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1 Introduction

Throughout this paper, we let (a, b) denote the greatest common divisor of any two integers a
and b. Let

n =
r∏
i=1

peii

be the prime factorization of the positive integer n > 1, where r, e1, e2, . . . , er are positive integers
and p1, p2, . . . , pr are different primes.

In recent years, many researchers have published many papers that have been the subject of
arithmetic functions (see e.g., [1–6]). In [1], Atanassov defined the following function:

mult(n) =
r∏
i=1

pi, mult(1) = 1.

The aim of this note is to define a new arithmetic function relative to a fixed positive integer α,
that can be considered a generalization of Atanassov’s function and discuss some of its properties.
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2 Main results

Let α be a positive integer. Then we define fα to be the arithmetic function such that:

fα(n) =
r∏
i=1

p
(ei,α)
i , fα(1) = 1. (1)

In particular, if α = 1, then (ei, α) = 1 for all (1 ≤ i ≤ r). Thus

f1(n) = mult(n), for all n.

For examples, see Table 1.

Let m be a positive integer such that m =
s∏
j=1

q
fj
j , where s, f1, f2, . . . , fs are positive integers

and q1, q2, . . . , qs are different primes. If (m,n) = 1 i.e., (qj 6= pi for all 1 ≤ i ≤ r and
1 ≤ j ≤ s), then for all α:

fα(mn) =
s∏
j=1

q
(fj ,α)
j

r∏
i=1

p
(ei,α)
i = fα(m)fα(n).

On the other hand, if p1, p2, and p3 are different primes, then for all α:

fα(p1 · p22 · p3) = p1 · p(2,α)2 · p3,while thatfα(p1 · p2)fα(p2 · p3) = p1 · p22 · p3.

Consequently, one can show that the function fα is multiplicative but not completely multiplicative.

n f2(n) f3(n) n f2(n) f3(n) n f2(n) f3(n) n f2(n) f3(n)

1 1 1 11 11 11 21 21 21 31 31 31

2 2 2 12 12 6 22 22 22 32 2 2

3 3 3 13 13 13 23 23 23 33 33 33

4 4 2 14 14 14 24 6 24 34 34 34

5 5 5 15 15 15 25 25 5 35 35 35

6 6 6 16 4 2 26 26 26 36 36 6

7 7 7 17 17 17 27 3 27 37 37 37

8 2 8 18 18 6 28 28 14 38 38 38

9 9 3 19 19 19 29 29 29 39 39 39

10 10 10 20 20 10 30 30 30 40 10 40

Table 1. The first 40 values of f2 and f3.

It can be easily seen that 1 < fα(n) ≤ n and fα(n)|n for all n > 1, since (ei, α) ≤ ei for all
α. So, as a consequence fα(p) = p for all primes p. The following theorem distinguishes those
numbers that satisfy the equality: fα(n) = n (for all α).

Theorem 2.1. For any integer α ≥ 1, the square-free positive integers are the only integers
satisfying fα(n) = n.
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Proof. Clearly, if n is a square-free number, i.e., e1 = e2 = · · · = er = 1, then fα(n) = n. Now
let n be such that fα(n) = n for all α. Thus

(ei, α) = ei for all α,

which is true only if ei = 1 for all 1 ≤ i ≤ r, i.e., only if n is a square-free number.

Corollary 2.1.1. Let α be a positive integer. Then for every n:

fα(mult(n)) = mult(n) = mult(fα(n)).

Proof. It is well known that mult(n) is a square-free number for every n, so by Theorem 2.1:

fα(mult(n)) = mult(n).

On the other hand, we have

mult(fα(n)) = mult

(
r∏
i=1

p
(ei,α)
i

)
=

r∏
i=1

pi = mult(n).

Theorem 2.2. Let α and β be positive integers. Then for every n:

fα(fβ(n)) = f(α,β)(n).

In particular, if (α, β) = 1, then
fα(fβ(n)) = mult(n).

Proof. For n = 1, the statement is true. If n > 1, then we have

fα(fβ(n)) = fα

(
fβ

(
r∏
i=1

peii

))

= fα

(
r∏
i=1

p
(ei,β)
i

)

=
r∏
i=1

p
((ei,β),α)
i =

r∏
i=1

p
(ei,(β,α))
i

= f(α,β)(n).

Let us suppose that (α, β) = 1. Then

fα(fβ(n)) =
r∏
i=1

p
(ei,1)
i =

r∏
i=1

pi = mult(n).

Theorem 2.3. Let e = lcm(e1, e2, . . . , er). Then fα(n) is a periodic function with period e as a
function of α, in other words:

fα+e(n) = fα(n), for all α.
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Proof. First of all, there exist r positive integers (k1, k2, . . . , kr) such that e = kiei (1 ≤ i ≤ r),
since e = lcm(e1, e2, . . . , er). This means

(ei, α+ e) = (ei, α+ kiei) = (ei, α) (1 ≤ i ≤ r),

from which, we can get

fα+e(n) =
r∏
i=1

p
(ei,α+e)
i =

r∏
i=1

p
(ei,α)
i = fα(n).

Theorem 2.4. Let α and β be positive integers such that β = αβ′. If (ei, β′) = 1 for all 1 ≤ i ≤ r,
then

fα(n) = fβ(n).

Proof. We have
(ei, β) = (ei, αβ

′) = (ei, α),

since (ei, β
′) = 1 (1 ≤ i ≤ r). Thus

fβ(n) =
r∏
i=1

p
(ei,β)
i =

r∏
i=1

p
(ei,αβ

′)
i =

r∏
i=1

p
(ei,α)
i = fα(n).

Many mathematicians have been studied the perfect numbers and their generalizations with
the help of various arithmetic functions (see e.g., [7, 8, 11]). In [9, 10], some arithmetic functions
are used in characterizing generalized Mersenne primes. These primes are then used in the study
of class numbers of certain number fields (see [10]). Euler showed that all even perfect numbers
(EPN) are of the form 2p−1m, where m = 2p − 1 is a Mersenne prime. Also, Euler stated that
an odd perfect number (OPN), if it exists, must have the form pem2, where p is a prime with
(p,m) = 1 and p ≡ e ≡ 1 (mod 4).

The next theorem gives the values of f2 for perfect numbers.

Theorem 2.5. Let N > 6 be a perfect number. Then

f2(N) =

{
4m if N = 2p−1m is an EPN,
p ·mult(m)2 if N = pem2 is an OPN.

Proof. Let N = 2p−1m be an even perfect number. Then m = 2p − 1 is a Mersenne prime. But,
in order for m to be a prime, p must itself be a prime. Thus (p − 1, 2) = 2, since N > 6, from
which we have

f2
(
2p−1m

)
= f2

(
2p−1

)
f2(m) = 2(p−1,2)m = 4m.

Let N = pem2 be an odd perfect number. Then (p,m) = 1 and p ≡ e ≡ 1 (mod 4). So
(e, 2) = 1. On the other hand, if m =

∏r
i=1 p

ei
i , then m2 =

∏r
i=1 p

2ei
i and (2ei, 2) = 2 for all

(1 ≤ i ≤ r). This means

f2(p
em2) = f2(p

e)f2(m
2) = p(e,2)

r∏
i=1

p
(2ei,2)
i = p

(
r∏
i=1

pi

)2

= p ·mult(m)2.
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3 Conclusion

In conclusion, we will mention, that in the second part we will study a new arithmetic function
relative to a fixed positive integer α, which will define by substituting the (ei, α) for the [ei, α] in
(1), where [ei, α] is the least common multiple of α and ei.
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