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1 Introduction

The quaternion algebra recently has played a significant role in several areas of science [1, 2]. It
is given by the Clifford algebra classifications Cl0,2(R) =̃ Cl03,0(R). In [17], Hamilton introduced
the set of quaternions which can be represented as

H = {q | q = q0 + q1i+ q2j + q3k , qs ∈ R, s = 0, 1, 2, 3}

where i2 = j2 = k2 = ijk = −1 and ij = k = −ji, jk = i = −kj, ki = j = −ik.
The number sequences have many applications in quaternion theory. The study of the

quaternions of sequences began with the earlier work of Horadam [19] where the Fibonacci
quaternion was investigated. There are several studies on different quaternions and their
generalizations, for example, [7, 9–13, 28].

In 1892, Segre introduced bicomplex numbers, which were similar to quaternions in many
algebraic properties [27]. In [4, 25], the authors defined the bicomplex Fibonacci, Lucas and Pell
numbers. And then, in [14], the author gave a generalization for bicomplex Fibonacci numbers.
Later, by using the bicomplex numbers, in [3, 5], Torunbalcı Aydın studied the bicomplex
Fibonacci quaternions. In [15, 16], the authors defined a new sequence with coefficients from
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the complex Fibonacci numbers. In [7], Catarino defined the bicomplex k-Pell quaternions and
gave some properties involving these quaternions. In [33], the authors defined the bicomplex
generalized k-Horadam quaternions.

In this paper, our aim is to continue the development of bicomplex numbers. Motivated by
the above papers, we introduce a new generalization of dual quaternions called dual bicomplex
Horadam quaternions, and we obtain Binet’s formula, generating functions, and summation
formula, as well as some other properties. The real part of dual bicomplex Fibonacci quaternions
was previously studied in [3] and dual part was defined in [6]. The results have been confirmed
once more and also have been given some properties of the dual bicomplex Fibonacci quaternions
by using [6] in this study. In [16], by using Binet formula, Halici and Çürük gave some
identities concerning newly defined numbers with complex Fibonacci coefficients. We will present
some of these identities with Fibonacci coefficients.

In the remaining part of this section, we give a brief summary about quaternions, bicomplex
numbers and dual numbers.

The set of bicomplex numbers, denoted byBC, forms a two-dimensional algebra over C, thus
the bicomplex numbers are an algebra over R of dimension four. A set of bicomplex numbers
forms a real vector space with addition and scalar multiplication operations. Also, the vector
space BC is a commutative algebra with the properties of multiplication and the product of
the bicomplex numbers, and is a real associative algebra with bicomplex product. Furthermore,
there are similarities in terms of some structures and properties between complex and bicomplex
numbers, but there are some differences. Bicomplex numbers form a commutative ring with unity
which contain the complex numbers [7, 22].

The set of bicomplex numbers is defined as follows:

BC = {z1 + z2j | z1, z2 ∈ C } ,

where j is an imaginary unit such that i2 = j2 = −1, ij = ji and C is the set of complex numbers
with i =

√
−1. Thus, the set of bicomplex numbers can be expressed by

BC = {q | q = a1 + a2i+ a3j + a4ij & a1, a2, a3, a4 ∈ R} .

Multiplication of basis elements of bicomplex numbers is given in the following Table 1.

× 1 i j ij

1 1 i j ij

i i −1 ij −j
j j ij −1 −i
ij ij −j −i 1

Table 1. Multiplication of imaginary units

Bicomplex numbers have three different conjugations (involutions), which are as follows:

q∗i = a1 − a2i+ a3j − a4ij,
q∗j = a1 + a2i− a3j − a4ij,
q∗ij = a1 − a2i− a3j + a4ij

188



for q = a1 + a2i + a3j + a4ij. The norms of the bicomplex numbers which arise from the
definitions of involutions are defined as

Nq∗i
= ‖q × q∗i ‖ =

√
|a21 + a22 − a23 − a24 + 2j (a1a3 + a2a4)|,

Nq∗j
=

∥∥q × q∗j∥∥ =
√
|a21 − a22 + a23 − a24 + 2i (a1a2 + a3a4)|,

Nq∗ij
=

∥∥q × q∗ij∥∥ =
√
|a21 + a22 + a23 + a24 + 2ij (a1a4 − a2a3)|.

Note that all of these norms are isotropic. For example, we calculate the norm Nq∗i
for

q = 1 + ij.
Nq∗i

= (1 + ij) (1− ij) = 12 − ij + ji− (ij)2 = 0.

Bicomplex numbers and quaternions are generalizations of complex numbers. But there are
some differences between them. We can list them as real quaternions are non-commutative, do not
have zero divisors and non-trivial idempotent elements, but bicomplex numbers are commutative,
have zero divisors and non-trivial idempotent elements:

ij = ji,

(i+ j) (i− j) = i2 − ij + ji− j2 = 0,(
1 + ij

2

)2

=
1 + ij

2
.

For details, we refer to [22, 26, 28]
Similarly, bicomplex quaternions are defined by the basis: {1, i, j, ij}

CQ
2 = {Q | Q = q1 + q2i+ q3j + q4ij & q1, q2, q3, q4 ∈ R} ,

where i2 = j2 = −1, ij = ji.
For any bicomplex quaternions Q = q1 + q2i+ q3j + q4ij and P = p1 + p2i+ p3j + p4ij, the

addition and multiplication of these bicomplex quaternions are given respectively by

Q+ P = (q1 + p1) + (q2 + p2) i+ (q3 + p3) j + (q4 + p4) ij

and

Q× P = (q1p1 − q2p2 − q3p3 − q4p4) + i (q1p2 + q2p1 − q3p4 − q4p3)
+j (q1p3 + q3p1 − q2p4 − q4p2) + ij (q1p4 + q4p1 + q2p3 + q3p2)

= P ×Q.

The dual number invented by Clifford [8] has the form A = a+εa∗, where a, a∗ real numbers
and ε is the dual unit such that ε 6= 0, ε2 = 0.

A dual quaternion is an extension of dual numbers. The dual quaternion is a Clifford algebra
that can be used to represent spatial rigid body displacements in mathematics and mechanics.
Rigid motions in 3-dimensional space can be represented by dual quaternions of unit length this
fact is used a theoretical kinematics and in applications to 3-dimensional computer graphics,
robotics and computer vision [23, 29, 32]. The dual quaternion is represented by: Q = q + εq∗,

where q and q∗ are quaternions and ε is the dual unit such that ε2 = 0, ε 6= 0. The dual quaternion
Q can be written as
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Q = (q0 + εq∗0) + i (q1 + εq∗1) + j (q2 + εq∗2) + k (q3 + εq∗3) ,

where q = q0+iq1+jq2+kq3 and q∗ = q∗0+iq
∗
1+jq

∗
2+kq

∗
3 . So the dual quaternion is constructed

by eight real parameters. In addition, the set of dual quaternions forms a noncommutative but
associative algebra over the real numbers. Further background on dual quaternions may be seen
in [17, 24].

2 Dual bicomplex Fibonacci quaternions

Our aim is to introduce a new generalization of dual quaternions and to give some properties for
the dual bicomplex Fibonacci quaternion, thus we will remind the some necessary definitions and
concepts.

The n-th dual Fibonacci and the n-th dual Lucas numbers are defined respectively by

F̃n = Fn + εFn+1, L̃n = Ln + εLn+1,

where Fn and Ln are the n-th Fibonacci and the n-th Lucas numbers.
In [3], the bicomplex Fibonacci quaternions are defined

Qn = Fn + iFn+1 + jFn+2 + ijFn+3

where i2 = −1, j2 = −1, ij = ji.
The dual bicomplex Fibonacci numbers are defined in [6] as follows

x̃n = F̃n + iF̃n+1 + jF̃n+2 + ijF̃n+3.

Definition 1. The dual bicomplex Fibonacci quaternions are defined

Q̃n = Qn + εQn+1 (1)

where Qn is the bicomplex Fibonacci quaternion and ε2 = 0, ε = (0, 1).

By using dual Fibonacci numbers F̃n, we get

Q̃n = F̃n + iF̃n+1 + jF̃n+2 + ijF̃n+3. (2)

From Definition 1, it is obvious that Q̃n+1 = Q̃n + Q̃n−1 with the initial conditions Q̃0 = ε +

i (1 + ε) + j (1 + 2ε) + ij (2 + 3ε) and Q̃1 = 1 + ε+ i (1 + 2ε) + j (2 + 3ε) + ij (3 + 5ε).
By taking into account definition and the addition, subtraction and multiplication and product

with a scalar of two dual bicomplex Fibonacci quaternions Q̃n and Q̃m are given by

Q̃n ∓ Q̃m = Qn ∓Qm + ε (Qn+1 ∓Qm+1)

= (Fn ∓ Fm) + i (Fn+1 ∓ Fm+1) + j (Fn+2 ∓ Fm+2) + ij (Fn+3 ∓ Fm+3)

+ ε ((Fn+1 ∓ Fm+1) + i (Fn+2 ∓ Fm+2) + j (Fn+3 ∓ Fm+3) + ij (Fn+4 ∓ Fm+4)) ,

Q̃nQ̃m = QnQm + ε (QnQm+1 +Qn+1Qm) = Q̃mQ̃n.
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The different conjugates of dual bicomplex Fibonacci quaternion Q̃n are presented as in [6]:(
Q̃n

)∗
i
= F̃n − iF̃n+1 + jF̃n+2 − ijF̃n+3,(

Q̃n

)∗
j
= F̃n + iF̃n+1 − jF̃n+2 − ijF̃n+3,(

Q̃n

)∗
ij
= F̃n − iF̃n+1 − jF̃n+2 + ijF̃n+3.

Note that by the equation (2) and the conjugates of Q̃n, the desired results are found.

Theorem 2.1. Let
(
Q̃n

)∗
i
,
(
Q̃n

)∗
j

and
(
Q̃n

)∗
ij

be the conjugates of dual bicomplex Fibonacci

quaternion. We can give the following relations:

Q̃n

(
Q̃n

)∗
i
= −L̃2n+3 + 2jF̃2n+3 + ε (2jF2n+4 − L2n+4) ,

Q̃n

(
Q̃n

)∗
j
= −F̃2n+3 + 2iF̃2n+2 − 2Fn−1Fn+2 + 2iF 2

n+2 (1 + ε) + ε2iF2n+5 − F2n+4 − 4F 2
n+1,

Q̃n

(
Q̃n

)∗
ij
= 3F̃2n+3 + 3εF2n+4 + 2ij (−1)n+1 (1 + ε) .

Proof. Using the equationsFnFm+Fn+1Fm+1 = Fn+m+1 andFmFn+1−Fm+1Fn = (−1)n+1Fm−n,
we have

Q̃n

(
Q̃n

)∗
i
= F̃ 2

n + F̃ 2
n+1 − F̃ 2

n+2 − F̃ 2
n+3 + 2j

(
F̃nF̃n+2 + F̃n+1F̃n+3

)
= F 2

n + F 2
n+1 − F 2

n+2 − F 2
n+3 + 2ε (FnFn+1 + Fn+1Fn+2 − Fn+2Fn+3 − Fn+3Fn+4)

+ 2j [(FnFn+2 + Fn+1Fn+3) + ε (Fn+1Fn+2 + FnFn+3 + Fn+2Fn+3 + Fn+1Fn+4)]

= F2n+1 − F2n+5 + 2ε (F2n+2 − F2n+6) + 2j (F2n+3 + 2εF2n+4)

= −L2n+3 − 2εL2n+4 + 2j (F2n+3 + 2εF2n+4)

= −L̃2n+3 + 2jF̃2n+3 + ε (2jF2n+4 − L2n+4)

Q̃n

(
Q̃n

)∗
j
= F̃ 2

n − F̃ 2
n+1 + F̃ 2

n+2 − F̃ 2
n+3 + 2i

(
F̃nF̃n+1 + F̃n+2F̃n+3

)
= F 2

n − F 2
n+1 + F 2

n+2 − F 2
n+3 + 2ε (FnFn+1 − Fn+1Fn+2 + Fn+2Fn+3 − Fn+3Fn+4)

+ 2i [(FnFn+1 + Fn+2Fn+3) + ε (Fn+1Fn+1 + FnFn+2 + Fn+2Fn+4 + Fn+3Fn+3)]

= −F2n+3 − 2Fn−1Fn+2 + 2ε (−F2n+4 − 2Fn+1Fn+1)

+ 2i (F2n+2 + Fn+2Fn+2 + ε (F2n+3 + F2n+5 + Fn+2Fn+2))

= −F̃2n+3 + 2iF̃2n+2 − 2Fn−1Fn+2 + 2iF 2
n+2 (1 + ε) + ε

(
2iF2n+5 − F2n+4 − 4F 2

n+1

)
Q̃n

(
Q̃n

)∗
ij
= F̃ 2

n + F̃ 2
n+1 + F̃ 2

n+2 + F̃ 2
n+3 + 2ij

(
F̃nF̃n+3 − F̃n+1F̃n+2

)
= F 2

n + F 2
n+1 + F 2

n+2 + F 2
n+3 + 2ε (FnFn+1 + Fn+1Fn+2 + Fn+2Fn+3 + Fn+3Fn+4)

+ 2ij (FnFn+3 − Fn+1Fn+2 + ε (FnFn+4 − Fn+2Fn+2))

= F2n+1 + F2n+5 + 2ε (F2n+2 + F2n+6) + 2ij (−1)n+1 (1 + ε)

= 3F2n+3 + 6εF2n+4 + 2ij (−1)n+1 (1 + ε)

= 3F̃2n+3 + 3εF2n+4 + 2ij (−1)n+1 (1 + ε) .
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Theorem 2.2. For the Lucas number Ln and the dual bicomplex Fibonacci quaternion with
negative indices Q̃−n, we have Q̃−n = (−1)n+1 Q̃n + (−1)n LnQ̃0.

Proof. By using the identity F−n = (−1)n+1 Fn [21], we obtain

Q̃−n = F̃−n + F̃−n+1i+ F̃−n+2j + F̃−n+3ij

= F̃−n + F̃−(n−1)i+ F̃−(n−2)j + F̃−(n−3)ij

= (−1)n+1 Fn + (−1)n Fn−1i+ (−1)n−1 Fn−2j + (−1)n−2 Fn−3ij

+ ε((−1)n Fn−1 + (−1)n−1 Fn−2i+ (−1)n−2 Fn−3j + (−1)n−3 Fn−4ij)

= (−1)n+1 (Fn + Fn+1i+ Fn+2j + Fn+3ij) + (−1)n Fn−1i− (−1)n+1 Fn+1i

+ (−1)n−1 Fn−2j − (−1)n+1 Fn+2j + (−1)n−2 Fn−3ij − (−1)n+1 Fn+3ij

+ ε
(
(−1)n+1 (Fn+1 + Fn+2i+ Fn+3j + Fn+4ij)

)
+ ε((−1)n Fn−1 − (−1)n+1 Fn+1

+ (−1)n−1 Fn−2i− (−1)n+1 Fn+2i+ (−1)n−2 Fn−3j − (−1)n+1 Fn+3j

+ (−1)n−3 Fn−4ij − (−1)n+1 Fn+4ij)

= (−1)n+1 (Fn + Fn+1i+ Fn+2j + Fn+3ij) + (−1)n ((Fn−1 + Fn+1) i+ (Fn+2 − Fn−2) j

+ (Fn−3 + Fn+3) ij) + ε (−1)n+1 (Fn+1 + Fn+2i+ Fn+3j + Fn+4ij)

+ ε((−1)n (Fn−1 + Fn+1) + (−1)n (Fn+2 − Fn−2) i

+ (−1)n (Fn−3 + Fn+3) j + (−1)n (Fn+4 − Fn−4) ij)

= (−1)n+1 Q̃n + (−1)n Ln (i+ j + 2ij) + ε (−1)n Ln (1 + i+ 2j + 3ij)

= (−1)n+1 Q̃n + (−1)n LnQ̃0

Theorem 2.3. Let Q̃n be the dual bicomplex Fibonacci quaternion. Then, we have the following
relations(

Q̃n

)2
= F̃2n+3 (1− 2i+ 2j + 2ij) + εF2n+4 (1− 2i− 2j + 2ij)− 4Fn+1Fn+3 (1 + ε) j

− 2Fn−1Fn+1 (1 + ε) ij − 2ijεF2n,

(
Q̃n

)2
+
(
Q̃n+1

)2
=− 2Q̃2n+2 + F̃2n+4 (3 + 4ij) + 2F̃2n+5 (−i+ ij)

+ 2εF2n+5 (−i− j + 4ij)− 4εF2n+4i,

(
Q̃n+1

)2
−
(
Q̃n−1

)2
= 2Q̃2n+1 +

(
2F̃2n+2 + F̃2n

)
(1− 2i− 2j) + 2ijF̃2n+1

+ ε2F2n+4 (1− 2i− j + 2ij) + εF2n+1 (1− 2i)− 2iL̃2n+3 − 2jL̃2n.

Proof. From the definition of Q̃n and equation (2), we have(
Q̃n

)2
=
(
F̃ 2
n − F̃ 2

n+1 − F̃ 2
n+2 + F̃ 2

n+3

)
+ 2i

(
F̃nF̃n+1 − F̃n+2F̃n+3

)
+ 2j

(
F̃nF̃n+2 − F̃n+1F̃n+3

)
+ 2ij

(
F̃nF̃n+3 + F̃n+1F̃n+2

)
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= F 2
n − F 2

n+1 − F 2
n+2 + F 2

n+3 + 2ε (FnFn+1 − Fn+1Fn+2 − Fn+2Fn+3 + Fn+3Fn+4)

+ 2i (FnFn+1 − Fn+2Fn+3 + ε (FnFn+2 + Fn+1Fn+1 − Fn+2Fn+4 − Fn+3Fn+3))

+ 2j (FnFn+2 − Fn+1Fn+3 + ε (FnFn+3 + Fn+1Fn+2 − Fn+1Fn+4 − Fn+2Fn+3))

+ 2ij (FnFn+3 + Fn+1Fn+2 + ε (FnFn+4 + Fn+1Fn+3 + Fn+1Fn+3 + Fn+2Fn+2))

= F̃2n+3 + εF2n+4 − 2i
(
F̃2n+3 + εF2n+4

)
+ 2j

(
F̃2n+3 − 2Fn+1Fn+3 (1 + ε)

)
+ 2ij

(
F̃2n+3 − Fn−1Fn+1

)
− 2jεF2n+4 + 2ijε (F2n+4 − F2n)− 2ijεFn−1Fn+1

= F̃2n+3 (1− 2i+ 2j + 2ij) + εF2n+4 (1− 2i− 2j + 2ij)− 4jFn+1Fn+3 (1 + ε)

− 2ijFn−1Fn+1 (1 + ε)− 2ijεF2n,

(
Q̃n

)2
+
(
Q̃n+1

)2
=
(
F̃ 2
n − 2F̃ 2

n+2 + F̃ 2
n+4

)
+ 2i

(
F̃nF̃n+1 + F̃n+1F̃n+2 − F̃n+2F̃n+3 − F̃n+3F̃n+4

)
+ 2j

(
F̃nF̃n+2 − F̃n+2F̃n+4

)
+ 2ij

(
F̃nF̃n+3 + F̃n+1F̃n+4 + F̃n+1F̃n+2 + F̃n+2F̃n+3

)
= F̃2n+6 − F̃2n+2 + ε (F2n+7 − F2n+3) + 2i

(
F̃2n+2 − F̃2n+6 + ε (F2n+3 − F2n+7)

)
− 2j

(
F̃2n+4 + εF2n+5

)
+ 4ij

(
F̃2n+4 + εF2n+5

)
= −2Q̃2n+2 + F̃2n+4 (3 + 4ij) + 2F̃2n+5 (−i+ ij) + εF2n+5 (1− 2i− 2j + 4ij)

+ 2εF2n+4 (1− 2i) ,

(
Q̃n+1

)2
−
(
Q̃n−1

)2
=
(
F̃ 2
n+1 − F̃ 2

n+2 − F̃ 2
n+3 + F̃ 2

n+4

)
−
(
F̃ 2
n−1 − F̃ 2

n − F̃ 2
n+1 + F̃ 2

n+2

)
+ 2i

(
F̃n+1F̃n+2 − F̃n+3F̃n+4 − F̃n−1F̃n + F̃n+1F̃n+2

)
+ 2j

(
F̃n+1F̃n+3 − F̃n+2F̃n+4 − F̃n−1F̃n+1 + F̃nF̃n+2

)
+ 2ij

(
F̃n+1F̃n+4 + F̃n+2F̃n+3 − F̃n−1F̃n+2 − F̃nF̃n+1

)
= F2n+5 − F2n+1 + 2ε (F2n+6 − F2n+2)

+ 2i (−F2n+5 + F2n+1 + 2ε (−F2n+6 + F2n+2))

+ 2j (−F2n+3 − 2εF2n+4) + 2ij (F2n+4 + F2n+1 + 2ε (F2n+5 + F2n+2))

= 2Q̃2n+1 + 2F̃2n+2 + F̃2n + 2i
(
−2F̃2n+2 − F̃2n − F̃2n+2 − 2F̃2n+1

)
+ 2j

(
−2F̃2n+2 − F̃2n − F̃2n+1 − F̃2n−1

)
+ 2ij

(
F̃2n+1

)
+ ε ((F2n+6 − F2n+2) (1− 2i) + εF2n+4 (−2j + 4ij))

= 2Q̃2n+1 +
(
2F̃2n+2 + F̃2n

)
(1− 2i− 2j) + 2ijF̃2n+1

+ ε2F2n+4 (1− 2i− j + 2ij) + εF2n+1 (1− 2i)− 2iL̃2n+3 − 2jL̃2n.
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Theorem 2.4. Let Q̃n be the dual bicomplex Fibonacci quaternion. Then, we have the following
identities n∑

s=1

Q̃s = Q̃n+2 − Q̃2,

n∑
s=1

Q̃2s−1 = Q̃2n − Q̃0,

n∑
s=1

Q̃2s = Q̃2n+1 − Q̃1.

Proof. From the summation formula
∑n

s=k Fs = Fn+2 − Fk+1 [13], we get
n∑
s=1

Q̃s =
n∑
s=1

F̃s + i
n∑
s=1

F̃s+1 + j
n∑
s=1

F̃s+2 + ij
n∑
s=1

F̃s+3

=
n∑
s=1

Fs + i
n∑
s=1

Fs+1 + j
n∑
s=1

Fs+2 + ij
n∑
s=1

Fs+3

+ε

(
n∑
s=1

Fs+1 + i

n∑
s=1

Fs+2 + j

n∑
s=1

Fs+3 + ij

n∑
s=1

Fs+4

)
= (Fn+2 − F2) + i (Fn+3 − F3) + j (Fn+4 − F4) + ij (Fn+5 − F5)

+ε [(Fn+3 − F3) + i (Fn+4 − F4) + j (Fn+5 − F5) + ij (Fn+6 − F6)]

= (Fn+2 + iFn+3 + jFn+4 + ijFn+5) + ε (Fn+3 + iFn+4 + jFn+5 + ijFn+6)

− (F2 + iF3 + jF4 + ijF5)− ε (F3 + iF4 + jF5 + ijF6)

= (Fn+2 + εFn+3) + i (Fn+3 + εFn+4) + j (Fn+4 + εFn+5) + ij (Fn+5 + εFn+6)

− [(F2 + εF3) + i (F3 + εF4) + j (F4 + εF5) + ij (F5 + εF6)]

= Q̃n+2 − Q̃2.

By using summation formulas
∑n

s=1 F2s−1 = F2n − F0 and
∑n

s=1 F2s = F2n+1 − F1, we get
n∑
s=1

Q̃2s−1 =
n∑
s=1

F̃2s−1 + i
n∑
s=1

F̃2s + j
n∑
s=1

F̃2s+1 + ij
n∑
s=1

F̃2s+2

= F2n − F0 + i (F2n+1 − F1) + j (F2n+2 − F2) + ij (F2n+3 − F3)

+ ε [(F2n+1 − F1) + i (F2n+2 − F2) + j (F2n+3 − F3) + ij (F2n+4 − F4)]

= (F2n + εF2n+1) + i (F2n+1 + εF2n+2) + j (F2n+2 + εF2n+3) + ij (F2n+3 + εF2n+4)

− [(F0 + εF1) + i (F1 + εF2) + j (F2 + εF3) + ij (F3 + εF4)]

= Q̃2n − Q̃0.

Similarly, we obtain that
n∑
s=1

Q̃2s =
n∑
s=1

F̃2s + i

n∑
s=1

F̃2s+1 + j

n∑
s=1

F̃2s+2 + ij

n∑
s=1

F̃2s+3

= F2n+1 − F1 + i (F2n+2 − F2) + j (F2n+3 − F3) + ij (F2n+4 − F4)

+ ε [(F2n+2 − F2) + i (F2n+3 − F3) + j (F2n+4 − F4) + ij (F2n+5 − F5)]

= (F2n+1 + εF2n+2) + i (F2n+2 + εF2n+3) + j (F2n+3 + εF2n+4) + ij (F2n+4 + εF2n+5)

− [(F1 + εF2) + i (F2 + εF3) + j (F3 + εF4) + ij (F4 + εF5)]

= Q̃2n+1 − Q̃1.
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Theorem 2.5. Let Q̃n and Q̃m be the dual bicomplex Fibonacci quaternions. For n, m ≥ 0, the
Honsberger identity is given as follow;

Q̃nQ̃m+Q̃n+1Q̃m+1 = 2Q̃n+m+1+2Fn+m+4−Fn+m+1−2iFn+m+6−2jFn+m+5+2ijFn+m+4+

ε (4Fn+m+5 − 6iFn+m+6 − 2jFn+m+7 + 6ijFn+m+5) .

Proof. By using the equation FnFm + Fn+1Fm+1 = Fn+m+1, we have

Q̃nQ̃m + Q̃n+1Q̃m+1

=
(
F̃n + iF̃n+1 + jF̃n+2 + ijF̃n+3

)(
F̃m + iF̃m+1 + jF̃m+2 + ijF̃m+3

)
+
(
F̃n+1 + iF̃n+2 + jF̃n+3 + ijF̃n+4

)(
F̃m+1 + iF̃m+2 + jF̃m+3 + ijF̃m+4

)
= [(Fn + iFn+1 + jFn+2 + ijFn+3) + ε (Fn+1 + iFn+2 + jFn+3 + ijFn+4)]

[(Fm + iFm+1 + jFm+2 + ijFm+3) + ε (Fm+1 + iFm+2 + jFm+3 + ijFm+4)]

+ [(Fn+1 + iFn+2 + jFn+3 + ijFn+4) + ε (Fn+2 + iFn+3 + jFn+4 + ijFn+5)]

[(Fm+1 + iFm+2 + jFm+3 + ijFm+4) + ε (Fm+2 + iFm+3 + jFm+4 + ijFm+5)]

= (Fn + iFn+1 + jFn+2 + ijFn+3) (Fm + iFm+1 + jFm+2 + ijFm+3)

+ (Fn+1 + iFn+2 + jFn+3 + ijFn+4) (Fm+1 + iFm+2 + jFm+3 + ijFm+4)

+ ε((Fn + iFn+1 + jFn+2 + ijFn+3) (Fm+1 + iFm+2 + jFm+3 + ijFm+4)

+ (Fn+1 + iFn+2 + jFn+3 + ijFn+4) (Fm + iFm+1 + jFm+2 + ijFm+3)

+ (Fn+1 + iFn+2 + jFn+3 + ijFn+4) (Fm+2 + iFm+3 + jFm+4 + ijFm+5)

+ (Fn+2 + iFn+3 + jFn+4 + ijFn+5) (Fm+1 + iFm+2 + jFm+3 + ijFm+4))

= Fn+m+1 − Fn+m+3 − Fn+m+5 + Fn+m+7

+ 2i (Fn+m+2 − Fn+m+6) + 2j (Fn+m+3 − Fn+m+5) + 4ijFn+m+4

+ 2ε((Fn+m+2 − Fn+m+4 − Fn+m+6 + Fn+m+8)

+ 2i (Fn+m+3 − Fn+m+7) + 2j (Fn+m+4 − Fn+m+6) + 4ijFn+m+5)

= 2Fn+m+1 + 2iFn+m+2 + 2jFn+m+3 + 2ijFn+m+4 + 2Fn+m+4

− Fn+m+1 − 2iFn+m+6 − 2jFn+m+5 + 2ijFn+m+4

+ ε (2Fn+m+2 + 2iFn+m+3 + 2jFn+m+4 + 2ijFn+m+5)

+ ε (4Fn+m+5 − 6iFn+m+6 − 2jFn+m+7 + 6ijFn+m+5)

= 2Q̃n+m+1 + 2Fn+m+4 − Fn+m+1 − 2iFn+m+6 − 2jFn+m+5

+ 2ijFn+m+4 + ε (4Fn+m+5 − 6iFn+m+6 − 2jFn+m+7 + 6ijFn+m+5) .

Theorem 2.6. For n, m ≥ 0 the d’Ocagne’s identity for the dual bicomplex Fibonacci quater-
nions Q̃n and Q̃m is given by

Q̃mQ̃n+1 − Q̃m+1Q̃n = 3 (−1)n Fm−n (2j + ij) (1 + ε) .

Proof. By using the d’Ocagne’s identity for Fibonacci number [31]

FmFn+1 − Fm+1Fn = (−1)n Fm−n, FmFn − Fm+rFn−r = (−1)n−r Fm+r−nFr,

we have
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Q̃mQ̃n+1 − Q̃m+1Q̃n

= (Qm + εQm+1) (Qn+1 + εQn+2)− (Qm+1 + εQm+2) (Qn + εQn+1)

= QmQn+1 −Qm+1Qn + ε (QmQn+2 −Qm+2Qn)

= (Fm + iFm+1 + jFm+2 + ijFm+3) (Fn+1 + iFn+2 + jFn+3 + ijFn+4)

− (Fm+1 + iFm+2 + jFm+3i2 + ijFm+4) (Fn + iFn+1 + jFn+2 + ijFn+3)

+ ε((Fm + iFm+1 + jFm+2 + ijFm+3) (Fn+2 + iFn+3 + jFn+4 + ijFn+5)

− (Fm+2 + iFm+3 + jFm+4 + ijFm+5) (Fn + iFn+1 + jFn+2 + ijFn+3))

= (FmFn+1 − Fm+1Fn)− (Fm+1Fn+2 − Fm+2Fn+1)

− (Fm+2Fn+3 − Fm+3Fn+2) + (Fm+3Fn+4 − Fm+4Fn+3)

+ i((FmFn+2 − Fm+1Fn+1) + (Fm+1Fn+1 − Fm+2Fn)

− (Fm+2Fn+4 − Fm+3Fn+3)− (Fm+3Fn+3 − Fm+4Fn+2))

+ j((FmFn+3 − Fm+1Fn+2) + (Fm+2Fn+1 − Fm+3Fn)

− (Fm+1Fn+4 − Fm+2Fn+3)− (Fm+3Fn+2 − Fm+4Fn+1))

+ ij((FmFn+4 − Fm+1Fn+3) + (Fm+3Fn+1 − Fm+4Fn)

+ (Fm+1Fn+3 − Fm+2Fn+2) + (Fm+2Fn+2 − Fm+3Fn+1))

+ ε((FmFn+2 − Fm+2Fn)− (Fm+1Fn+3 − Fm+3Fn+1)

− (Fm+2Fn+4 − Fm+4Fn+2) + (Fm+3Fn+5 − Fm+5Fn+3)

+ i((FmFn+3 − Fm+2Fn+1) + (Fm+1Fn+2 − Fm+3Fn)

− (Fm+2Fn+5 − Fm+4Fn+3)− (Fm+3Fn+4 − Fm+5Fn+2))

+ j((FmFn+4 − Fm+4Fn)− (Fm+1Fn+5 − Fm+5Fn+1))

+ ij((FmFn+5 − Fm+5Fn) + (Fm+1Fn+4 − Fm+4Fn+1)))

= (−1)n (Fm−n − (−1)Fm−n − (−1)2 Fm−n + (−1)3 Fm−n

+ i((−1)Fm−n−1 + Fm−n+1 − (−1)3 Fm−n−1 − (−1)2 Fm−n+1)

+ j((−1)2 Fm−n−2 + Fm−n+2 − (−1)3 Fm−n−2 + Fm−n+2)

+ ij((−1)3 Fm−n−3 + Fm−n+3 + (−1)2 Fm−n−1 + (−1)Fm−n+1)

+ ε(Fm−n − (−1)Fm−n − (−1)2 Fm−n + (−1)3 Fm−n

+ i((−1)Fm−n−1 + Fm−n+1 − (−1)3 Fm−n−1 − (−1)2 Fm−n+1)

+ j(3Fm−n − 3 (−1)Fm−n) + ij(5Fm−n + 2 (−1)Fm−n)))

= 3 (−1)n Fm−n (2j + ij) (1 + ε) .

In [16], Halici and Çürük gave the Binet formula of the dual Fibonacci bicomplex numbers
with complex coefficient. We now give this formula for bicomplex quaternion versions of
Fibonacci sequences.

Theorem 2.7. Let Q̃n be the dual bicomplex Fibonacci quaternion. For n ≥ 1, Binet’s formula
is given as follows:

Q̃n =
α∗αn − β∗βn

α− β
,

where α∗ = α̂ (1 + εα), β∗ = β̂ (1 + εβ) and α̂ = 1+ iα+ jα2+ ijα3, β̂ = 1+ iβ+ jβ2+ ijβ3.
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Proof. In [3], Torunbalcı Aydın gave the Binet’s formula for bicomplex Fibonacci quaternion by

Qn =
α̂αn − β̂βn

α− β
. (3)

So by using the equations (1) and (3), we obtain

Q̃n = Qn + εQn+1

=
α̂αn − β̂βn

α− β
+ ε

α̂αn+1 − β̂βn+1

α− β

=
α̂αn (1 + εα)− β̂βn (1 + εβ)

α− β

=
α∗αn − β∗βn

α− β
.

Theorem 2.8. Let Q̃n be the dual bicomplex Fibonacci quaternion. For n ≥ 1, the Cassini’s
identity for Q̃n is given as Q̃n−1Q̃n+1 − Q̃2

n = 3 (−1)n (2j + ij) (1 + ε) .

Proof. By using the d’Ocagne’s identity for Fibonacci numbers which is FmFn+1 − Fm+1Fn =

(−1)n Fm−n and the equation (1), we obtain

Q̃n−1Q̃n+1 − Q̃2
n

= (Qn−1 + εQn) (Qn+1 + εQn+2)− (Qn + εQn+1)
2

= Qn−1Qn+1 −Q2
n + ε (Qn−1Qn+2 −QnQn+1)

= Fn−1Fn+1 − FnFn+2 − Fn+1Fn+3 + Fn+2Fn+4 − F 2
n + F 2

n+1 + F 2
n+2 − F 2

n+3

+ i (Fn−1Fn+2 + FnFn+1 − Fn+1Fn+4 − Fn+2Fn+3 − 2FnFn+1 + 2Fn+2Fn+3)

+ j (Fn−1Fn+3 + Fn+1Fn+1 − FnFn+4 − Fn+2Fn+2 − 2FnFn+2 + 2Fn+1Fn+3)

+ ij (Fn−1Fn+4 + Fn+1Fn+2 + FnFn+3 + Fn+1Fn+2 − 2FnFn+3 − 2Fn+1Fn+2)

+ ε[(Fn−1Fn+2 − FnFn+1)− (FnFn+3 − Fn+1Fn+2)− (Fn+1Fn+4 − Fn+2Fn+3)

+ (Fn+2Fn+5 − Fn+3Fn+4) + i((Fn−1Fn+3 − FnFn+2) + (FnFn+2 − Fn+1Fn+1)

− (Fn+1Fn+5 − Fn+2Fn+4)− (Fn+2Fn+4 − Fn+3Fn+3)) + j((Fn−1Fn+4 − FnFn+3)

− (FnFn+5 − Fn+1Fn+4) + (Fn+1Fn+2 − Fn+2Fn+1)− (Fn+2Fn+3 − Fn+3Fn+2))

+ ij((Fn−1Fn+5 − FnFn+4) + (FnFn+4 − Fn+1Fn+3) + (Fn+1Fn+3 − Fn+2Fn+2)

+ (Fn+2Fn+2 − Fn+3Fn+1))]

= (−1)n F−1 − (−1)n+1 F−1 − (−1)n+2 F−1 + (−1)n+3 F−1

+ i((−1)n+1 F−2 − (−1)n+3 F−2) + j((−1)n+2 F−3

+ (−1)n F1 − (−1)n+3 F−3 − (−1)n+1 F1) + ij (−1)n+3 F−4

ε((−1)n+1 F−2 − (−1)n+2 F−2 − (−1)n+3 F−2 + (−1)n+4 F−2

+ i((−1)n+2 F−3 + (−1)n+1 F−1 − (−1)n+4 F−3 − (−1)n+3 F−1)

+ j((−1)n+3 F−4 − (−1)n+4 F−4) + ij((−1)n+4 F−5

+ (−1)n+3 F−3 + (−1)n+2 F−1 + (−1)n+1 F1))

= (−1)n (6j + 3ij) + ε ((−1)n (6j + 3ij))

= 3 (−1)n (2j + ij) (1 + ε) .
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Theorem 2.9. Let Q̃n be the dual bicomplex Fibonacci quaternion. For n ≥ 1, the Catalan’s
identity for Q̃n is given as:

Q̃2
n − Q̃n−rQ̃n+r = 3 (−1)n−r F 2

r (2j + ij) (1 + ε) .

Proof. By using the Catalan’s identity for Fibonacci numbers: F 2
n − Fn+rFn−r = (−1)n−r F 2

r

and equation (2), we have

Q̃2
n − Q̃n−rQ̃n+r

= (F̃ 2
n − F̃n−rF̃n+r)− (F̃ 2

n+1 − F̃n−r+1F̃n+r+1)− (F̃ 2
n+2 − F̃n−r+2F̃n+r+2)

+ (F̃ 2
n+3 − F̃n−r+3F̃n+r+3) + i(2F̃ F̃n+1 − 2F̃n+2F̃n+3

− F̃n−rF̃n+r+1 − F̃n+rF̃n−r+1 + F̃n−r+2F̃n+r+3 + F̃n−r+3F̃n+r+2)

+ j(2F̃nF̃n+2 − 2F̃n+1F̃n+3 − F̃n−rF̃n+r+2 − F̃n+rF̃n−r+2

+ F̃n−r+1F̃n+r+3 + F̃n−r+3F̃n+r+1) + ij(2F̃nF̃n+3 + 2F̃n+1F̃n+2

− F̃n−rF̃n+r+3 − F̃n+rF̃n−r+3 − F̃n−r+1F̃n+r+2 − F̃n−r+2F̃n+r+1)

= (−1)n−r (F 2
r − (−1)1 F 2

r − (−1)2 F 2
r + (−1)3 F 2

r )

+ i (−2F2n+3 + F2n+4 − F2n + F2n+2) + 2j (−1)n−r (FrFr−2 + FrFr+2)

+ ij (−1)n−r (FrFr−2 + FrFr+2) + ε[(2F2n+2 + 2F2n+5 − 2F2n+4

− 2F2n+2 − 2F2n+5 + 2F2n+4) + i (−2F2n+2 − 2F2n+5 + 2F2n+2 + 2F2n+5)

+ (−1)n−r (j(FrFr+3 + (−1)3 FrFr−3 + (−1)1 FrFr+1 + (−1)2 FrFr−1

− (−1)1 FrFr+3 − (−1)4 FrFr−3 − (−1)2 FrFr+1 − (−1)3 FrFr−1)

+ ij(FrFr+4 + (−1)4 FrFr−4 + (−1)3 FrFr−2 + (−1)1 FrFr+2

+ 2 (−1)2 F 2
r + (−1)3 FrFr−2 + (−1)1 FrFr+2))]

= 2j (−1)n−r (FrFr−2 + FrFr+2) + ij (−1)n−r (FrFr−2 + FrFr+2)

+ 2εj (−1)n−r Fr (Fr+3 − Fr−3 + Fr−1 − Fr+1)

+ εij (−1)n−r Fr (Fr+4 + Fr−4 − 2Fr−2 − 2Fr+2 + 2Fr)

= 3 (−1)n−r F 2
r (2j + ij) + 2εj (−1)n−r Fr (Fr+2 + Fr−2)

+ εij (−1)n−r Fr (Fr+2 + Fr−2)

= 3 (−1)n−r F 2
r (2j + ij) + 3ε (−1)n−r F 2

r (2j + ij)

= 3 (−1)n−r F 2
r (2j + ij) (1 + ε) .

Theorem 2.10. For n ≥ 1, we have
n−1∑
k=0

Q̃k = Q̃n+1 − Q̃1.

Proof.
n−1∑
k=0

Q̃k =
n−1∑
k=0

α∗αk − β∗βk

α− β
=

α∗

α− β

n−1∑
k=0

αk − β∗

α− β

n−1∑
k=0

βk

=
α∗

α− β
1− αn

1− α
− β∗

α− β
1− βn

1− β
=
α∗ (1− β − αn + αnβ)− β∗ (1− α− βn + αβn)

− (α− β)

= − 1

(α− β)
(
(α∗ − β∗)− (α∗αn − β∗βn)− α∗β + β∗α− α∗αn−1 + β∗βn−1

)
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= −Q̃0 + Q̃n + Q̃n−1 +
1

α− β
(βα∗ − αβ∗)

= −Q̃0 + Q̃n + Q̃n−1 +
β (1 + iα + jα2 + ijα3) (1 + εα)− α (1 + iβ + jβ2 + ijβ3) (1 + εβ)

α− β
= −Q̃0 + Q̃n + Q̃n−1 − (1 + j + ij)− ε (i+ j + 2ij)

= −Q̃0 + Q̃n + Q̃n−1 − Q̃−1

= Q̃n+1 − Q̃1.

Theorem 2.11. For n ≥ 1, we have

n−1∑
k=0

Q̃kr+s =


(−1)r(Q̃r(n−1)+s−Q̃s−r)−Q̃nr+s+Q̃s

(−1)r−αr−βr+1
if s > r

(−1)rQ̃r(n−1)+s−(−1)sQ̃r−s−Q̃nr+s+Q̃s

(−1)r−αr−βr+1
otherwise

.

Proof. For s > r,
n−1∑
k=0

Q̃kr+s =
n−1∑
k=0

α∗αkr+s−β∗βkr+s

α−β = α∗αs

α−β

n−1∑
k=0

αkr − β∗βs

α−β

n−1∑
k=0

βkr

=
α∗αs

α− β
αnr − 1

αr − 1
− β∗βs

α− β
βnr − 1

βr − 1

=
(αβ)r ((α∗αnr+s−r − β∗βnr+s−r)− (α∗αs−r − β∗βs−r))

α− β ((αβ)r − αr − βr + 1)

− (α∗αnr+s − β∗βnr+s) + (α∗αs − β∗βs)

α− β ((αβ)r − αr − βr + 1)

=
(−1)r (Q̃r(n−1)+s − Q̃s−r)− Q̃nr+s + Q̃s

(−1)r − αr − βr + 1
.

The second case is similarly proven.

3 Dual bicomplex Horadam quaternions

In this section, we define a new generalization of the dual bicomplex Fibonacci quaternions. We
present generating function, Binet formula, and some identities of these quaternions.

Horadam defined the Horadam numbers as

wn = pwn−1 + qwn−2; n ≥ 2, w0 = a, w1 = b

where a, b, p, q are integers [18, 19].
The n-th bicomplex Horadam numbers are defined by

BHn = wn + iwn+1 + jwn+2 + ijwn+3

where wn is the n-th Horadam number [14].
The bicomplex Horadam quaternions are defined by using the bicomplex Horadam numbers

as follows: Hn = wn + iwn+1 + jwn+2 + ijwn+3, i2 = −1, j2 = −1, ij = ji. There is the
following recursive relation among bicomplex Horadam quaternions

Hn+2 = pHn+1 + qHn (4)
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with the initial values

H0 = a+ bi+ (pb+ qa) j +
(
p2b+ pqa+ qb

)
ij

and
H1 = b+ (pb+ qa) i+

(
p2b+ pqa+ qb

)
j +

(
p3b+ p2qa+ 2pqb+ q2a

)
ij.

The bicomplex Horadam quaternion is the generalization of the well-known quaternions like
Fibonacci and Lucas quaternions. When taken as (a, b; p, q) = (0, 1; 1, 1) and (a, b; p, q) =

(2, 1; 1, 1) in the relation (4), the bicomplex Fibonacci and Lucas quaternions are obtained,
respectively.

The n-th dual bicomplex Horadam quaternions are defined as

H̃n = Hn + εHn+1 (5)

where Hn is the n-th bicomplex Horadam quaternion. The dual bicomplex Horadam quaternion
H̃n consists of four dual elements and can be represented as

H̃n = (wn + εwn+1) + (wn+1 + εwn+2) i+ (wn+2 + εwn+3) j + (wn+3 + εwn+4) ij.

By using dual Horadam numbers w̃n, we can get

H̃n = w̃n + iw̃n+1 + jw̃n+2 + ijw̃n+3.

There is the following recursive relation among the dual bicomplex Horadam quaternions

H̃n+2 = pH̃n+1 + qH̃n (6)

For two dual bicomplex Horadam quaternions H̃n and H̃m, addition, subtraction and multi-
plication with scalar are given by the following:

H̃n ∓ H̃m = (wn ∓ wm) + i (wn+1 ∓ wm+1) + j (wn+2 ∓ wm+2) + ij (wn+3 ∓ wm+3)

+ ε ((wn+1 ∓ wm+1) + i (wn+2 ∓ wm+2) + j (wn+3 ∓ wm+3) + ij (wn+4 ∓ wm+4)) ,

λH̃n = λ (wn + iwn+1 + jwn+2 + ijwn+3) + λε (wn+1 + iwn+2 + jwn+3 + ijwn+4)

The different conjugates for the dual bicomplex Horadam quaternions are presented by the
following: (

H̃n

)∗
i
= w̃n − iw̃n+1 + jw̃n+2 − ijw̃n+3,(

H̃n

)∗
j
= w̃n + iw̃n+1 − jw̃n+2 − ijw̃n+3,(

H̃n

)∗
ij
= w̃n − iw̃n+1 − jw̃n+2 + ijw̃n+3.

Let H̃n be a dual bicomplex Horadam quaternion, we give the following two corollary without
proof.
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Corollary 3.1. H̃n +
(
H̃n

)∗
i
= 2 (w̃n + jw̃n+2) ,

H̃n +
(
H̃n

)∗
j
= 2 (w̃n + iw̃n+1) ,

H̃n +
(
H̃n

)∗
ij
= 2 (w̃n + ijw̃n+3) .

Corollary 3.2. H̃n ⊗
(
H̃n

)∗
i
= w̃2

n + w̃2
n+1 − w̃2

n+2 − w̃2
n+3 + 2j (w̃nw̃n+2 + w̃n+1w̃n+3) ,

H̃n ⊗
(
H̃n

)∗
j
= w̃2

n − w̃2
n+1 + w̃2

n+2 − w̃2
n+3 + 2i (w̃nw̃n+1 + w̃n+2w̃n+3) ,

H̃n ⊗
(
H̃n

)∗
ij
= w̃2

n + w̃2
n+1 + w̃2

n+2 + w̃2
n+3 + 2ij (w̃nw̃n+3 − w̃n+1w̃n+2) .

In the following theorem, we give the Binet formula for dual bicomplex Horadam quaternion.

Theorem 3.1. The Binet formula for the dual bicomplex Horadam quaternion is

H̃n =
Aα∗αn −Bβ∗βn

α− β

where A = b−aβ, B = b−aα, α∗ = α̂ (1 + εα), β∗ = β̂ (1 + εβ) and α̂ = 1+ iα+ jα2+ ijα3,
β̂ = 1 + iβ + jβ2 + ijβ3.

Proof. Considering [20, 30], the roots of the characteristic equation t2 − pt − q = 0 related to
Horadam numbers are α and β,

α =
p+

√
p2 + 4q

2
, β =

p−
√
p2 + 4q

2
.

In [14], Halıcı gave the Binet formula for the bicomplex Horadam numbers by

BHn =
Aα̂αn −Bβ̂βn

α− β
. (7)

By using the equations (5) and (7), we have

H̃n = Hn + εHn+1 =
Aα̂αn −Bβ̂βn

α− β
+ ε

Aα̂αn+1 −Bβ̂βn+1

α− β

=
Aα̂ (1 + εα)αn −Bβ̂ (1 + εβ) βn

α− β
=
Aα∗αn −Bβ∗βn

α− β
.

Theorem 3.2. The generating function for the dual bicomplex Horadam quaternions is

GFH̃n
(t) =

H̃0 + H̃1t− pH̃0t

1− pt− qt2
. (8)

Proof. Let GFH̃n
be the generating function for the dual bicomplex Horadam quaternions. That

is
GFH̃n

(t) = H̃0 + H̃1t+ H̃2t
2 + · · ·+ H̃nt

n + · · · (9)
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Multiplying both sides of (9) by −pt and −qt2 , we have

−ptGFH̃n
(t) = −p

(
H̃0t+ H̃1t

2 + H̃2t
3 + · · ·+ H̃nt

n+1 + · · ·
)

−qt2GFH̃n
(t) = −q

(
H̃0t

2 + H̃1t
3 + H̃2t

4 + · · ·+ H̃nt
n+2 + · · ·

)
.

Using the relation (6) and making the necessary operations, we have the following desired
result.

GFH̃n
(t) = H̃0+H̃1t−pH̃0t

1−pt−qt2 .

In the following Remark, we note some special cases of generating functions given in (8).

Remark 1. The special cases of generating functions in Theorem 3.2 are listed as follows.

dual bicomplex Fibonacci quaternions: t+ε+i(1+ε(1+t))+j(1+t+ε(2+t))+ij(2+t+ε(3+2t))
1−t−t2

dual bicomplex Lucas quaternions: 2−t+ε(1+2t)+i(1+2t+ε(3+t))+j(3+t+ε(4+3t))+ij(4+3t+ε(7+4t))
1−t−t2

We give some important identities for the dual bicomplex Horadam quaternions by using the
Binet formula.

Theorem 3.3. For m ≥ n, the d’Ocagne’s identity for the dual bicomplex Horadam quaternions
is

H̃mH̃n+1 − H̃m+1H̃n = (−q)nABα∗β∗Fm−n.

Proof. By using the Binet formula for the dual bicomplex Horadam quaternions, we obtain the
d’Ocagne’s identity as follows:

H̃mH̃n+1 − H̃m+1H̃n =
(Aα∗αm −Bβ∗βm) (Aα∗αn+1 −Bβ∗βn+1)

(α− β)2

− (Aα∗αm+1 −Bβ∗βm+1) (Aα∗αn −Bβ∗βn)

(α− β)2

=
(ABα∗β∗)

(α− β)2
(
−αmβn+1 − βmαn+1 + αm+1βn + αnβm+1

)
=

1

(α− β)2
(
ABα∗β∗ (αβ)n (α− β)

(
αm−n − βm−n))

= (−q)nABα∗β∗Fm−n.

Theorem 3.4. Let H̃n be the dual bicomplex Horadam quaternion. For n ≥ r, the Catalan’s
identity for H̃n is given as:

H̃2
n − H̃n−rH̃n+r = ABα∗β∗ (−q)n−r F 2

r .

Proof. By using the Binet formula for the dual bicomplex Horadam quaternions, we obtain

H̃2
n − H̃n−rH̃n+r

=
1

(α− β)2
(
(Aα∗αn −Bβ∗βn)2 −

(
Aα∗αn−r −Bβ∗βn−r

) (
Aα∗αn+r −Bβ∗βn+r

))
=

1

(α− β)2
(
ABα∗β∗ (−2αnβn + αn−rβn+r + αn+rβn−r

))
=

1

(α− β)2
ABα∗β∗ (αβ)n−r (αr − βr)2

= ABα∗β∗ (−q)n−r F 2
r .
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Theorem 3.5. Let H̃n be the dual bicomplex Horadam quaternion. For n ≥ 1, the Cassini’s
identity for H̃n are given as;

H̃2
n − H̃n−1H̃n+1 = ABα∗β∗ (−q)n−1 .

Proof. Taking r = 1 as a special case of Catalan’s identity, the proof of this theorem can be
easily done.

When we take as (a, b; p, q) = (0, 1; 1, 1), we have obtained some identities given for the dual
bicomplex Fibonacci quaternions in the previous section.

In the following theorem, we write the formula which gives the summation of the first n dual
bicomplex Horadam quaternion.

Theorem 3.6. For n ≥ 1, the summation formula for the dual bicomplex Horadam quaternions
is as follows:

n−1∑
k=0

H̃k =
1

(p+ q − 1)

(
H̃n + qH̃n−1 − H̃1 − H̃0 +

p (Aα∗ −Bβ∗)√
p2 + 4q

)
where A = b− aβ, B = b− aα.

Proof. We can write the following equation by using the Binet formula and the definition of dual
bicomplex Horadam quaternions.

n−1∑
k=0

H̃k =
n−1∑
k=0

Aα∗αk −Bβ∗βk

α− β
=

Aα∗

α− β

n−1∑
k=0

αk − Bβ∗

α− β

n−1∑
k=0

βk

=
Aα∗

α− β
1− αn

1− α
− Bβ∗

α− β
1− βn

1− β

=
Aα∗ (1− β − αn + αnβ)−Bβ∗ (1− α− βn + αβn)

(α− β) (1− p− q)

=
1

(α− β) (1− p− q)
((Aα∗ −Bβ∗)− (Aα∗αn −Bβ∗βn)

− Aα∗β +Bβ∗α− q
(
Aα∗αn−1 −Bβ∗βn−1

)
)

=
1

(1− p− q)
(H̃0 − H̃n − qH̃n−1 −

Aα∗ (p− α)−Bβ∗ (p− β)
(α− β)

)

=
1

(p+ q − 1)
(H̃n + qH̃n−1 − H̃1 − H̃0 +

p (Aα∗ −Bβ∗)√
p2 + 4q

).

4 Conclusion

In this work, we define dual bicomplex Horadam quaternions. We give many identities that take
an important place in the literature for dual bicomplex Horadam quaternions. We also obtain
some well-known important identities for dual bicomplex Fibonacci quaternions.
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[16] Halici, S., & Çürük, S. (2019). On Dual Bicomplex Numbers and Their Some Algebraic
Properties, Journal of Science of Arts, 2(47), 387–398.

204



[17] Hamilton, W. R. (1866). Elements of quaternions, Longmans, Green and Co., London.

[18] Horadam, A. F. (1961). A generalized Fibonacci sequence, Math. Mag., 68(5), 455–459.

[19] Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. Math.
Mag., 70(3), 289–291.

[20] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers,
Fibonacci Quart., 3, 161–176.

[21] Knuth, D. (2013). Negafibonacci numbers and Hyperbolic Plane, Annual Meeting of the
Math. Association of America, 15.12.2013, San Jose, CA.

[22] Luna-Elizarrarás, M. E., Shapiro, M., Struppa, D. C., & Vajiac, A. (2015). The bicomplex
numbers. In: Bicomplex holomorphic functions, 5–28, Frontiers in Mathematics,
Birkhauser.

[23] McCarthy, J. M. (1990). An Introduction to Theoretical Kinematics, MIT Press, Cambridge,
Mass.

[24] Nurkan, S. K., & Guven, I. A. (2015). Dual Fibonacci Quaternions, Adv. Appl. Clifford
Algebras, 25 (2015), 403–414.

[25] Nurkan, S. K., & Guven, I. A. (2018). A note on bicomplex Fibonacci and Lucas numbers,
International Journal of Pure and Applied Mathematics, 120(3), 365–377.

[26] Rochon, D., & Shapiro, M. (2004). On Algebraic Properties of Bicomplex and Hyperbolic
Numbers. Anal. Univ. Oradea Fascicola. Matematica, 11, 71–110.

[27] Segre, C. (1892). Le Rappresentazioni Reali Delle Forme Complesse e Gli Enti
Iperalgebrici. Math. Ann., 40, 413–467.

[28] Soykan, Y. (2020). Bicomplex Tetranacci and Tetranacci-Lucas Quaternions, Communica-
tions in Mathematics and Applications, 11(1), 95–112.

[29] Torsello, A., Rodola, E., & Albarelli, A. (2011) Multiview registration via graph diffusion
of dual quaternions, IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2011), Colorado Springs, CO, USA, 20-25 June 2011, 2441–2448.

[30] Udrea, G. (1996). A note on sequence of A.F. Horadam, Portugaliae Mathematica, 53(2),
143–144.

[31] Weisstein, E. W. Fibonacci number. MathWorld. Available online: https://

mathworld.wolfram.com/dOcagnesIdentity.html.

[32] Yang, A. T. (1963). Application of Quaternion Algebra and Dual Numbers to the Analysis
of Spatial Mechanisms, PhD thesis, Columbia University.
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