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Abstract: In this paper, we define new polynomials with a complex variable related to the
derangement polynomials and we give some properties of those polynomials. We use umbral
calculus to establish a new congruence concerning the derangement polynomials with a complex
variable.
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1 Introduction

Polynomials with a complex variable have attracted researchers’ great interest, as the application
of those polynomials appear in various fields of mathematics. The polynomials with a complex
variable have been studied by various researchers for example, see [3,6].

Derangement polynomials are defined by

D, (x) :nlz%.

It is clear that D,, (0) is the n-th derangement number, denoted by D,, counting the number of
permutation of the set [n] without a fixed point. The exponential generating function for the
derangement polynomials is
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For more information about these numbers and polynomials one can see [7-9].
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If we replace x by z or Z in (1), where
z:x+iy,E:x—iy,i2 =—1,

we get

E D, (2) = E et _ ;;_te“ (cos (yt) +isin (yt))
n=0 )

= " e - e
A (z—iy)t _ Tt i
nE_O D, () =14 T3¢ (cos (yt) —isin (yt)).

If we add or subtract the identities presented above, we get

Z D, (2) + D, (2)] ;—7: = 126__tem cos (yt)
Y [Da(z) — Da ()] g - ?ii e sin (yt) .

Let D, 1(z) =D, (2) + D, (Z),and D,, 5 () = D,, (2) — D,, (Z) , then we have

o

" 2e!
Z D1 (2) = te"m cos (yt) ,

n=0

o tn 2 —t
> Duale) = [ettsin(y)
n=0

n! 1—¢

and

That is now

then




Hence
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D) = 3 () et oy~ (1= ).

The derangement polynomials with a complex variable can be defined by

Du(e) =3 () et .

k=0

and we can write D,, (2) as follows

D) =Y (10 (1 )Py = o0 S ()P

s=0

The first few polynomials are:

Do(2) = 1,

Di(z) = z+1y,

Dy(2) = 2% —y*+ 14 2ayi,

Ds(z) = a°+3z—3zy” +2+i(—y’ + 3%y + 3y).

In particular, fory = 0 or x = y = 0, we have

2 Some properties of the derangement polynomials
with a complex variable
In this section, we give some properties of the D,, (2) , D, 1 (2) , Dy 2 (2) -

Lemma 2.1. For any non-negative integer n, we have

D) = 3 | 3
D) = o | S It (1 (1),
o\ (& (x—l)s_ nk (1
Do (z) = Z<n)k ) (iy) (1 (—1) )7
k=0 L s=0 : i

where (n), is the falling factorial defined by
(), =n(n—1)-(n—k+1)ifk>1land (n), = 1.
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Proof. We have

k=0
u n! P (e —1 ek
_kz_ok!(n—k)!k! lg( s! ) ] (iy)
ST -
Proposition 2.2. For any non-negative integer n there holds
Dot (2) = (n+1)Du() + (2= 1™, @)
Duiz(2) = (n+1)[Dus1 (2) + Dn ()] + (2 = )" + (2 = 1), 3)
D, (5) D, (Z)>
Dpi11(2) = m+1)Dy1(2)+G-1)"+(z-1)
Duii2(z) = (n4+1)Dus(2)+ (2 —1)" = (F—1)"

where D, (2) is the complex conjugate of Dy, (2)

Proof. For (2), we have

()= 0 | 3 S e

n+1

=41 (n M[Z“II p)" o )
2

(x — 1 (x —1)!

= | [ | ]
then
Do (2) = -+ DD 2) 4 (0 1) | S ) =T )™ |+ ™
k=0 ’
On the other hand, we have
et 03 T ) =3 () e 0 G



Hence
Dp1 (2) = (n+1)Dy, (2) + (. — 1 +iy)"t,
or equivalently
Dui1 () = (n+ 1) Dy (2) + (2 — 1)L
For (3), we have
Duyz (2) = (4 2) Doy () + (2 = )"
= (n+1) D1 () + Dyia (2) + (2 = )"
= (n4 1) [Dpy1 (2) + D (2)] + (2 = D" 4 (2 = 1)" 2. O

The first few D,, (z) polynomials can be written as follows:
Dy(2) =1,Dy(2) = 2,Da(2) = 2+ 1,D3(2) = 2° + 32 + 2.
Note that D,, (z) is a polynomial with integer coefficients.

Proposition 2.3. Let zy and z = zy + h be two points. The function D,, (z) is holomorphic on C

and for any non-negative integer n, we have

D) (z) = nD,_1(2), “)
D, () = (Z Dok (20) (2 — 20)* . (5)
k=0
If zo = 0, we obtain
D, (z) = (”) D", ©6)
k=0 k

where D!, (z) is the derivative of D,, (z)
Proof. For (4), we proceed by induction on n. Indeed, for n = 1, D; (2) = z, we have
Di(z2) =1=Dy(2).
Forn = 2, Dy (2) = 2z? + 1, we have
D, (2) =22 =2D; (2).
Assume for any integer n > 1, D!, (2) = nD,,_; (2) . Using the relationship (2), we get
= [(n n (2) + (2 — 1)"+l]/
(n—i—l)D’ 2)+(n+1)(z—1)"
=+ 1Dy (2) +(n+1)(z = 1)"
=(n+1)D,(2).

For (5), we have D!, (z) = nD,,_; (z) , then DY (2) =n(n—1)D,_2(2), and by induction the
k-th derivative of D,, () is

/
Dn—i—l

which gives



Then the Taylor’s series for D,, (z) is to be

k!
k=0
" /n
=3 (k) D,k (20) (2 — 20)".
k=0
This completes the proof. O]

3 Congruence on the derangement polynomials
with a complex variable

In this section, we use the properties of the classical umbral calculus to drive new congruences
involving the derangement polynomials with a complex variable. The derangement polynomials
with a complex variable are defined by

D, (z) = i (Z) Dyy_i2".

k=0

Let D be the derangement umbra defined by D" = D,,, then we can define the generalized
derangement umbra D, as follows

D" =D, (z) = zn: (Z) Dy iz® = (D +2)".

k=0

For more information on the umbral calculus see [1, 2,4, 5, 10, 11]. In the remainder of this
section, for any polynomials f and g, with integer coefficients we denote by f(z) = g(z) to mean
f(z) = g(2) (mod pZ,|z]) and for any numbers a and b by a = b we mean a = b (mod p).

Lemma 3.1. Let f be a polynomial in Z [z| and s be a non-negative integer, then for any prime
p > 3, there holds
(DY +1) f(D,) = 2" f (D).

Proof. Tt suffices to take f(z) = z™. We proceed by induction on s. For s = 1 we have
(D2 +1)D! = D" + D7
= (D +2)"(D+2)" +Dg
=(D?+2°)(D+2)" +D;}

=Dy} + 2Dy + ) (Z) D" ek,

k=0

and by the known congruence D,,, = —D,, or equivalently D"*? = —D" see [12]. So we
obtain
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(D} +1)Dy =Dy + "Dy — > (Z) D"k
k=0

=D} + D) — (D + 2)"

= 2'D,.
Assume it is true for s > 1. Then we have

Dg(Df“44Q D} (D +1—1)"+1)

D} (DY +1)"+ (1) +1)
D; (Dy +1)"
— [D2 (DY +1)] (DY + 1)
2D (DY + 1)
— 2" [D} (D +1)] (D
= 7' D! (DY +1)"°

S

+1)"7

é (zps)p D7
= szHDZ.
and the proof of the induction step is complete.
The principal result given by the following Theorem.
Theorem 3.2. For any integers n,s > 1,m > 0 and for any prime p > 3, there holds
Dy (2) = (27 — 1)mDn (2).

Fory = 0or z =0, we obtain

Dypymps (z) = (27" —1)" D, (z),
Dpimps = (—1)" Dy,
Dn+2p = Dn

Proof. Form = 1 just take f(z) = 2" in Lemma 3.1 and for m > 1,we have

Drymyps (2) = Dyt (m—1)ps+p* (2)

Hence the proof is complete.
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Corollary 3.2.1. For any prime number p > 3 and any integers s > 1,my, ..., ms € {0,

there holds

Dm0+m1p+.”+msps (Z) = (Zp _ 1)m1 (Zp2 . 1) 2 . (Zps _ 1)771.5 Dmo (Z) )

In particular, we have

. (Zp o 1)m1 <Zp2 B 1>m2 o (Zps o 1>m9 :

o (k? . 1)m1+m2+~~~+ms _

Diypttmeps (2)

Dm1p+---+m5p5 (k)
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