp
P,=F.P  —F5h — FPe,

1. If p is odd, then
P+ Py = Iy — FEL — BT, — T

n n

and
1e. If p is odd, then

P, o P,



Proof. Consider the Case ii. The assertion may be proved by induction on n. Then for p = 3,
it is clear that Py + P, = F5P 3 _ F:f 3 _ Flp s _ F(fD B =1, Suppose that the equation holds for
n > 0. Then we must show that the equation holds for n + 1. Since the characteristic polynomial
of the Pell sequence { P, }, is

fi(a) =a® =2z -1,

we obtain the following relations:
Pn+6:3Pn+5_Pn+4_Pn+3+Pn+2_2Pn+1_Pn

forn > 1. Now we consider the proof for the case p > 3. Suppose that the equation holds for
p=2a+1, (e € N)andn > 0, it is clear that

_ pP2a+1 P2a+1 P2a+1 P2a+1
Pn + Pn+1 - Fn+2a+3 - Fn+2a+1 - Fn+1 - Fn :

Then we must show that the equation holds for p = 2a + 3, (a € N). For n = 0, it is clear that

_ mP2a+1 P2a+1 P2a+1 P2a+1
Po+ P =F 5 — Iy —F — Iy = 1.

The assertion may be proved again by induction on n. Assume that the equation holds for n > 0.
Then we must show that the equation holds for n + 1. Since the characteristic polynomial of the
Pell sequence {P,}, is

fi(a) = a® =2z -1,

we obtain the following relations:
Pn+2a+6 = 3Pn+2a+5 - Pn+2a+4 - Pn+2a+3 + Pn+2 - 2Pn+1 - Pn

for n > 1. Thus, the conclusion is obtained.
There is a similar proof for Case i and Case iii. ]

By the recurrence relation (1), we have

3 -1 -1 0 001 -2 —1
- -
EP? 1 0 0 0 000 0 0 FPr
, 01 0 0 000 0 0 .
Fole 00 1 0 000 0 0 Flh
00 0 1 --000 0 0
P, P,
F”JFI;H -1 ST T S S S : an;
0 0 0 0 100 0 0
00 0 0 010 0 0
P
| B 00 0 0 o010 o ||l EP |
000 0 0 000 1 0

for the Fibonacci—Pell p-sequence {F,f P } Letting
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[3 -1 -1 0 001 -2 -1
1 0 0 0 000 0 O
0 1 0 0 000 0 O
0 0 1 0 000 0 O
0 0 0 1 000 0 O

Dp = . . . . . . . )

0 0 0 0 100 0 O
00 0 O 010 0 O
0 0 0 O 001 0 O

o 6 0o 0-- 000 1 0 ] (3 (p3)

the companion matrix D, = [d, ] (p+3)x (p+3) 18 said to be the Fibonacci-Pell p-matrix. For more

details on the companion type matrices, see [17,18]. It can be readily established by mathematical
induction that forp > 3andn > 3p — 1,

r P, P, P, P,
Fn+pp+2 Fp(n_p+1)_Fn+pp+l_Fn+pp Fp(”—P+2)_Fn+1;+1 Fp(n—p+3)
P, P, P, P,
Foli Fp(n—p) = F, 0 —F, 0, 4 Fp(n—p+1)—F," Fp(n—p+2)
P, P, P, P, X
. Eh Fh—p-1)—-F b  —FF Fp(n—p)—F, b Fp(n—p+1) -~ Dj
(Dp)"* =
FoR Fy(n—2p) — FPP — FPP Fy(n—2p+1)—FPP  F,(n—2p+2)
FDP Fy(n—2p—1)—FED _ phr Fy(n—2p) — F® Fy(n—2p+1)
where
Fp (n) Fp(n—p+3)+Fp(n—p)+Fp(n—p—1)+-~~+Fp(n—2p+3)—Fffp+2 _F:ipp+1 1
Fp(n—1) Fp(”_p+2)+Fp(n_P_1)+Fp("_P_2)+“'+Fp(n_2p+2)_Fff;+1 _Fritpp
Fp(n—2) Fp(”*pJF1)+Fp(”*p*2)+Fp(”*p*3)+“'+Fp(”*2p+1)*Ffﬁ) *Ffjrz;—l
Dy =
Fp(n—p—1) Fp(n—2p—i-2)-l-F,g(n—2p—1)—i—Fp(n—2p—2)—&—~-~—&—Fp(n—3p—i-2)—Ffjrp1 —FDP
| Fp(n—p—2) Fp(”_2p+1)+Fp(n_2P—2)+Fp(n_zp—3)+"‘+Fp(”_3p+1)_Ff’p _F:Lpl

In [22], Stakhov defined the generalized Fibonacci p-matrix (), and derived the n-th power of
the matrix (),,. In [13], Kilic gave a Binet formula for the Fibonacci p-numbers by matrix method.
Now we concentrate on finding another Binet formula for the Fibonacci—Pell p-numbers by the
aid of the matrix (D,,)".

Lemma 2.3. The characteristic equation of all the Fibonacci—Pell p-numbers
aPT3 — 3Pt Pt 4P — 2 4 20 +1 =0

does not have multiple roots for p > 3.
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Proof. ltis clear that 2P*3 — 32PT2 4 2Pt 4 2P — 22 4 224+ 1 = (2Pt — 2P — 1) (2% — 22 — 1).
In [13], it was shown that the equation 2zP** — 27 — 1 = ( does not have multiple roots for
p > 1. Tt is easy to see that the roots of the equation 22 — 2z — 1 = O are 1 + /2 and 1 — /2.
Since (1 + \/§)pJrl — (1 + \/§)p —1+#0and (1 — \/§)p+1 — (1 — \/§)p — 1 # 0, the equation

aPt3 — 3aP2 4 P 4 2P — 22 + 22 + 1 = 0 does not have multiple roots for p > 3. O

Let oy, ay, . . ., 13 be the roots of the equation 273 — 3272 4+ P+l 4 oP — 22 420 +1 =0
and let V, be a (p + 3) x (p + 3) Vandermonde matrix as follows:

(al)p+2 (042)p+2 CV;o+3)p+2 |
(Oél)p+1 (Oéz)pH e (ap+3)p+1
Vp = :
(05} (0] e Qpi3
i 1 1 o 1 |

Assume that V}, (i, j) is a (p + 3) x (p + 3) matrix derived from the Vandermonde matrix V,, by
replacing the j-th column of V,, by W, (), where, W, (i) is a (p + 3) x 1 matrix as follows:

(al)n+p+3—i
(a2)n+p+3fi

Wy (Z) =

(ap+3)n+p+3*’i

Theorem 2.4. Let p be a positive integer such that p > 3 and let (D))" = dl(»?") forn > 1, then

det V), (i, J)

4P —
detV,

Proof. Since the equation 273 — 32772 + zPT! + 2P — 2 + 27 + 1 = 0 does not have multiple
roots for p > 3, the eigenvalues of the Fibonacci—Pell p-matrix D, are distinct. Then, it is clear
that D,, is diagonalizable. Let A, = diag (o, az, ..., a,43), then we may write D,V,, = V, A,
Since the matrix V), is invertible, we obtain the equation (V;?)*1 D,V, = A,. Therefore, D, is
similar to A,; hence, (D,)"V, =V, (A,)" forn > 1. So we have the following linear system of

equations:
( n n n n —1
A (o) 4 i () d = (o)
d™ (o)™ + df 0 )P Aty = (ag)" P
[ A ()™ A" (i)™ e T = (o)™
Then we conclude that o
4P — w
e det V,
foreachi, 5 =1,2,...,p+ 3. 0
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Thus by Theorem 2.4 and the matrix (D))", we have the following useful result for the
Fibonacci—Pell p-numbers.

Corollary 2.1. Let p be a positive integer such that p > 3 and let FP'P be the n-th element of the
Fibonacci—Pell p-sequence, then

det V, (p+3,1)

Fbr —
" det V,
and
pro_ 4tV (p+2,p+3)
" det V,
forn > 1.

It is easy to see that the generating function of the Fibonacci—Pell p-sequence {Ff 4’} is as

follows:

T 1— 3z + 22 + a8 — gl 4 2Pt 4 gt

g9 (x)

where p > 3.
Then we can give an exponential representation for the Fibonacci—Pell p-numbers by the aid
of the generating function with the following Theorem.

Theorem 2.5. The Fibonacci—Pell p-numbers {FéD ’p} have the following exponential

representation:

g (I’) = I’p+2 exp <Z@ (3 —r— 372 + 2P — 22L'p+1 _ l’p+2)i> ,
- 7

=1

where p > 3.

Proof. Since
Ing(z) =Ina?*? —In (1 — 3z + 2 + 2° — a?*' + 227%% + 2P17)
and

—In(1 -3z +2%+2° — 2P +22P12 4 2PT3) = —[—2 (3 — 2 —2® + 2P — 2271 — 2P F2) —
1
—2? (3—$—x2+xp—2xp+1—xp+2)2—---

2

1. i

——a' (3—$—$2+$p—233p+1—;Up‘*‘?)l_...]
7

it is clear that

g(x) = 2" ?exp (Z @ (3 —x — 2 P — 2Pt — ﬂ’*?)i)
i

=1

and by a simple calculation, we obtain the conclusion. ]
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Let K (ky, ko, ..., k,) be av X v companion matrix as follows:

ki ko -0k,
1 0 --- 0
K (ki ko,... k) =
0O --- 1 0

Theorem 2.6. (Chen and Louck [3]) The (i,j) entry K" (ki ko,...,k,) in the matrix
K" (k1, ko, ..., ky) is given by the following formula:

ti+tiai+---+t, i+ +ty
k(n) k ’k "“,kv _ 7 J+ % ktl,..ktv7 2
lJ(l 2 ) Z t1+t2++tv tla"'7tv ! ° ()

(t1,t2,..5t0)

where the summation is over nonnegative integers satisfying t; + 2ty + --- +vt, = n — 1 + J,

<t1+~~~+tv) _ (ttto)!

T 18 a multinomial coefficient, and the coefficients in (2) are defined to be 1

t1y..ty

ifn=1—17j.

Then we can give other combinatorial representations than for the Fibonacci—Pell p-numbers
by the following Corollary.

Corollary 2.2. Let FI'? be the n-th Fibonacci—Pell p-number for n > 1. Then
i

FPp _ Z (t1 +to4 -+ tp+3) 3t (_Q)tp+2 (_1)t2+t3+tp+3 ’

ti, o, - tpys
(t1,t2,stp+3) e s

where the summation is over nonnegative integers satisfying
t1+2t2+---+(p+3)tp+3:n—p—2.

FP,P — _ Z tp+3 x th+lg 4+ tp+3 3t1 (_2)tp+2 (_1)t2+t3+tp+3
" th+to+ - +tpps i, ta, - S lpis ’

(t1,t2,..5tp13)

where the summation is over nonnegative integers satisfying t1 +2to+---+(p+3) ty1 3 =n+1.

Proof. If we take? = p+ 3, 5 = 1 for the Case 1. and ¢ = p + 2, j = p + 3 for the Case ii. in
Theorem 2.6, then we can directly see the conclusions from (D,,)". [l

Now we consider the relationship between the Fibonacci—Pell p-numbers and the permanent
of a certain matrix which is obtained using the Fibonacci—Pell p-matrix (D,)".

Definition 2.1. A u x v real matrix M = [m, ;| is called a contractible matrix in the k-th column

(respectively, row) if the k-th column (respectively, row) contains exactly two non-zero entries.

Suppose that z1, o, .. .,x, are row vectors of the matrix M. If M is contractible in the k-th
column such that m; ; # 0, m;; # 0 and i # j, then the (v — 1) X (v — 1) matrix A;;.; obtained
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from M by replacing the i-th row with m; 2 ; +m; ,@; and deleting the j-th row. The k-th column
is called the contraction in the k-th column relative to the i-th row and the j-th row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
a > 1and N is a contraction of M.

Now we concentrate on finding relationships among the Fibonacci—Pell p-numbers and the
permanents of certain matrices which are obtained by using the generating matrix of the
Fibonacci—Pell p-numbers. Let E,f;f; = [e; ;] be the m x m super-diagonal matrix, defined by

(3 ifi=7andj =7forl <7 <m,
ifir=7andj=7+pforl <7<m-—p
and i=7+4+landj=7forl1 <7< m—1,
ifir=7randj=7+4+1forl <7<m—1,
-1 s=7andj=7+4+2for1 <7<m—2

and i=7andj=7+p+2forl <7<m-—p—2,

€ij =

-2 fi=7andj=7+p+1lforl1<7<m-—p—1,

0 otherwise.

for m > p + 3. Then we have the following Theorem.
Theorem 2.7. Form > p+ 3,

FP _ Pp
per B, = F o

Proof. Let us consider matrix Eﬂf; and let the equation hold for m > p + 3. Then we show that
the equation holds for m + 1. If we expand the per E;*’ by the Laplace expansion of permanent
with respect to the first row, then we obtain

P _ F,P F,P F,P F,P F,P F,P
per By, =3per B, —per B,y —per £, +perE," —2per £, ", —perE, " .

Since

FP _ Pp
per Em’p = Fm+p+2,

vap

FP
perEm—l,p_ m-+p+1

per EEE _ pPe

m—2,p — ~ m+p’

P _ Pp
per Em—p7p - Fm+27

F,P P,
per B, = F.1,
F,P P,
per E,", 5, = F,7,
we easily obtain that per Efl’pr = Fnlz’fp 13- S0 the proof is complete. []
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Let "I = [fi ;] be the m x m matrix, defined by

/

3 ifi=7andj=7forl <7<m—p,

ifi=7andj=7+pforl <7< m—p,
1 t=7andj=7form—p+1<717<m,
and 1=7+4+landj=7forl1 <7<m-—p—1,

fi,j

ifir=7andj=7+1forl <7< m—p, ,
-1 ¢s=7andj=7+4+2forl <7< m—p,
and i=7andj=7+p+2forl <7<m—p—2,

-2 Hi=7andj=7+p+1lforl <7<m-—p—1,

0 otherwise

for m > p + 3. Then we have the following Theorem.

Theorem 2.8. Form > p+ 3,

F,P _ 1Pp
per I = F 0.

Proof. Let us consider matrix )50

the equation holds for m + 1. If we expand the per Ff;:f by the Laplace expansion of permanent

and let the equation hold for m > p + 3. Then we show that

with respect to the first row, then we obtain

FP F,P F,P F,P F,P F,P F,P
per £, =3per F, —per F,, =, —per F, ", +perF,~, —2perF," | —perk " .

Since
F,P _ Pp
per Fm,p =F

m+2>
FP  Pp
per mel,p =F, 1,

F.P _ P,p
per 75, = F.*,

per FEP  — pbp

m—p,p m—p+2
F.P _ pPp
per Fm_p_Lp = Fm_p+1,
F.P _ pPp
per F.” o, = oty
. . FP .
we easily obtain that per £, , = EZ .. So the proof is complete. O]

Assume that G>7 = [g; ;] be the i x m matrix, defined by

(m —3)-rd
d
[ 1 1 0 0 0]
FP
Gm,p = : FEP ,form > p+ 3,
. m—1,p
0
_0 =

then we have the following results.
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Theorem 2.9. Form > p+ 3,
m+1

per Ghb = Z EPP,
i=0
Proof. If we extend per G¥ with respect to the first row, we write
per Gﬁf; = per GNF,L’I_DLP + per F::fl,p'
Thus, by the results and an inductive argument, the proof is easily seen. O]

A matrix M is called convertible if there is an n x n (1,—1)-matrix K such that
per M = det (M o K), where M o K denotes the Hadamard product of M and K.

Now we give relationships among the Fibonacci—Pell p-numbers and the determinants of
certain matrices which are obtained by using the matrices E>F, FI'F and G0 Let m > p+ 3
and let R be the m X m matrix, defined by

1 1 1 -+ 1 1]
—1
1 -1 1 -+ 1 1
R: .
1 -1 1
1 1 1 -1 1

Corollary 2.3. Form > p + 3,

det (B o R) = F17 .,

det (F;0 o R) = Fhr

m+2>
and
m+1
det (G0 o R) = Z; EPP.
Proof. Since per EFD = det (ELD o R), per FLP = det (FLPoR) and per GLE
= det (Gﬂ’f; o R) for m > p + 3, by Theorem 2.7, Theorem 2.8 and Theorem 2.9, we have
the conclusion. O

Now we consider the sums of the Fibonacci—Pell p-numbers. Let

S-3r

i=0
forn > 0 and let U p and (Up p)" be the (p + 4) x (p + 4) matrix such that
(100 -+~ 0 0]

Urp =
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If we use induction on n, then we obtain
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