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Abstract: We define higher order rhotrices over a commutative unital ring S and obtain a ring
Rn(S) of rhotrices of the order n ∈ N. We characterize the ideals and maximal ideals ofRn(S).
As a particular case, we record ideals of rhotrix rings over integers and rhotrix algebras over
complex plane C. As an application, we characterize the maximal ideals of the commutative
unital Banach algebraRn(C).
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1 Introduction

The concept of rhotrices was introduced by Ajibade [1] in 2003 as objects of order higher than
2 × 2 and lower than 3 × 3 matrices, as an extension of the initiative on matrix-tertions and
matrix-noitrets suggested by Atanassov and Shannon [2]. In literature it is realized that with a
slight perturbation of the arrangement of a matrix, a rhotrix – a rhomboidal array is obtained. As
in [1], a rhotrix of order 3 is defined as

R =

〈 a

b h(R) d

e

〉
,

where a, b, d, e, h(R) ∈ R. h(R) is called the heart of the rhotrix. For higher order rhotrices, it is
difficult to realize a rhotrix as objects of order higher than (n− 1)× (n− 1) and lower than n×n
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matrices. But it will be convenient to see it as a part of n× n matrix. Thus a rhotrix of order 3 is
looked upon as a part of 3× 3 matrix

AR =

a ∗ d

∗ h(R) ∗
b ∗ e


rotated through h(R) clockwise by 45◦ and removing ∗. The concept was generalized to a rhotrix
of order n by Mohammed [7]. He defined a rhotrix R of order n as

R =

〈
a1

a2 a3 a4
· · · · · · · · · · · · · · ·

a t−n+2
2

· · · · · · a t+1
2
· · · · · · a t+n

2

· · · · · · · · · · · · · · ·
at−3 at−2 at−1

at

〉
, (1)

where t = n2 + 1

2
and ai ∈ R. Here h(R) = a t+1

2
is called the heart of R.

We shall denote the rhotrix defined in (1) by R = 〈h(R), ai〉, 1 ≤ i ≤ t, i 6= t+ 1

2
. In what

follows, for brevity, when h(R) is mentioned separately, we shall assume tacitly that 1 ≤ i ≤ t

and i 6= t+ 1

2
.

The set of all rhotrices of order n is denoted by Rn(R). The heart based product on Rn(R)
is defined in [7] as shown below. Let R1 = 〈h(R), ai〉, R2 = 〈h(R2), bi〉 ∈ Rn(R), 1 ≤ i ≤ t.
Then

R1R2 = 〈h(R1)h(R2), h(R1)bi + h(R2)ai〉.

In passing we note that for a fixed k 6= t+ 1

2
the two dimensional subspace V = {(h(R), ak) :

R ∈ Rn(R)} becomes a Banach algebra. This and several other multiplications on a two
dimensional Banach algebra are investigated in [3].

On the other hand, motivated by matrix multiplication, Sani [10] multiplied two rhotrices of
order n in a different way. To realize this we write a rhotrix of order n as a fusion of two matrices,
one matrix [aij] of the order n+ 1

2
and the other [cij] of the order n− 1

2
. Thus a rhotrix of order n,

written differently, is

R = 〈aij, clk〉

=

〈
a11

a21 c11 a12
· · · · · · · · · · · · · · ·

at1 c(t−1)1 · · · · · · · · · · · · · · · c1(t−1) a1t
· · · · · · · · · · · · · · ·

at(t−1) c(t−1)(t−1) a(t−1)t
att

〉
,

where t = n+ 1

2
and the number of components of R is given by |R| = n2 + 1

2
. For two rhotrices

R1 = 〈aij, clk〉, R2 = 〈bij, dlk〉, the (noncommutative) product is defined as
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R1 ◦R2 =

〈
t∑

q=1

aiqbqj,

t−1∑
q=1

clqdqk

〉
Mohammed and Okon [8] investigated the noncommutative group structure of general rhotrices

of order n with noncommutative product. We consider the commutative product and investigate
ring theoretic and algebra theoretic structures of rhotrices by allowing the elements of rhotrices
to come from a ring, the set of integers or complex plane. In yet another direction, Isere [4] and
[5] defined heartless rhotrices incorporating the even ordered rhotrices. But in the present note,
our arrangement is possible only when n is odd. Thus throughout this note, when we refer to n
as an order of a rhotrix, n will be assumed to be a positive odd integer.

As mentioned in the above definition of the rhotrix R, it is a fusion of two matrices 〈aij, clk〉,
which form a part of an n× n matrix

AR =



a11 ∗ · · · · · · · · · ∗ a1t
∗ c11 · · · ∗ · · · c1(t−1) ∗
· · · · · · · · · · · · · · · · · · · · ·
· · · ∗ · · · a t+1

2
t+1
2
· · · ∗ · · ·

· · · · · · · · · · · · · · · · · · · · ·
∗ c(t−1)(1) · · · ∗ · · · c(t−1)(t−1) ∗
at1 ∗ · · · · · · · · · ∗ att


.

In this case, [aij], [clk] are called the coupled matrices Sani [11]. Various concepts related to
rhotrices are investigated by different researchers. To mention a few, Patil, Singh and Sutaria
[9] investigated eigenvalues and eigenvectors of a rhotrix corresponding to a matrix, Sharma and
Kanwar [12] have proved Cayley–Hamilton theorem for rhotrices. Usaini and Aminu [13] have
defined and investigated the exponential functions on rhotrices.

Ajibade [1] proved that under the heart based multiplication, rhotrices form a semigroup. He
also obtained the necessary and sufficient condition for a rhotrix to be invertible. Mohammed [6]
investigates the ring theoretic structure of the same set obtaining ring theoretic results. Both of
them restricted themselves toR3(R), the rhotrices of order 3. In this paper, we consider rhotrices
of order n with entries from a commutative unital ring S. Throughout this paper S will denote a
commutative unital ring. We denote the identity of S by 1.

Definition 1.1. By a rhotrix of order n over S, we mean a rhotrix

R =

〈
a1

a2 a3 a4
· · · · · · · · · · · · · · ·

a t−n+2
2

· · · · · · a t+1
2
· · · · · · a t+n

2

· · · · · · · · · · · · · · ·
at−3 at−2 at−1

at

〉
,

where t = n2 + 1

2
and ai ∈ S. Here h(R) = a t+1

2
is the heart of R.
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Throughout this note Rn(S) will denote the set of all rhotrices of order n over S. Let
R1 = 〈h(R1), ai〉 and R2 = 〈h(R2), bi〉 be inRn(S). We define

R1 +R2 = 〈h(R1) + h(R2), ai + bi〉,
R1R2 = 〈h(R1)h(R2), h(R1)bi + h(R2)ai〉. (2)

In the main result Theorem 2.2, in Section 2, we characterize ideals of the ring Rn(S) of
rhotrices over a commutative unital ring S. Some very interesting particular cases of rhotrix rings
and rhotrix algebras are recorded. As an application of Theorem 2.2, in Section 3, we define
Rhotrix Banach algebra and find its maximal ideals and multiplicative linear functionals.

2 Ideals ofRn(S)

The following is a straight verification using (2).

Proposition 2.1. Rn(S) is a commutative unital ring.

Theorem 2.2. I ⊂ Rn(S) is an ideal of Rn(S) if and only if there is a family {Ii : 1 ≤ i ≤ t}
of ideals of S such that Jh = I t+1

2
⊂ Ii for every i and

I = {〈h(R), ai〉 : ai ∈ Ii, h(R) ∈ Jh}. (3)

Proof. Suppose there is a family {Ii : 1 ≤ i ≤ t} of ideals of S such that Jh ⊂ Ii for every
i and I is given by (3). We show that I is an ideal of Rn(S). Since Ii are ideals of S and
since the addition onRn(S) is pointwise, it is clear that I is an additive subgroup ofRn(S). Let
R1 = 〈h(R1), ai〉 ∈ Rn(S), R2 = 〈h(R2), bi〉 ∈ I, Then for every i, h(R1)bi ∈ SIi ⊂ Ii because
Ii is an ideal of S. Also, using the fact that Jh ⊂ Ii, we have h(R2)ai ∈ JhS ⊂ IiS ⊂ Ii. Thus
h(R1)bi + h(R2)ai ∈ Ii. Also, h(R1)h(R2) ∈ SJh ⊂ Jh because Jh is an ideal of S. Thus
R1R2 ∈ I.

Conversely, suppose I is an ideal ofRn(S). We fix k for the rest of the proof. Define

Jh = {h(R) : R ∈ I}

and
Ik = {ak : R = 〈h(R), ai〉 ∈ I}.

First we show that Jh is an ideal of S. Let c, d ∈ Jh. So, there are R1 = 〈h(R1), ai〉, R2 =

〈h(R2), bi〉 ∈ I such that h(R1) = c and h(R2) = d. Then c+d = h(R1)+h(R2) = h(R1+R2).
Since R1 + R2 ∈ I, it follows that c + d ∈ Jh. Let c ∈ Jh and d ∈ S. So, there is R1 =

〈h(R1), ai〉 ∈ I such that h(R1) = c. Define R2 = 〈h(R2), bi〉 ∈ Rn(S) by setting h(R2) = d

and bi = 0 for every i. Then cd = h(R1)h(R2) = h(R1R2). Since I is an ideal of Rn(S),
R1R2 ∈ I. Hence cd ∈ Jh. Thus Jh is an ideal of S. Next we show that Ik is an ideal of S. Let
c, d ∈ Ik. So, there are R1 = 〈h(R1), ai〉, R2 = 〈h(R2), bi〉 ∈ I such that ak = c and bk = d.

Since I is an ideal, R1 +R2 ∈ I. Hence it follows that c+ d = ak + bk ∈ Ik. Let c ∈ Ik and
d ∈ S. So, there is R1 = 〈h(R1), ai〉 ∈ I such that ak = c. Define R2 = 〈h(R2), bi〉 ∈ Rn(S)
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by setting h(R2) = d and bi = 0 for every i. Now the k-th coordinate of R1R2 is
h(R1)bk + h(R2)ak = h(R1)0 + dc = cd. Since I is an ideal of Rn(S), R1R2 ∈ I giving
cd ∈ Ik. Thus Ik is an ideal of S. Finally, we show that Jh ⊂ Ik. Let c ∈ Jh. So, there is
R1 = 〈h(R1), ai〉 ∈ I such that h(R1)=c. DefineR2=〈h(R2), bi〉 ∈ Rn(S) such that h(R2) = 0

and bi = 1 for every i. Now the k-th coordinate ofR1R2 is h(R1)bk+h(R2)ak = c ·1+0 ·ak = c.
Since I is an ideal ofRn(S), R1R2 ∈ I, which gives c ∈ Ik.

We cannot drop the condition that S is unital. The following example shows that it is
necessary.

Example 2.3. ConsiderR3(2Z) and

I =


〈 a

b h(R) d

e

〉
: a, b, d, e ∈ 4Z, h(R) ∈ 2Z

 .

Then one easily verifies that I is an ideal ofR3(2Z), however Jh is not a subset of I1.

As an application of the Theorem 2.2, we obtain the characterization of maximal ideals of
Rn(S).

Theorem 2.4. An ideal I of Rn(S) is maximal if and only if Jh is a maximal ideal of S and
Ii = S for every i 6= t+ 1

2
.

Proof. Suppose Ik ( S. Then we define

K = {〈h(R), ai〉 : ai ∈ Ii, for every i 6= k, h(R) ∈ Jh, ak ∈ S}.

Then I ( K. Thus it follows that Ik = S. Now suppose Jh is not maximal in S. So that there
is an ideal Kh of S such that Jh ( Kh. Thus allowing the elements of heart to come from Kh

instead of Jh as above, we see that maximality of I is annihilated. Thus the result follows.

In the rest of this section, we give some particular cases of rhotrix rings. In fact, the results
are true for rhotrices of order n for any n ∈ N, but to save the space, we illustrate the same for
rhotrices of order 3. For brevity, first we change the notations in this section. The set

I =


〈 a1
a2 h(R) a4

a5

〉
: ai ∈ miZ, for i = 1, 2, 4, 5, h(R) ∈ m3Z


is written as

〈 m1Z
m2Z m3Z m4Z

m5Z

〉
.

Also, given I ⊂ R3(Z) and k = 1, 2, 4, 5, we define

Ik = {ak : R = 〈h(R), ai〉 ∈ I}

and
Jh = {h(R) : R ∈ I}.
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Corollary 2.4.1. I is an ideal of R3(Z) if and only if

I =

〈 m1Z
m2Z m3Z m4Z

m5Z

〉

for some integers m1,m2, . . . ,m5 and mk|m3 for every k.

Proof. Though the proof follows from the Theorem 2.2, we give the direct proof. One way proof
follows by noting in the following product that mi | (a3mibi + m3b3ai) because mi | m3, for

every i = 1, 2, 4, 5 and a1, . . . , a5, b1, . . . , b5 ∈ Z, where A =

〈 a1
a2 a3 a4

a5

〉
∈ R3(Z) and

B =

〈 m1b1
m2b2 m3b3 m4b4

m5b5

〉
∈ I.

〈 a1
a2 a3 a4

a5

〉〈 m1b1
m2b2 m3b3 m4b4

m5b5

〉

=

〈 a3m1b1 +m3b3a1
a3m2b2 +m3b3a2 a3m3b3 a3m4b4 +m3b3a4

a3m5b5 + a5m3b3

〉
.

Conversely, suppose I is an ideal ofR3(Z). Following the notations defined before the statement,
first we show that Jh as well as Ik (k = 1, 2, 4, 5) is an ideal of Z. We fix k ∈ {1, 2, 4, 5}. Let
a, b ∈ Ik. So, there are R1 = 〈h(R1), ai〉 ∈ I, R2 = 〈h(R2), bi〉 ∈ I such that a = ak, and
b = bk. Hence a − b = ak − bk ∈ Ik because R1 − R2 = 〈h(R1 − R2), ai − bi〉 ∈ I. Thus
Ik is a subgroup of Z. Similarly, Jh is also a subgroup of Z. Hence from the basic result of the
algebra and number theory, there are mi ∈ Z, (1 ≤ i ≤ 5) such that Ik = mkZ and Jh = m3Z.

Thus we conclude that the ideal I must be of the form I =

〈 m1Z
m2Z m3Z m4Z

m5Z

〉
. To settle the

final claim, we note that

〈 m3

m3 m3 m3

m3

〉
=

〈 1

1 1 1

1

〉〈 0

0 m3 0

0

〉
∈ I. This shows that

mk | m3 for every k.

Corollary 2.4.2.

I =

〈 m1Z
m2Z m3Z m4Z

m5Z

〉

with m1,m2, . . . ,m5 ∈ Z is a maximal ideal of R3(Z) if and only if m1,m2,m4,m5 ∈ {−1, 1}
and m3 is prime.
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Proof. One way it is clear that ifm1,m2,m4,m5 ∈ {−1, 1} andm3 is prime, then I is a maximal

ideal. Conversely, if mi 6∈ {±1} for some i = 1, 2, 4, 5, then I (

〈 Z
Z m3Z Z

Z

〉
( R3(Z).

This contradiction shows that m1,m2,m4,m5 ∈ {−1, 1}. Also if m3 is not prime, then choosing

a prime factor p of m3, we see that I (

〈 Z
Z pZ Z

Z

〉
( R3(Z). This confirms that m3 must be

prime. This completes the proof.

The following deals with the rhotrix algebraRn(F), where F is a field.

Corollary 2.4.3.

I =

〈 I1
I2 I3 I4
I5

〉

is an ideal of R3(F) if and only if for every 1 ≤ i ≤ 5 Ii is either {0} or F. Further, I is a
maximal ideal if and only if Ii = F for every i 6= 3 and I3 = {0}.

Proof. Arguing in the same way as in the Corollary 2.4.2 and replacing Z by F, we see that Ik are
the ideals of F for every k. Since the ideals of a field F are {0} and F only, the proof follows.

3 Rhotrix Banach algebras

We recall that a Banach algebra is a vector space A over R or C endowed with a complete norm
‖ · ‖ and a ring multiplication (x, y) ∈ A×A 7→ xy ∈ A satisfying, for all x, y, z ∈ Rn(C),

x(y + z) = xy + xz

(y + z)x = yx+ zx

α(xy) = (αx)y = x(αy)

‖xy‖ ≤ ‖x‖‖y‖
‖1‖ = 1.

We illustrate the concept of Banach algebras by means putting on record some standard
Banach algebras.

Example 3.1. 1. Cn with the coordinatewise operations and the following norm is a commutative
unital Banach algebra.

‖(z1, z2, z3 . . . , zn)‖∞ = max{|zi| : 1 ≤ i ≤ n}, (z1, z2, z3 . . . , zn) ∈ Cn.

2. Function Algebras
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(a) For a compact Hausdorff topological space X , let C(X) = {f : X → C : f is
continuous on X}. Then with the pointwise operations and the following norm (as
known as supnorm) C(X) is a commutative unital Banach algebra.

‖f‖∞ = sup{|f(x)| : x ∈ X}, (f ∈ C(X)).

(b) Let D = {z ∈ C : |z| ≤ 1} and A(D) = {f : D → C : f is analytic on the interior
of D and continuous on the boundary of D}. Then A(D) is a Banach algebra with
identity with the supnorm defined as follows.

‖f‖∞ = sup{|f(z)| : z ∈ D}, (f ∈ A(D)).

There are well known Banach algebras of operators on Hilbert spaces, sequence algebras and
algebras of differentiable functions on compact manifolds.

The present note gives a new class of Banach algebras, known as rhotrix algebras, that have
not yet appeared anywhere in the literature so far.

It is easy to see thatRn(C) is a vector space as well as a ring with heart based multiplication.
Note that the identity ofRn(C) is 1 = 〈h(1), ai〉, where h(1) = 1 and ai = 0 for every i.

Definition 3.2. Let n ∈ N. For 〈h(R), ai〉 ∈ Rn(C), we define the norm

‖〈h(R), ai〉‖ = |h(R)|+max
i
|ai|. (4)

Lemma 3.3. Rn(C) is a Banach algebra with the norm defined in (4).

Proof. Clearly, ‖·‖ is a vector space norm onRn(C), i.e., for R1, R2 ∈ Rn(C), and α ∈ C,

‖R1‖ ≥ 0 and ‖R1‖ = 0 iff R1 = 0

‖R1 +R2‖ ≤ ‖R1‖+ ‖R2‖
‖αR1‖ = |α|‖R1‖.

To prove the submultiplicativity of the norm, let R1 = 〈h(R1), ai〉, R2 = 〈h(R2), bi〉 ∈ Rn(C).
Then

‖R1R2‖ = |h(R1)h(R2)|+max
i
{|h(R1)bi + h(R2)ai|}

≤ |h(R1)||h(R2)|+max
i
{|h(R1)bi|+ |h(R2)ai|}

≤ |h(R1)||h(R2)|+max
i
{|h(R1)bi|}+max

i
{|h(R2)ai|}

= |h(R1)||h(R2)|+ |h(R1)|max
i
{|bi|}+ |h(R2)|max

i
{|ai|}

≤ |h(R1)||h(R2)|+ |h(R1)|max
i
{|bi|}+ |h(R2)|max

i
{|ai|}

+max
i
{|ai|}max

i
{|bi|}

= |h(R1)|(|h(R2)|+max
i
{|bi|}) + max

i
{|ai|}(|h(R2)|+max

i
{|bi|})

= (|h(R1)|+max
i
{|ai|})(|h(R2)|+max

i
{|bi|})

= ‖R1‖‖R2‖.

This completes the proof.
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We demonstrate the computations in the following example.

Example 3.4. Let R1 =

〈 1

1 2 1

1

〉
and R2 =

〈 5

1 1 1

1

〉
. Then

R1R2 =

〈 2× 5 + 1× 1

2× 1 + 1× 1 2× 1 2× 1 + 1× 1

2× 1 + 1× 1

〉

=

〈 11

3 2 3

3

〉
.

Also,

‖R1‖ = |2|+max{1, 1, 1, 1} = 3

‖R2‖ = |1|+max{5, 1, 1, 1} = 6

‖R1R2‖ = |2|+max{11, 3, 3, 3} = 13.

Hence,
‖R1R2‖ ≤ ‖R1‖‖R2‖.

Remark 3.5. The most natural supnorm is not carried over to Rn(C) because of its heart based
multiplication. In fact the submultiplicativity of supnorm fails as can be seen from the following.

For rhotrix R1 = 〈h(R1), ai〉 ∈ R3(C), consider the most natural candidate as a norm on

Rn(C),

∥∥∥∥∥∥∥
〈 a1
a2 a3 a4

a5

〉∥∥∥∥∥∥∥
∞

= max |ai|. Let R1 =

〈 1

1 2 1

1

〉
and R2 =

〈 5

1 1 1

1

〉
. Then

‖R1R2‖∞ = 11, whereas ‖R1‖∞‖R2‖∞ = 10. Thus submultiplicativity fails. As already noted
in the Corollary 2.4.3,Rn(C) has only one maximal ideal, that is,

I = {R ∈ Rn(C) : h(R) = 0}.

Using the one-to-one correspondence between the maximal ideals of a Banach algebra and its
multiplicative linear functionals, we conclude the following.

Theorem 3.6. Rn(C) admits only one multiplicative linear functional, viz. ϕ : Rn(C) → C,
defined by ϕ(R) = h(R), (R ∈ Rn(C)).
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