Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 26, 2020, No. 4, 128–135

DOI: 10.7546/nntdm.2020.26.4.128-135

Derangement polynomials with a complex variable

Abdelkader Benyattou

Department of Mathematics and Informatics, University of Djelfa, Algeria RECITS Laboratory, P. O. 32 Box 32, El Alia 16111, Algiers, Algeria

e-mail: abdelkaderbenyattou@gmail.com, a.benyattou@univ-djelfa.dz

Received: 13 June 2020 **Revised:** 20 October 2020 **Accepted:** 2 November 2020

Abstract: In this paper, we define new polynomials with a complex variable related to the derangement polynomials and we give some properties of those polynomials. We use umbral calculus to establish a new congruence concerning the derangement polynomials with a complex variable.

Keywords: Derangement polynomials, Complex variable, Congruence, Umbral calculus.

2010 Mathematics Subject Classification: 11B83, 11A07, 30C10.

1 Introduction

Polynomials with a complex variable have attracted researchers' great interest, as the application of those polynomials appear in various fields of mathematics. The polynomials with a complex variable have been studied by various researchers for example, see [3,6].

Derangement polynomials are defined by

$$\mathcal{D}_n(x) = n! \sum_{k=0}^{n} \frac{(x-1)^k}{k!}.$$

It is clear that $\mathcal{D}_n(0)$ is the *n*-th derangement number, denoted by \mathcal{D}_n counting the number of permutation of the set [n] without a fixed point. The exponential generating function for the derangement polynomials is

$$\sum_{n=0}^{\infty} \mathcal{D}_n(x) \frac{t^n}{n!} = \frac{e^{-t}}{1-t} e^{xt}.$$
 (1)

For more information about these numbers and polynomials one can see [7–9].

If we replace x by z or \overline{z} in (1), where

$$z = x + iy, \overline{z} = x - iy, i^2 = -1,$$

we get

$$\sum_{n=0}^{\infty} \mathcal{D}_n(z) \frac{t^n}{n!} = \frac{e^{-t}}{1-t} e^{(x+iy)t} = \frac{e^{-t}}{1-t} e^{xt} \left(\cos(yt) + i\sin(yt)\right)$$

$$\sum_{n=0}^{\infty} \mathcal{D}_n\left(\overline{z}\right) \frac{t^n}{n!} = \frac{e^{-t}}{1-t} e^{(x-iy)t} = \frac{e^{-t}}{1-t} e^{xt} \left(\cos\left(yt\right) - i\sin\left(yt\right)\right).$$

If we add or subtract the identities presented above, we get

$$\sum_{n=0}^{\infty} \left[\mathcal{D}_n \left(z \right) + \mathcal{D}_n \left(\overline{z} \right) \right] \frac{t^n}{n!} = \frac{2e^{-t}}{1-t} e^{xt} \cos \left(yt \right)$$

$$\sum_{n=0}^{\infty} \left[\mathcal{D}_n \left(z \right) - \mathcal{D}_n \left(\overline{z} \right) \right] \frac{t^n}{n!} = \frac{2ie^{-t}}{1-t} e^{xt} \sin \left(yt \right).$$

Let $\mathcal{D}_{n,1}\left(z\right)=\mathcal{D}_{n}\left(z\right)+\mathcal{D}_{n}\left(\overline{z}\right)$, and $\mathcal{D}_{n,2}\left(z\right)=\mathcal{D}_{n}\left(z\right)-\mathcal{D}_{n}\left(\overline{z}\right)$, then we have

$$\sum_{n=0}^{\infty} \mathcal{D}_{n,1}(z) \frac{t^n}{n!} = \frac{2e^{-t}}{1-t} e^{xt} \cos(yt),$$

$$\sum_{n=0}^{\infty} \mathcal{D}_{n,2}(z) \frac{t^n}{n!} = \frac{2ie^{-t}}{1-t} e^{xt} \sin(yt)$$

and

$$\sum_{n=0}^{\infty} \mathcal{D}_n(z) \frac{t^n}{n!} = \frac{e^{(-1+iy)t}}{1-t} e^{xt},$$

$$\sum_{n=0}^{\infty} \mathcal{D}_n(\overline{z}) \frac{t^n}{n!} = \frac{e^{(-1-iy)t}}{1-t} e^{xt}.$$

That is now

$$\cos(yt) = \frac{e^{iyt} + e^{-iyt}}{2}, \sin(yt) = \frac{e^{iyt} - e^{-iyt}}{2i},$$

then

$$\sum_{n=0}^{\infty} \mathcal{D}_{n,1}(z) \frac{t^n}{n!} = \frac{e^{-t}}{1-t} e^{xt} \left(e^{iyt} + e^{-iyt} \right)$$

$$= \sum_{n=0}^{\infty} \mathcal{D}_n(x) \frac{t^n}{n!} \sum_{n=0}^{\infty} \frac{\left[(iyt)^n + (-iyt)^n \right]}{n!}$$

$$= \sum_{n=0}^{\infty} \mathcal{D}_n(x) \frac{t^n}{n!} \sum_{n=0}^{\infty} (iy)^n (1 + (-1)^n) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} \mathcal{D}_k(x) (iy)^{n-k} \left(1 + (-1)^{n-k} \right) t^n.$$

Hence

$$\mathcal{D}_{n,1}(z) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{D}_{k}(x) (iy)^{n-k} \left(1 + (-1)^{n-k}\right),$$

$$\mathcal{D}_{n,2}(z) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{D}_{k}(x) (iy)^{n-k} \left(1 - (-1)^{n-k}\right).$$

The derangement polynomials with a complex variable can be defined by

$$\mathcal{D}_{n}(z) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{D}_{k}(x) (iy)^{n-k},$$

and we can write $\mathcal{D}_n(z)$ as follows

$$\mathcal{D}_{n}(z) = i^{n} \sum_{s=0}^{n} (-1)^{s} \binom{n}{2s} \mathcal{D}_{2s}(x) y^{n-2s} - i^{n+1} \sum_{s=0}^{n} (-1)^{s} \binom{n}{2s+1} \mathcal{D}_{2s+1}(x) y^{n-2s-1}.$$

The first few polynomials are:

$$\mathcal{D}_{0}(z) = 1,$$

$$\mathcal{D}_{1}(z) = x + iy,$$

$$\mathcal{D}_{2}(z) = x^{2} - y^{2} + 1 + 2xyi,$$

$$\mathcal{D}_{3}(z) = x^{3} + 3x - 3xy^{2} + 2 + i(-y^{3} + 3x^{2}y + 3y).$$

In particular, for y = 0 or x = y = 0, we have

$$\mathcal{D}_n(z) = \mathcal{D}_n(x), \quad \mathcal{D}_n(0) = \mathcal{D}_n.$$

2 Some properties of the derangement polynomials with a complex variable

In this section, we give some properties of the $\mathcal{D}_{n}\left(z\right),\mathcal{D}_{n,1}\left(z\right),\mathcal{D}_{n,2}\left(z\right)$.

Lemma 2.1. For any non-negative integer n, we have

$$\mathcal{D}_{n}(z) = \sum_{k=0}^{n} (n)_{k} \left[\sum_{s=0}^{k} \frac{(x-1)^{s}}{s!} \right] (iy)^{n-k},$$

$$\mathcal{D}_{n,1}(z) = \sum_{k=0}^{n} (n)_{k} \left[\sum_{s=0}^{k} \frac{(x-1)^{s}}{s!} \right] (iy)^{n-k} \left(1 + (-1)^{n-k} \right),$$

$$\mathcal{D}_{n,2}(z) = \sum_{k=0}^{n} (n)_{k} \left[\sum_{s=0}^{k} \frac{(x-1)^{s}}{s!} \right] (iy)^{n-k} \left(1 - (-1)^{n-k} \right),$$

where $(n)_k$ is the falling factorial defined by

$$(n)_k = n (n-1) \cdots (n-k+1)$$
 if $k \ge 1$ and $(n)_0 = 1$.

Proof. We have

$$\mathcal{D}_{n}(z) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{D}_{k}(x) (iy)^{n-k}$$

$$= \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} k! \left[\sum_{s=0}^{k} \frac{(x-1)^{s}}{s!} \right] (iy)^{n-k}$$

$$= \sum_{k=0}^{n} (n)_{k} \left[\sum_{s=0}^{k} \frac{(x-1)^{s}}{s!} \right] (iy)^{n-k}.$$

Proposition 2.2. For any non-negative integer n there holds

$$\mathcal{D}_{n+1}(z) = (n+1) \mathcal{D}_{n}(z) + (z-1)^{n+1}, \qquad (2)$$

$$\mathcal{D}_{n+2}(z) = (n+1) \left[\mathcal{D}_{n+1}(z) + \mathcal{D}_{n}(z) \right] + (z-1)^{n+1} + (z-1)^{n+2}, \qquad (3)$$

$$\mathcal{D}_{n}(\overline{z}) = \overline{\mathcal{D}_{n}(z)}, \qquad (3)$$

$$\mathcal{D}_{n+1,1}(z) = (n+1) \mathcal{D}_{n,1}(z) + (z-1)^{n} + (\overline{z}-1)^{n}, \qquad (4)$$

$$\mathcal{D}_{n+1,2}(z) = (n+1) \mathcal{D}_{n,2}(z) + (z-1)^{n} - (\overline{z}-1)^{n}, \qquad (4)$$

where $\overline{\mathcal{D}_n(z)}$ is the complex conjugate of $\mathcal{D}_n(z)$

Proof. For (2), we have

$$\mathcal{D}_{n+1}(z) = \sum_{k=0}^{n+1} (n+1)_k \left[\sum_{s=0}^k \frac{(x-1)^s}{s!} \right] (iy)^{n+1-k}$$

$$= (n+1) \sum_{k=1}^{n+1} (n)_{k-1} \left[\sum_{s=0}^k \frac{(x-1)^s}{s!} \right] (iy)^{n+1-k} + (iy)^{n+1}$$

$$= (n+1) \left[\sum_{k=0}^n (n)_k \left[\sum_{s=0}^k \frac{(x-1)^s}{s!} + \frac{(x-1)^{k+1}}{(k+1)!} \right] (iy)^{n-k} \right] + (iy)^{n+1},$$

then

$$\mathcal{D}_{n+1}(z) = (n+1) \mathcal{D}_n(z) + (n+1) \left[\sum_{k=0}^{n} (n)_k \frac{(x-1)^{k+1}}{(k+1)!} (iy)^{n-k} \right] + (iy)^{n+1}.$$

On the other hand, we have

$$(n+1)\sum_{k=0}^{n} (n)_k \frac{(x-1)^{k+1}}{(k+1)!} (iy)^{n-k} + (iy)^{n+1} = \sum_{k=0}^{n} \binom{n+1}{k+1} (x-1)^{k+1} (iy)^{n-k} + (iy)^{n+1}$$

$$= \sum_{k=1}^{n+1} \binom{n+1}{k} (x-1)^k (iy)^{n+1-k} + (iy)^{n+1}$$

$$= \left[(x-1+iy)^{n+1} - (iy)^{n+1} \right] + (iy)^{n+1}$$

$$= (x-1+iy)^{n+1}.$$

Hence

$$\mathcal{D}_{n+1}(z) = (n+1)\,\mathcal{D}_n(z) + (x-1+iy)^{n+1}\,,$$

or equivalently

$$\mathcal{D}_{n+1}(z) = (n+1) \mathcal{D}_n(z) + (z-1)^{n+1}.$$

For (3), we have

$$\mathcal{D}_{n+2}(z) = (n+2) \, \mathcal{D}_{n+1}(z) + (z-1)^{n+2}$$

$$= (n+1) \, \mathcal{D}_{n+1}(z) + \mathcal{D}_{n+1}(z) + (z-1)^{n+2}$$

$$= (n+1) \left[\mathcal{D}_{n+1}(z) + \mathcal{D}_{n}(z) \right] + (z-1)^{n+1} + (z-1)^{n+2} . \quad \Box$$

The first few $\mathcal{D}_n(z)$ polynomials can be written as follows:

$$\mathcal{D}_0(z) = 1, \mathcal{D}_1(z) = z, \mathcal{D}_2(z) = z^2 + 1, \mathcal{D}_3(z) = z^3 + 3z + 2.$$

Note that $\mathcal{D}_n(z)$ is a polynomial with integer coefficients.

Proposition 2.3. Let z_0 and $z = z_0 + h$ be two points. The function $\mathcal{D}_n(z)$ is holomorphic on \mathbb{C} and for any non-negative integer n, we have

$$\mathcal{D}'_n(z) = n\mathcal{D}_{n-1}(z), \tag{4}$$

$$\mathcal{D}_n(z) = \sum_{k=0}^n \binom{n}{k} \mathcal{D}_{n-k}(z_0) (z - z_0)^k.$$
 (5)

If $z_0 = 0$, we obtain

$$\mathcal{D}_n(z) = \sum_{k=0}^n \binom{n}{k} \mathcal{D}_{n-k} z^k, \tag{6}$$

where $\mathcal{D}'_n(z)$ is the derivative of $\mathcal{D}_n(z)$

Proof. For (4), we proceed by induction on n. Indeed, for n = 1, $\mathcal{D}_1(z) = z$, we have

$$\mathcal{D}_{1}'\left(z\right)=1=\mathcal{D}_{0}\left(z\right).$$

For n = 2, $\mathcal{D}_2(z) = z^2 + 1$, we have

$$\mathcal{D}_{2}'\left(z\right)=2z=2\mathcal{D}_{1}\left(z\right).$$

Assume for any integer $n \geq 1$, $\mathcal{D}'_n\left(z\right) = n\mathcal{D}_{n-1}\left(z\right)$. Using the relationship (2), we get

$$\mathcal{D}'_{n+1}(z) = \left[(n+1) \, \mathcal{D}_n(z) + (z-1)^{n+1} \right]'$$

$$= (n+1) \, \mathcal{D}'_n(z) + (n+1) \, (z-1)^n$$

$$= (n+1) \, n \mathcal{D}_{n-1}(z) + (n+1) \, (z-1)^n$$

$$= (n+1) \, \mathcal{D}_n(z) \, .$$

For (5), we have $\mathcal{D}_{n}'(z) = n\mathcal{D}_{n-1}(z)$, then $\mathcal{D}_{n}^{(2)}(z) = n(n-1)\mathcal{D}_{n-2}(z)$, and by induction the k-th derivative of $\mathcal{D}_{n}(z)$ is

$$\mathcal{D}_{n}^{(k)}(z) = (n)_{k} \mathcal{D}_{n-k}(z),$$

which gives

$$\frac{\mathcal{D}_{n}^{(k)}(z)}{k!} = \binom{n}{k} \mathcal{D}_{n-k}(z).$$

Then the Taylor's series for $\mathcal{D}_n(z)$ is to be

$$\mathcal{D}_{n}(z) = \sum_{k=0}^{n} \frac{\mathcal{D}_{n}^{(k)}(z_{0})}{k!} (z - z_{0})^{k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} \mathcal{D}_{n-k}(z_{0}) (z - z_{0})^{k}.$$

This completes the proof.

3 Congruence on the derangement polynomials with a complex variable

In this section, we use the properties of the classical umbral calculus to drive new congruences involving the derangement polynomials with a complex variable. The derangement polynomials with a complex variable are defined by

$$\mathcal{D}_{n}(z) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{D}_{n-k} z^{k}.$$

Let **D** be the derangement umbra defined by $\mathbf{D}^n = \mathcal{D}_n$, then we can define the generalized derangement umbra $\mathbf{D}_{\mathbf{z}}$ as follows

$$\mathbf{D}_{\mathbf{z}}^{n} = \mathcal{D}_{n}\left(z\right) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{D}_{n-k} z^{k} = \left(\mathbf{D} + z\right)^{n}.$$

For more information on the umbral calculus see [1, 2, 4, 5, 10, 11]. In the remainder of this section, for any polynomials f and g, with integer coefficients we denote by $f(z) \equiv g(z)$ to mean $f(z) \equiv g(z) \pmod{p\mathbb{Z}_p[z]}$ and for any numbers a and b by $a \equiv b$ we mean $a \equiv b \pmod{p}$.

Lemma 3.1. Let f be a polynomial in $\mathbb{Z}[z]$ and s be a non-negative integer, then for any prime $p \geq 3$, there holds

$$\left(\mathbf{D}_{\mathbf{z}}^{p^{s}}+1\right)f\left(\mathbf{D}_{\mathbf{z}}\right)\equiv z^{p^{s}}f\left(\mathbf{D}_{\mathbf{z}}\right).$$

Proof. It suffices to take $f(z) = z^n$. We proceed by induction on s. For s = 1 we have

$$(\mathbf{D}_{\mathbf{z}}^{p} + 1) \mathbf{D}_{\mathbf{z}}^{n} = \mathbf{D}_{\mathbf{z}}^{p+n} + \mathbf{D}_{\mathbf{z}}^{n}$$

$$= (\mathbf{D} + z)^{p} (\mathbf{D} + z)^{n} + \mathbf{D}_{\mathbf{z}}^{n}$$

$$\equiv (\mathbf{D}^{p} + z^{p}) (\mathbf{D} + z)^{n} + \mathbf{D}_{\mathbf{z}}^{n}$$

$$= \mathbf{D}_{\mathbf{z}}^{n} + z^{p} \mathbf{D}_{\mathbf{z}}^{n} + \sum_{k=0}^{n} \binom{n}{k} \mathbf{D}^{n-k+p} z^{k},$$

and by the known congruence $\mathcal{D}_{n+p} \equiv -\mathcal{D}_n$, or equivalently $\mathbf{D}^{n+p} \equiv -\mathbf{D}^n$, see [12]. So we obtain

$$(\mathbf{D}_{\mathbf{z}}^{p} + 1) \mathbf{D}_{\mathbf{z}}^{n} \equiv \mathbf{D}_{\mathbf{z}}^{n} + z^{p} \mathbf{D}_{\mathbf{z}}^{n} - \sum_{k=0}^{n} \binom{n}{k} \mathbf{D}^{n-k} z^{k}$$

$$= \mathbf{D}_{\mathbf{z}}^{n} + z^{p} \mathbf{D}_{\mathbf{z}}^{n} - (\mathbf{D} + z)^{n}$$

$$= z^{p} \mathbf{D}_{\mathbf{z}}^{n}.$$

Assume it is true for $s \ge 1$. Then we have

$$\begin{split} \mathbf{D}_{\mathbf{z}}^{n} \left(\mathbf{D}_{\mathbf{z}}^{p^{s+1}} + 1 \right) &= \mathbf{D}_{\mathbf{z}}^{n} \left(\left(\mathbf{D}_{\mathbf{z}}^{p^{s}} + 1 - 1 \right)^{p} + 1 \right) \\ &\equiv \mathbf{D}_{\mathbf{z}}^{n} \left(\left(\mathbf{D}_{\mathbf{z}}^{p^{s}} + 1 \right)^{p} + \left(-1 \right)^{p} + 1 \right) \\ &= \mathbf{D}_{\mathbf{z}}^{n} \left(\mathbf{D}_{\mathbf{z}}^{p^{s}} + 1 \right)^{p} \\ &= \left[\mathbf{D}_{\mathbf{z}}^{n} \left(\mathbf{D}_{\mathbf{z}}^{p^{s}} + 1 \right) \right] \left(\mathbf{D}_{\mathbf{z}}^{p^{s}} + 1 \right)^{p-1} \\ &\equiv z^{p^{s}} \mathbf{D}_{\mathbf{z}}^{n} \left(\mathbf{D}_{\mathbf{z}}^{p^{s}} + 1 \right) \right] \left(\mathbf{D}_{\mathbf{z}}^{p^{s}} + 1 \right)^{p-2} \\ &\equiv z^{2p^{s}} \mathbf{D}_{\mathbf{z}}^{n} \left(\mathbf{D}_{\mathbf{z}}^{p^{s}} + 1 \right)^{p-2} \\ &\vdots \\ &\equiv \left(z^{p^{s}} \right)^{p} \mathbf{D}_{\mathbf{z}}^{n} \\ &= z^{p^{s+1}} \mathbf{D}_{\mathbf{z}}^{n}. \end{split}$$

and the proof of the induction step is complete.

The principal result given by the following Theorem.

Theorem 3.2. For any integers n, s > 1, m > 0 and for any prime p > 3, there holds

$$\mathcal{D}_{n+mp^{s}}\left(z\right)\equiv\left(z^{p^{s}}-1\right)^{m}\mathcal{D}_{n}\left(z\right).$$

For y = 0 or z = 0, we obtain

$$\mathcal{D}_{n+mp^s}(x) \equiv (x^{p^s} - 1)^m \mathcal{D}_n(x),$$

$$\mathcal{D}_{n+mp^s} \equiv (-1)^m \mathcal{D}_n,$$

$$\mathcal{D}_{n+2p} \equiv \mathcal{D}_n.$$

Proof. For m=1 just take $f(z)=z^n$ in Lemma 3.1 and for m>1, we have

$$\mathcal{D}_{n+mp^s}(z) = \mathcal{D}_{n+(m-1)p^s+p^s}(z)$$

$$\equiv (z^{p^s} - 1) \mathcal{D}_{n+(m-1)p^s}(z)$$

$$= (z^{p^s} - 1) \mathcal{D}_{n+(m-2)p^s+p^s}(z)$$

$$\equiv (z^{p^s} - 1)^2 \mathcal{D}_{n+(m-2)p^s}(z)$$

$$= (z^{p^s} - 1)^2 \mathcal{D}_{n+(m-3)p^s+p^s}(z)$$

$$\equiv (z^{p^s} - 1)^3 \mathcal{D}_n(z)$$

$$\vdots$$

$$\equiv (z^{p^s} - 1)^m \mathcal{D}_n(z).$$

Hence the proof is complete.

Corollary 3.2.1. For any prime number $p \geq 3$ and any integers $s \geq 1, m_0, ..., m_s \in \{0, ..., p-1\}$, there holds

$$\mathcal{D}_{m_0+m_1p+\cdots+m_sp^s}(z) \equiv (z^p-1)^{m_1} \left(z^{p^2}-1\right)^{m_2} \cdots \left(z^{p^s}-1\right)^{m_s} \mathcal{D}_{m_0}(z).$$

In particular, we have

$$\mathcal{D}_{m_1 p + \dots + m_s p^s}(z) \equiv -(z^p - 1)^{m_1} \left(z^{p^2} - 1 \right)^{m_2} \dots \left(z^{p^s} - 1 \right)^{m_s},$$

$$\mathcal{D}_{m_1 p + \dots + m_s p^s}(k) \equiv -(k - 1)^{m_1 + m_2 + \dots + m_s}.$$

References

- [1] Benyattou, A., & Mihoubi, M. (2018). Curious congruences related to the Bell polynomials, *Quaest. Math.*, 41(3), 437–448.
- [2] Benyattou, A., & Mihoubi, M. (2019). Real-rooted polynomials via generalized Bell umbra. *Notes on Number Theory and Discrete Mathematics*, 25(2), 136–144.
- [3] Darus, M., & Ibrahim, R. (2010). On generalisation of polynomials in complex plane, *Advances in Decision Sciences*, 2010, (2010), 9 pages.
- [4] Gertsch, A., & Robert, A. M. (1996). Some congruences concerning the Bell numbers, *Bull. Belg. Math. Soc. Simon Stevin*, 3, 467–475.
- [5] Gessel, I. M. (2003). Applications of the classical umbral calculus, *Algebra Universalis*, 49, 397–434.
- [6] Kim, D. S., Kim, T., & Lee, H. (2019). A note on Degenerate Euler and Bernoulli polynomials, *Symmetry*, 11, 1168.
- [7] Kim, T., & Kim, D. S. (2018). Some identities on derangement and degenerate derangement polynomials, *Advances in Mathematical Inequalities and Applications*, 265–277, Trends Math., Birkhauser/Springer, Singapore.
- [8] Kim, T., Kim, D. S., Dolgy, D. V., & Kwon, J. (2018). Some identities of derangement numbers. *Proc. Jangjeon Math. Soc.*, 21(1), 125–141.
- [9] Kim, T., Kim, D. S., Kwon, H.-I., & Jang, L.-C. (2018). Fourier series of sums of products of *r*-derangement functions, *J. Nonlinear Sci. Appl.*, 11(4), 575–590.
- [10] Roman, S. (1984). The Umbral Calculus, Academic Press, Orlando, FL.
- [11] Rota, G. C., & Taylor, B. D. (1994). The classical umbral calculus, *SIAM J. Math. Anal.*, 25, 694–711.
- [12] Sun, Z.-W., & Zagier, D. (2011). On a curious property of Bell numbers, *Bull. Aust. Math. Soc.*, 84, 153–158.