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1 Introduction

There are some extensions (generalizations) of real numbers into real algebras of dimension 2

which are the followings: complex numbers,

C = {z = a+ ib : a, b ∈ R, i2 = −1},

hyperbolic (double, split-complex) numbers [28],

H = {h = a+ hb : a, b ∈ R, h2 = 1},

and dual numbers [10],
D = {d = a+ εb : a, b ∈ R, ε2 = 0}.
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In fact, each possible system can be reduced to one of the above and there exist essentially
three possible ways to generalize real numbers into real algebras of dimension 2 (see, for example,
[16] for details).

There are also other extensions (generalizations) of real numbers into real algebras of higher
dimension. The hypercomplex numbers systems, [16], are extensions of real numbers. Some
commutative examples of hypercomplex number systems are complex numbers, hyperbolic
numbers, [28], and dual numbers, [10]. Some non-commutative examples of hypercomplex
number systems are quaternions [12], octonions [2] and sedenions [30]. The algebras C (complex
numbers), HQ (quaternions), O (octonions) and S (sedenions) are real algebras obtained from
the real numbers R by a doubling procedure called the Cayley-Dickson Process. This doubling
process can be extended beyond the sedenions to form what are known as the 2n-ions (see for
example [4, 14, 24]).

Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) [12] as an
extension to the complex numbers. Hyperbolic numbers with complex coefficients are introduced
by J. Cockle in 1848, [6]. H. H. Cheng and S. Thompson [5] introduced dual numbers with
complex coefficients and called complex dual numbers. Akar, Yüce and Şahin [1] introduced
dual hyperbolic numbers.

Here we use the set of hyperbolic numbers. The set of hyperbolic numbers H can be described
as

H = {z = x+ hy | h /∈ R, h2 = 1, x, y ∈ R}.

The hyperbolic ring H is a bidimensional Clifford algebra, see [20] for details. Hyperbolic num-
bers has been called in the mathematical literature with different names: Lorentz numbers, double
numbers, duplex numbers, split complex numbers and perplex numbers. Hyperbolic numbers are
useful for measuring distances in the Lorentz space-time plane (see Sobczyk [28]). For more
information on hyperbolic numbers, see also [15, 22, 25, 29].

Addition, substraction and multiplication of any two hyperbolic numbers z1 and z2 are defined
by

z1 ± z2 = (x1 + hy1)± (x2 + hy2) = (x1 ± x2) + h (y1 ± y2) ,
z1 × z2 = (x1 + hy1)× (x2 + hy2) = x1x2 + y1y2 + h (x1y2 + y1x2) .

and the division of two hyperbolic numbers are given by

z1
z2

=
x1 + hy1
x2 + hy2

=
(x1 + hy1) (x2 − hy2)
(x2 + hy2) (x2 − hy2)

=
x1x2 + y1y2
x22 − y22

+ h
x1y2 + y1x2
x22 − y22

.

It is easy to see that this algebra of hyperbolic numbers is commutative and contains zero divisors.
The hyperbolic conjugation of z = x+ hy is defined by

z = z† = x− hy.

Note that z = z. Note also that for any hyperbolic numbers z1, z2, z we have

z1 + z2 = z1 + z2,

z1 × z2 = z1 × z2,
‖z‖2 = z × z = x2 − y2.

Now let us recall the definition of generalized Pell numbers.
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A generalized Pell sequence {Vn}n≥0 = {Vn(V0, V1)}n≥0 is defined by the second-order
recurrence relations

Vn = 2Vn−1 + Vn−2; V0 = a, V1 = b, (n ≥ 2) (1.1)

with the initial values V0, V1 not all being zero. The sequence {Vn}n≥0 can be extended to negative
subscripts by defining

V−n = −2V−(n−1) + V−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (1.1) holds for all integer n.
The first few generalized Pell numbers with positive subscript and negative subscript are given

in the following Table 1.

n Vn V−n

0 V0
1 V1 −2V0 + V1
2 V0 + 2V1 5V0 − 2V1
3 2V0 + 5V1 −12V0 + 5V1
4 5V0 + 12V1 29V0 − 12V1
5 12V0 + 29V1 −70V0 + 29V1

Table 1. A few generalized Pell numbers

If we set V0 = 0, V1 = 1 then {Vn} is the well-known Pell sequence and if we set
V0 = 2, V1 = 2 then {Vn} is the well-known Pell–Lucas sequence. In other words, Pell sequence
{Pn}n≥0 (OEIS: A000129, [27]) and Pell–Lucas sequence {Qn}n≥0 (OEIS: A002203, [27]) are
defined by the second-order recurrence relations

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1 (1.2)

and
Qn = 2Qn−1 +Qn−2, Q0 = 2, Q1 = 2. (1.3)

The sequences {Pn}n≥0 and {Qn}n≥0 can be extended to negative subscripts by defining

P−n = −2P−(n−1) + P−(n−2)

and
Q−n = −2Q−(n−1) +Q−(n−2)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.2) and (1.3) hold for all integer n.
Pell sequence has been studied by many authors and more detail can be found in the extensive

literature dedicated to these sequences, see for example, [3, 7, 9, 11, 13, 17, 21, 23]. For higher
order Pell sequences, see [18, 19, 32–34].

We can list some important properties of generalized Pell numbers that are needed.
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• Binet formula of generalized Pell sequence can be calculated using its characteristic
equation which is given as t2 − 2t − 1 = 0. The roots of characteristic equation are
α = 1 +

√
2, β = 1 −

√
2 and the roots satisfy the followingα + β = 2, αβ = −1,

α− β = 2
√
2. Using these roots and the recurrence relation, Binet formula can be given as

Vn =
Aαn −Bβn

α− β
, (1.4)

where A = V1 − V0β and B = V1 − V0α.
• Binet formula of Pell and Pell–Lucas sequences are Pn =

αn − βn

α− β
and Qn = αn + βn,

respectively.
• The generating function for generalized Pell numbers is:

g(t) =
W0 + (W1 − 2W0) t

1− 2t− t2
. (1.5)

• The Cassini identity for generalized Pell numbers is:

Vn+1Vn−1 − V 2
n = (2V0V1 − V 2

1 − V 2
0 ). (1.6)

• The generalized Pell sequence has the following properties:

Aαn = αVn + Vn−1, (1.7)

Bβn = βVn + Vn−1. (1.8)

In this paper, we define the hyperbolic generalized Pell numbers in the next section and give some
properties of them.

2 Hyperbolic generalized Pell numbers
and their generating functions and Binet’s formulas

In this section, we define hyperbolic generalized Pell numbers and present generating functions
and Binet formulas for them.

In [36], the author defined hyperbolic Fibonacci numbers and Dikmen [8] defined hyperbolic
Jacobsthal numbers. Soykan [35], defined hyperbolic generalized Fibonacci numbers.

We now define hyperbolic generalized Pell numbers over H. The n-th hyperbolic generalized
Pell number is

Ṽn = Vn + hVn+1 (2.1)

with initial conditions Ṽ0 = V0 + hV1, Ṽ1 = V1 + h(V0 + 2V1) where h2 = 1. As special
cases, the n-th hyperbolic Pell numbers and the n-th hyperbolic Pell–Lucas numbers are given as
P̃n = Pn + hPn+1 and Q̃n = Qn + hQn+1, respectively. It can be easily shown that

Ṽn = 2Ṽn−1 + Ṽn−2. (2.2)

The sequence {Ṽn}n≥0 can be extended to negative subscripts by defining

Ṽ−n = −2Ṽ−(n−1) + Ṽ−(n−2)

for n = 1, 2, 3, ..., respectively. Therefore, recurrence (2.2) holds for all integers n.
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Note that Ṽnh = Vn+1 + Vnh.

The first few hyperbolic generalized Pell numbers with positive subscript and negative
subscript are given in the following Table 2.

n Ṽn Ṽ−n

0 V0 + hV1 ...

1 V1 + h(V0 + 2V1) V1 − 2V0 + hV0
2 V0 + 2V1 + h(2V0 + 5V1) 5V0 − 2V1 + h(−2V0 + V1)

3 2V0 + 5V1 + h(5V0 + 12V1) 5V1 − 12V0 + h(5V0 − 2V1)

4 5V0 + 12V1 + h(12V0 + 29V1) 29V0 − 12V1 + h(−12V0 + 5V1)

5 12V0 + 29V1 + h(29V0 + 70V1) 29V1 − 70V0 + h(29V0 − 12V1)

Table 2. A few hyperbolic generalized Pell numbers

Note that
Ṽ0 = V0 + hV1, Ṽ1 = V1 + hV2 = V1 + h(V0 + 2V1).

For hyperbolic Pell numbers (taking Vn = Pn, P0 = 0, P1 = 1) we get

P̃0 = h, P̃1 = 1 + 2h,

and for hyperbolic Pell–Lucas numbers (taking Vn = Qn, Q0 = 2, Q1 = 2) we get

Q̃0 = 2 + 2h, Q̃1 = 2 + 6h.

A few hyperbolic Pell numbers and hyperbolic Pell–Lucas numbers with positive subscript
and negative subscript are given in the following Table 3 and Table 4.

n P̃n P̃−n

0 h ...

1 1 + 2h 1

2 2 + 5h −2 + h

3 5 + 12h 5− 2h

4 12 + 29h −12 + 5h

5 29 + 70h 29− 12h

Table 3. Hyperbolic Pell numbers

n Q̃n Q̃−n

0 2 + 2h ...

1 2 + 6h −2 + 2h

2 6 + 14h 6− 2h

3 14 + 34h −14 + 6h

4 34 + 82h 34− 14h

5 82 + 198h −82 + 34h

Table 4. Hyperbolic Pell–Lucas numbers

140



Now, we will state Binet’s formula for the hyperbolic generalized Pell numbers and in the rest
of the paper, we fix the following notations:

α̃ = 1 + αh, β̃ = 1 + βh.

Note that we have the following identities:

α̃ = 1 + αh,

β̃ = 1 + βh,

α̃β̃ = 2h,

α̃2 = 2α + 2 + 2αh,

β̃2 = 2β + 2 + 2βh,

α̃2β̃ = 2α + 2h,

α̃β̃2 = 2β + 2h,

α̃2β̃2 = 4.

Theorem 1 (Binet’s Formula). For any integer n, the n-th hyperbolic generalized Pell number
is:

Ṽn =
Aα̃αn −Bβ̃βn

α− β
. (2.3)

Proof. Using Binet’s formula

Vn =
Aαn −Bβn

α− β
of the generalized Pell numbers, we obtain

Ṽn = Vn + hVn+1 =
Aαn −Bβn

α− β
+ h

Aαn+1 −Bβn+1

α− β
=
A(1 + αh)αn −B(1 + βh)βn

α− β
.

This proves (2.3).

As special cases, for any integer n, the Binet’s Formula of n-th hyperbolic Pell number is

P̃n =
α̃αn − β̃βn

α− β
(2.4)

and the Binet’s Formula of n-th hyperbolic Pell–Lucas number is

Q̃n = α̃αn + β̃βn. (2.5)

Next, we present generating function.

Theorem 2. The generating function for the hyperbolic generalized Pell numbers is:

∞∑
n=0

Ṽnx
n =

Ṽ0 + (Ṽ1 − 2Ṽ0)x

1− 2x− x2
. (2.6)
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Proof. Let

g(x) =
∞∑
n=0

Ṽnx
n

be the generating function of the hyperbolic generalized Pell numbers. Then, using the definition
of the hyperbolic generalized Pell numbers, and substracting 2xg(x) and x2g(x) from g(x), we
obtain (note the shift in the index n in the third line)

(1− 2x− x2)g(x) =
∞∑
n=0

Ṽnx
n − 2x

∞∑
n=0

Ṽnx
n − x2

∞∑
n=0

Ṽnx
n

=
∞∑
n=0

Ṽnx
n − 2

∞∑
n=0

Ṽnx
n+1 −

∞∑
n=0

Ṽnx
n+2

=
∞∑
n=0

Ṽnx
n − 2

∞∑
n=1

Ṽn−1x
n −

∞∑
n=2

Ṽn−2x
n

= (Ṽ0 + Ṽ1x)− 2Ṽ0x+
∞∑
n=2

(Ṽn − 2Ṽn−1 − Ṽn−2)xn

= (Ṽ0 + Ṽ1x)− 2Ṽ0x = Ṽ0 + (Ṽ1 − 2Ṽ0)x.

Note that we used the recurrence relation Ṽn = 2Ṽn−1 + Ṽn−2. Rearranging above equation,
we get

g(x) =
Ṽ0 + (Ṽ1 − 2Ṽ0)x

1− 2x− x2
.

As special cases, the generating functions for the hyperbolic Pell and hyperbolic Pell–Lucas
numbers are, respectively,

∞∑
n=0

P̃nx
n =

h+ x

1− 2x− x2

and
∞∑
n=0

Q̃nx
n =

(2 + 2h) + (−2 + 2h)x

1− 2x− x2
.

3 Obtaining Binet formula from generating function

We next find Binet formula of hyperbolic generalized Pell number {Ṽn} by the use of generating
function for Ṽn.

Theorem 3 (Binet formula of hyperbolic generalized Pell numbers).

Ṽn =
d1α

n

(α− β)
− d2β

n

(α− β)
(3.1)

where
d1 = Ṽ0α + (Ṽ1 − 2Ṽ0), d2 = Ṽ0β + (Ṽ1 − 2Ṽ0).

Proof. Let h(x) = 1− 2x− x2. Then for some α and β we write h(x) = (1− αx)(1− βx), i.e.,

1− 2x− x2 = (1− αx)(1− βx) (3.2)

142



Hence 1

α
and 1

β
are the roots of h(x). This gives α and β as the roots of

h

(
1

x

)
= 1− 2

x
− 1

x2
= 0.

This implies x2 − 2x− 1 = 0. Now, by (2.6) and (3.2), it follows that
∞∑
n=0

Ṽnx
n =

Ṽ0 + (Ṽ1 − 2Ṽ0)x

(1− αx)(1− βx)
.

Then we write
Ṽ0 + (Ṽ1 − 2Ṽ0)x

(1− αx)(1− βx)
=

A1

(1− αx)
+

A2

(1− βx)
. (3.3)

So Ṽ0 + (Ṽ1 − 2Ṽ0)x = A1(1− βx) + A2(1− αx).
If we consider x = 1

α
, we get Ṽ0 + (Ṽ1 − 2Ṽ0)

1
α
= A1(1− β 1

α
). This gives

A1 =
Ṽ0α + (Ṽ1 − 2Ṽ0)

(α− β)
=

d1
(α− β)

.

Similarly, we obtain Ṽ0 + (Ṽ1 − 2Ṽ0)
1
β
= A2(1− α 1

β
)⇒ Ṽ0β + (Ṽ1 − 2Ṽ0) = A2(β − α) and so

A2 = −
Ṽ0β + (Ṽ1 − 2Ṽ0)

(α− β)
= − d2

(α− β)
.

Thus (3.3) can be written as
∞∑
n=0

Ṽnx
n = A1(1− αx)−1 + A2(1− βx)−1.

This gives
∞∑
n=0

Ṽnx
n = A1

∞∑
n=0

αnxn + A2

∞∑
n=0

βnxn =
∞∑
n=0

(A1α
n + A2β

n)xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain
Ṽn = A1α

n + A2β
n and then we get (3.1).

Note that from (2.3) and (3.1) we have

(V1 − V0β)α̃ = Ṽ0α + (Ṽ1 − 2Ṽ0),

(V1 − V0α)β̃ = Ṽ0β + (Ṽ1 − 2Ṽ0).

Next, using Theorem 3, we present the Binet formulas of hyperbolic Pell and hyperbolic
Pell–Lucas numbers.

Corollary 4. Binet formulas of hyperbolic Pell and hyperbolic Pell–Lucas numbers are

P̃n =
α̃αn − β̃βn

α− β
, Q̃n = α̃αn + β̃βn,

respectively.
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4 Some identities

We now present a few special identities for the hyperbolic generalized Pell sequence {Ṽn}. The
following theorem presents the Catalan’s identity for the hyperbolic generalized Pell numbers.

Theorem 5 (Catalan’s identity). For all integers n and m, the following identity holds:

Ṽn+mṼn−m − Ṽ 2
n =

(−1)n−m+1 ((A+B)V2m−1 + (Aβ +Bα)V2m − 2(−1)mAB)

4
h.

Proof. Using the Binet Formula

Ṽn =
Aα̃αn −Bβ̃βn

α− β
and

Aαn = αVn + Vn−1, Bβn = βVn + Vn−1,

we get

Ṽn+mṼn−m − Ṽ 2
n =

(Aα̃αn+m −Bβ̃βn+m)(Aα̃αn−m −Bβ̃βn−m)− (Aα̃αn −Bβ̃βn)2

(α− β)2

=
(−1)n−m+1AB (αm − βm)2

8
2h

=
(−1)n−m+1 ((A+B)V2m−1 + (Aβ +Bα)V2m − 2(−1)mAB)

4
h.

As special cases of the above theorem, we give Catalan’s identity of hyperbolic Pell and
hyperbolic Pell–Lucas numbers. Firstly, we present Catalan’s identity of hyperbolic Pell numbers.

Corollary 6 (Catalan’s identity for the hyperbolic Pell numbers). For all integers n and m,
the following identity holds:

P̃n+mP̃n−m − P̃ 2
n =

(−1)n−m+1 (P2m−1 + P2m − (−1)m)
2

h.

Proof. Taking Vn = Pn in Theorem 5 we get the required result.

Secondly, we give Catalan’s identity of hyperbolic Pell–Lucas numbers.

Corollary 7 (Catalan’s identity for the hyperbolic Pell–Lucas numbers). For all integers n
and m, the following identity holds: Q̃n+mQ̃n−m − Q̃2

n = 2(−1)n−m (Q2m − 2(−1)m)h.

Proof. Taking Vn = Qn in Theorem 5, we get the required result.

Note that for m = 1 in Catalan’s identity, we get the Cassini’s identity for the hyperbolic
generalized Pell sequence.

Corollary 8 (Cassini’s identity). For all integers n, the following identity holds:

Ṽn+1Ṽn−1 − Ṽ 2
n =

(−1)n ((A+B)V1 + (Aβ +Bα)V2 + 2AB)

4
h.
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As special cases of Cassini’s identity, we give Cassini’s identity of hyperbolic Pell and hyper-
bolic Pell–Lucas numbers. Firstly, we present Cassini’s identity of hyperbolic Pell numbers.

Corollary 9 (Cassini’s identity of hyperbolic Pell numbers). For all integers n, the following
identity holds: P̃n+1P̃n−1 − P̃ 2

n = 2(−1)nh.

Secondly, we give Cassini’s identity of hyperbolic Pell–Lucas numbers.

Corollary 10 (Cassini’s identity of hyperbolic Pell–Lucas numbers). For all integers n, the
following identity holds: Q̃n+1Q̃n−1 − Q̃2

n = 16(−1)n+1h.

The d’Ocagne’s, Gelin–Cesàro’s and Melham’s identities can also be obtained by using the
Binet Formula of the hyperbolic generalized Pell sequence:

Ṽn =
Aα̃αn −Bβ̃βn

α− β
.

The next theorem presents d’Ocagne’s, Gelin–Cesàro’s and Melham’s identities of the
hyperbolic generalized Pell sequence {Ṽn}.

Theorem 11. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

Ṽm+1Ṽn − ṼmṼn+1 = 2 (VnVm−1 − VmVn−1)h.

(b) (Gelin–Cesàro’s identity)

Ṽn+2Ṽn+1Ṽn−1Ṽn−2−Ṽ 4
n = AB(−1)n+1

2
(26 (−1)nAB+(6V0+18V1)V2n+(6V0+6V1)V2n−1+

((12V0 + 24V1)V2n + (3A+ 3B + (6V0 + 6V1))V2n−1)h).

(c) (Melham’s identity)

Ṽn+1Ṽn+2Ṽn+6 − Ṽ 3
n+3 = 2 (−1)nAB((91Vn + 38Vn−1) + (38Vn + 15Vn−1)h).

Proof. (a) Using (1.7) and (1.8) we obtain

Ṽm+1Ṽn − ṼmṼn+1 =
ABα̃β̃(−αm+1βn − αnβm+1 + αmβn+1 + αn+1βm)

(α− β)2

=
((αVn + Vn−1)(βVm + Vm−1)− (αVm + Vm−1)(βVn + Vn−1))

(α− β)
2h

= 2 (VnVm−1 − VmVn−1)h.

(b) The proof is straightforward but lengthy, so we omit it.

(c) Using (1.7), (1.8) and Binet formula of Ṽn and the identities

α̃2β̃ = (2α + 2h), α̃β̃2 = (2β + 2h),

we obtain the required result.
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As special cases of the above theorem, we give the d’Ocagne’s, Gelin–Cesàro’s and
Melham’s identities of hyperbolic Pell and hyperbolic Pell–Lucas numbers. Firstly, we present
the d’Ocagne’s, Gelin–Cesàro’s and Melham’s identities of hyperbolic Pell numbers.

Corollary 12. Let n and m be any integers. Then, for the hyperbolic Pell numbers, the following
identities are true:

(a) (d’Ocagne’s identity)

P̃m+1P̃n − P̃mP̃n+1 = 2 (PnPm−1 − PmPn−1)h.

(b) (Gelin–Cesàro’s identity)

P̃n+2P̃n+1P̃n−1P̃n−2 − P̃ 4
n = (−1)n+1(13 (−1)n + (3P0 + 9P1)P2n + (3P0 + 3P1)P2n−1 +

((6P0 + 12P1)P2n + (3 + (3P0 + 3P1))P2n−1)h).

(c) (Melham’s identity)

P̃n+1P̃n+2P̃n+6 − P̃ 3
n+3 = 2 (−1)n ((91Pn + 38Pn−1) + (38Pn + 15Pn−1)h).

Secondly, we present the d’Ocagne’s, Gelin–Cesàro’s and Melham’s identities of hyperbolic
Pell–Lucas numbers.

Corollary 13. Let n and m be any integers. Then, for the hyperbolic Pell–Lucas numbers, the
following identities are true:

(a) (d’Ocagne’s identity)

Q̃m+1Q̃n − Q̃mQ̃n+1 = 2 (QnQm−1 −QmQn−1)h.

(b) (Gelin–Cesàro’s identity)
Q̃n+2Q̃n+1Q̃n−1Q̃n−2−Q̃4

n = 8(−1)n(104 (−1)n+1+(3Q0+9Q1)Q2n+(3Q0+3Q1)Q2n−1+

((6Q0 + 12Q1)Q2n + (3Q0 + 3Q1)Q2n−1)h).

(c) (Melham’s identity)

Q̂n+1Q̂n+2Q̂n+6 − Q̂3
n+3 = 16 (−1)n+1 ((91Qn + 38Qn−1) + (38Qn + 15Qn−1)h).

5 Linear sums

In this section, we give the summation formulas of the hyperbolic generalized Pell numbers with
positive and negative subscripts. Now, we present the formula which give the summation formulas
of the generalized Pell numbers.

Proposition 14. For the generalized Pell numbers, for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Vk =
1
2
(Vn+2 − Vn+1 − V1 + V0).

(b)
∑n

k=0 V2k =
1
2
(V2n+1 − V1 + 2V0).

(c)
∑n

k=0 V2k+1 =
1
2
(V2n+2 − V2 + 2V1).

Proof. For the proof, see Soykan [31] .
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Next, we present the formulas which give the summation of the first n hyperbolic generalized
Pell numbers.

Theorem 15. For n ≥ 0, hyperbolic generalized Pell numbers have the following formulas:.

(a)
∑n

k=0 Ṽk =
1
2
(Ṽn+2 − Ṽn+1 − Ṽ1 + Ṽ0).

(b)
∑n

k=0 Ṽ2k =
1
2
(Ṽ2n+1 − Ṽ1 + 2Ṽ0).

(c)
∑n

k=0 Ṽ2k+1 =
1
2
(Ṽ2n+2 − Ṽ0).

Proof. (a) Note that using Proposition 14 (a) we get
n∑
k=0

Vk =
1

2
(Vn+2 − Vn+1 − V1 + V0),

n∑
k=0

Vk+1 =
1

2
(Vn+3 − Vn+2 − V1 − V0).

Then it follows that
n∑
k=0

Ṽk =
1

2
(Vn+2 − Vn+1 − V1 + V0) + h

1

2
(Vn+3 − Vn+2 − V1 − V0)

=
1

2
((Vn+2 + jVn+3)− (Vn+1 + hVn+2) + (−V1 + V0) + h(−V1 − V0))

=
1

2
(Ṽn+2 − Ṽn+1 + ((−V1 + V0) + h(−V2 + V1))

=
1

2
(Ṽn+2 − Ṽn+1 − (V1 + hV2)) + (V0 + hV1))

=
1

2
(Ṽn+2 − Ṽn+1 − (V1 + hV2)) + (V0 + hV1))

=
1

2
(Ṽn+2 − Ṽn+1 − Ṽ1 + Ṽ0).

This proves (a).
(b) Note that using Proposition 14 (b) and (c) we get

n∑
k=0

V2k =
1

2
(V2n+1 − V1 + 2V0),

n∑
k=0

V2k+1 =
1

2
(V2n+2 − V0).

Then it follows that
n∑
k=0

Ṽ2k =
1

2
(V2n+1 − V1 + 2V0) + h

1

2
(V2n+2 − V0)

=
1

2
((V2n+1 + hV2n+2) + ((−V1 + 2V0) + h(−V0)))

=
1

2
((V2n+1 + hV2n+2) + ((−V1 + 2V0) + h(−V2 + 2V1))

=
1

2
((V2n+1 + hV2n+2)− (V1 + hV2) + 2(V0 + hV1))

=
1

2
(Ṽ2n+1 − Ṽ1 + 2Ṽ0).
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(c) Note that using Proposition 14 (b) and (c) we get
n∑
k=0

V2k+2 =
1

2
(V2n+3 − V1).

Then it follows that
n∑
k=0

Ṽ2k+1 =
1

2
(V2n+2 − V0) + h

1

2
(V2n+3 − V1)

=
1

2
((V2n+2 + hV2n+3)− (V0 + hV1))

=
1

2
(Ṽ2n+2 − (V0 + hV1))

=
1

2
(Ṽ2n+2 − Ṽ0).

This completes the proof.

As a first special case of the above theorem, we have the following summation formulas for
hyperbolic Pell numbers:

Corollary 16. For n ≥ 0, hyperbolic Pell numbers have the following properties:

(a)
∑n

k=0 P̃k =
1
2
(P̃n+2 − P̃n+1 − P̃1 + P̃0) =

1
2
(P̃n+2 − P̃n+1 − (1 + h)).

(b)
∑n

k=0 P̃2k =
1
2
(P̃2n+1 − P̃1 + 2P̃0) =

1
2
(P̃2n+1 − 1).

(c)
∑n

k=0 P̃2k+1 =
1
2
(P̃2n+2 − P̃0) =

1
2
(P̃2n+2 − h).:

As a second special case of the above theorem, we have the following summation formulas
for hyperbolic Pell–Lucas numbers:

Corollary 17. For n ≥ 0, hyperbolic Pell–Lucas numbers have the following properties.

(a)
∑n

k=0 Q̃k =
1
2
(Q̃n+2 − Q̃n+1 − Q̃1 + Q̃0) =

1
2
(Q̃n+2 − Q̃n+1 − 4h).

(b)
∑n

k=0 Q̃2k =
1
2
(Q̃2n+1 − Q̃1 + 2Q̃0) =

1
2
(Q̃2n+1 + 2− 2h).

(c)
∑n

k=0 Q̃2k+1 =
1
2
(Q̃2n+2 − Q̃0) =

1
2
(Q̃2n+2 − (2 + 2h)).

Now, we present the formula which give the summation formulas of the generalized Pell
numbers with negative subscripts.

Proposition 18. For n ≥ 1 we have the following formulas:

(a)
∑n

k=1 V−k =
1
2
(−3V−n−1 − V−n−2 + V1 − V0).

(b)
∑n

k=1 V−2k =
1
2
(−V−2n−1 + V1 − 2V0).

(c)
∑n

k=1 V−2k+1 =
1
2
(−V−2n + V0).

Proof. This is given in Soykan [31].
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Next, we present the formulas which give the summation of the first n hyperbolic generalized
Pell numbers with negative subscripts

Theorem 19. For n ≥ 1, hyperbolic generalized Pell numbers have the following formulas:

(a)
∑n

k=1 Ṽ−k =
1
2
(−3Ṽ−n−1 − Ṽ−n−2 + Ṽ1 − Ṽ0).

(b)
∑n

k=1 Ṽ−2k =
1
2
(−Ṽ−2n−1 + Ṽ1 − 2Ṽ0).

(c)
∑n

k=1 Ṽ−2k+1 =
1
2
(−Ṽ−2n + Ṽ0).

Proof. We prove (a). Note that using Proposition 14 (a) we get
n∑
k=1

V−k =
1

2
(−3V−n−1 − V−n−2 + V1 − V0),

n∑
k=1

V−k+1 =
1

2
(−3V−n − V−n−1 + V1 + V0).

Then it follows that
n∑
k=1

Ṽ−k =
1

2
(−3V−n−1 − V−n−2 + V1 − V0) + j

1

2
(−3V−n − V−n−1 + V1 + V0)

=
1

2
(3(V−n−1 + jV−n)− (V−n−2 + jV−n−1) + (V1 − V0) + j(V1 + V0))

=
1

2
(−3Ṽ−n−1 − Ṽ−n−2 + ((V1 − V0) + j(V2 − V1))

=
1

2
(−3Ṽ−n−1 − Ṽ−n−2 + (V1 + jV2) + Ṽ0)− (V0 + jV1))

=
1

2
(−3Ṽ−n−1 − Ṽ−n−2 + Ṽ1 − Ṽ0)

This proves (a). Formulas (b) and (c) can be proved similarly.

As a first special case of above theorem, we have the following summation formulas for
hyperbolic Pell numbers:

Corollary 20. For n ≥ 1, hyperbolic Pell numbers have the following properties:

(a)
∑n

k=1 P̃−k =
1
2
(−3P̃−n−1 − P̃−n−2 + P̃1 − P̃0) =

1
2
(−3P̃−n−1 − P̃−n−2 + (1 + h)).

(b)
∑n

k=1 P̃−2k =
1
2
(−P̃−2n−1 + P̃1 − 2P̃0) =

1
2
(−P̃−2n−1 + 1).

(c)
∑n

k=1 P̃−2k+1 =
1
2
(−P̃−2n + P̃0) =

1
2
(−P̃−2n + h).

As a second special case of above theorem, we have the following summation formulas for
hyperbolic Pell–Lucas numbers:

Corollary 21. For n ≥ 1, hyperbolic Pell–Lucas numbers have the following properties.

(a)
∑n

k=1 Q̃−k =
1
2
(−3Q̃−n−1 − Q̃−n−2 + Q̃1 − Q̃0) =

1
2
(−3Q̃−n−1 − Q̃−n−2 + 4h).

(b)
∑n

k=1 Q̃−2k =
1
2
(−Q̃−2n−1 + Q̃1 − 2Q̃0) =

1
2
(−Q̃−2n−1 + (−2 + 2h)).

(c)
∑n

k=1 Q̃−2k+1 =
1
2
(−Q̃−2n + Q̃0) =

1
2
(−Q̃−2n + (2 + 2h)).
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6 Matrices related to hyperbolic generalized Pell numbers

We define the square matrix N of order 2 as:

N =

(
2 1

1 0

)
such that detN = −1. Induction proof may be used to establish

Nn =

(
Pn+1 Pn
Pn Pn−1

)
(6.1)

and (the matrix formulation of Vn)(
Vn+1

Vn

)
=

(
2 1

1 0

)n(
V1
V0

)
. (6.2)

Now, we define the matrices NV as

NV =

(
Ṽ3 Ṽ2
Ṽ2 Ṽ1

)
.

This matrice NV is called hyperbolic generalized Pell matrix. As special cases, hyperbolic Pell
matrix and hyperbolic Pell–Lucas matrix are, respectively,

NP =

(
P̃3 P̃2

P̃2 P̃1

)
, NQ =

(
Q̃3 Q̃2

Q̃2 Q̃1

)
,

respectively.

Theorem 22. For n ≥ 0, the following is valid:

NV

(
2 1

1 0

)n

=

(
Ṽn+3 Ṽn+2

Ṽn+2 Ṽn+1

)
. (6.3)

Proof. We prove by mathematical induction on n. If n = 0, then the result is clear. Now, we
assume it is true for n = k, that is

NVN
k =

(
Ṽk+3 Ṽk+2

Ṽk+2 Ṽk+1

)
.

If we use (2.1), then we have Ṽk+2 = 2Ṽk+1 + Ṽk. Then, by induction hypothesis, we obtain

NVN
k+1 = (NVN

k)N =

(
Ṽk+3 Ṽk+2

Ṽk+2 Ṽk+1

)(
2 1

1 0

)
=

(
2Ṽk+3 + Ṽk+2 Ṽk+3

2Ṽk+2 + Ṽk+1 Ṽk+2

)

=

(
Ṽk+4 Ṽk+3

Ṽk+3 Ṽk+2

)
.

Thus, (6.3) holds for all non-negative integers n.
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Remark 23. The above theorem is true for n ≤ −1. It can also be proved by induction.

Corollary 24. For all integers n, the following holds: Ṽn+2 = Ṽ2Pn+1 + Ṽ1Pn.

Proof. The proof can be seen by the coefficient of the matrix NV and (6.1).

Taking Vn = Pn and Vn = Qn, respectively, in the above corollary, we obtain the following
results.

Corollary 25. For all integers n, the followings are true.

(a) P̃n+2 = P̃2Pn+1 + P̃1Pn.

(b) Q̃n+2 = Q̃2Pn+1 + Q̃1Pn.

Remark 26. As a further study, the results of this paper can be extended to the work in [26].
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https://doi.org/10.1007/978-3-0346-0004-0 11.

[23] Melham, R. (1999). Sums Involving Fibonacci and Pell Numbers, Portugaliae Mathematica,
56(3), 309–317.

[24] Moreno, G. (1998). The zero divisors of the Cayley–Dickson algebras over the real numbers,
Bol. Soc. Mat. Mexicana (3), 4(1), 13–28.

[25] Motter A. E., & Rosa, A. F. (1998). Hyperbolic calculus, Adv. Appl. Clifford Algebra, 8(1),
109–128.

[26] Ollerton, R. L. & Shannon, A. G. (1992). An extension of circular and hyperbolic
functions, International Journal of Mathematical Education in Science and Technology,
23(4), 611–620.

152



[27] Sloane, N.J.A., The on-line encyclopedia of integer sequences. Available online: http:
//oeis.org/.

[28] Sobczyk, G. (1995). The Hyperbolic Number Plane, The College Mathematics Journal,
26(4), 268–280.

[29] Sobczyk, G. (2013). Complex and Hyperbolic Numbers. In: New Foundations in Mathemat-
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