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1 Introduction

Throughout this paper, we let (a,b) denote the greatest common divisor of any two integers a

and b. Let
T
o= 11w
i=1
be the prime factorization of the positive integer n > 1, where r, e1, eo, . . . , €, are positive integers
and pq, po, . . ., p, are different primes.

In recent years, many researchers have published many papers that have been the subject of
arithmetic functions (see e.g., [1-6]). In [1], Atanassov defined the following function:

,
mult(n) = H pi, mult(l) = 1.
i=1
The aim of this note is to define a new arithmetic function relative to a fixed positive integer «,

that can be considered a generalization of Atanassov’s function and discuss some of its properties.
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2 Main results

Let « be a positive integer. Then we define f,, to be the arithmetic function such that:

Hpﬁa), fa(l) =1, 1)

In particular, if a = 1, then (e;, ) = 1 forall (1 < <r). Thus
fi(n) = mult(n), foralln

For examples, see Table 1.

Let m be a positive integer such that m = H q;’, where s, f1, fo, ..., [s are positive integers

7=1
and q1,¢s,...,qs are different primes. If (m,n) = 1ie. (¢ # p; forall 1 < ¢ < r and

1 < j < s), then for all

quf] szw (m) fa(n).

On the other hand, if py, p2, and p3 are different primes, then for all o

fo(p1 - D3 ps) = pr - S - ps, while that fo (1 - p2) fa(p2 - p3) = p1 - D2 - ps.

Consequently, one can show that the function f,, is multiplicative but not completely multiplicative.

n ) )| n B0) B0 0 L) f0) ]| 0 fln) fi0)]
1 1 1 11 11 11 21 21 21 31 31 31
2 2 2 12 12 6 22 22 22 32 2 2
3 3 3 13 13 13 23 23 23 33 33 33
4 4 2 14 14 14 24 6 24 34 34 34
5) ) 5) 15 15 15 25 25 ) 35 35 35
6 6 6 16 4 2 26 26 26 36 36 6
7 7 7 17 17 17 27 3 27 37 37 37
8 2 8 18 18 6 28 28 14 38 38 38
9 9 3 19 19 19 29 29 29 39 39 39
10 10 10 20 20 10 30 30 30 40 10 40

Table 1. The first 40 values of f5 and fs.

It can be easily seen that 1 < f,(n) < n and f,(n)|n for all n > 1, since (e;, a) < e; for all
a. So, as a consequence f,(p) = p for all primes p. The following theorem distinguishes those
numbers that satisfy the equality: f,(n) = n (for all a).

Theorem 2.1. For any integer o« > 1, the square-free positive integers are the only integers
satisfying fo(n) = n.
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Proof. Clearly, if n is a square-free number, i.e., ¢, = e = --- = ¢, = 1, then f,(n) = n. Now
let n be such that f,(n) = n for all a. Thus

(e;,a) = ¢; forall o,
which is true only if e; = 1 for all 1 <17 < 7, i.e., only if n is a square-free number. ]

Corollary 2.1.1. Let « be a positive integer. Then for every n:

Jo(mult(n)) = mult(n) = mult(f(n)).

Proof. Tt is well known that mult(n) is a square-free number for every n, so by Theorem 2.1:

Jo(mult(n)) = mult(n).

On the other hand, we have

mult(f,(n)) = mult (H pge“o‘)> = Hpi = mult(n). O
i=1 i=1
Theorem 2.2. Let o and 3 be positive integers. Then for every n.:

fa(fs(n)) = fiap(n).

In particular, if (o, 5) = 1, then
fa(fs(n)) = mult(n).

Proof. For n = 1, the statement is true. If n > 1, then we have

fa(fﬁ(n)) = fa (fﬂ (Hp?))
i=1
= fa - pl(ez‘,ﬁ))
i
((es,8),a) (es,(B,2))
= p; = p;
=1l

= flap(n).

Let us suppose that («, ) = 1. Then
folfs(n)) = Hp,(ei’l) = Hpi = mult(n). O
i=1 i=1

Theorem 2.3. Let e = lcm(eq, ey, ..., e,.). Then f,(n) is a periodic function with period e as a

function of o, in other words:
fare(n) = fa(n), forall a.
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Proof. First of all, there exist r positive integers (ky, ko, ..., k) such that e = k;e; (1 <i <),
since ¢ = lem(eq, e, ..., e,). This means

(eh& + 6) = (eiack + k’zez) = (eiaa) (1 é { S 7’),

from which, we can get

fa+e H ciote) = sz('ei7a) = fa(n)- OJ
=1

Theorem 2.4. Let o and [3 be positive integers such that § = a3’ If (e;, ') = 1forall1 < i <,
then

fa(n) = fa(n).

Proof. We have
(61‘,/6) - (62‘,015,) = (61‘,05),
since (e;,5') =1 (1 <i <r). Thus

n) = [[p” = ]p" H Py O
i=1 i=1 i=1

Many mathematicians have been studied the perfect numbers and their generalizations with
the help of various arithmetic functions (see e.g., [7,8,11]). In [9, 10], some arithmetic functions
are used in characterizing generalized Mersenne primes. These primes are then used in the study
of class numbers of certain number fields (see [10]). Euler showed that all even perfect numbers
(EPN) are of the form 2P~'m, where m = 2P — 1 is a Mersenne prime. Also, Euler stated that
an odd perfect number (OPN), if it exists, must have the form p°m?, where p is a prime with
(p,m)=Tandp=e=1 (mod 4).

The next theorem gives the values of f; for perfect numbers.

Theorem 2.5. Let N > 6 be a perfect number. Then

4m if N =2P"'m isan EPN,
p-mult(m)? if N =p°m? isan OPN.

fz(N) = {

Proof. Let N = 2P~'m be an even perfect number. Then m = 2P — 1 is a Mersenne prime. But,
in order for m to be a prime, p must itself be a prime. Thus (p — 1,2) = 2, since N > 6, from
which we have

fo (2P7'm) = fo (2P71) fo(m) = 2(P=1.2)y — 4.

Let N = p°m? be an odd perfect number. Then (p, ) =landp = e = 1 (mod 4). So
(e,2) = 1. On the other hand, if m = []I_, p{’, then m? = [[_, p.“ and (2¢;,2) = 2 for all
(1 <4 <r). This means

falpm?®) = fo(p°) f “Q)H o) = (Hp) — p - mult(m)?. O
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3 Conclusion

In conclusion, we will mention, that in the second part we will study a new arithmetic function
relative to a fixed positive integer «, which will define by substituting the (e;, ) for the [e;, a] in
(1), where [e;, o is the least common multiple of « and ;.
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