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Abstract: We obtain an extension of the famous Gauss product formula to the case of k-gamma
functions. The Sandor—To6th short product formula [16] is also attended to these functions. An
asymptotic formula and Raabe’s integral analogue are also considered.
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1 Introduction

As a generalization of the classical Euler gamma function I'(z), in 2007 R. Diaz and E. Pariguan
[6] have introduced and studied the notion of k£-gamma function.
For k > 0, the I'y-function is defined by

n!h™(nk)s !
i) = J S

(1)

forx € C\ kZ~, where C is the set of complex numbers, Z~ is the set of negative integers, ()., x
denotes the classical Pochhammer symbol (z),x = z(z + k)(z + 2k) ... (z + (n — 1)k).
For x € C, with Re(x) > 0, it can be proved the integral representation [6]

[e.9]

Fp(x) = /t”‘le_t:dt. (2)
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Also, it satisfies the following properties [6]:

(1) Tr(z+k)=alk(x),

(17) —Fk(x)

= (x)n,k’

It is obvious also that I'; (z) = I'(z).

One of the motivations of introduction of the I'x(x)-function is in its connection with the
symbol (z), x which appears in a variety of contexts (see [5] and the references). In the recent
years, there is an increasing interest about the k-gamma function (see, e.g., [5,6,8-11]).

The famous short product formula of Gauss for the Euler gamma function states that one has

the identity
r(%)r(%)r("#):% (4)

In 1989, J. Sandor and L. T6th [16] studied the short product

1 T (5) - e )

l:l,(l,n)z €2

where (n) is the Euler totient function, and A(n) is the von Mangoldt function. This paper has
evoked large interest, see, e.g. [1-4, 12—15]. Particularly, the recent paper by M. E. Bachraoui
and J. Sandor [2] offers an extension of (5) to the I',-function, which is a classical extension of
gamma function, due to F. H. Jackson (see the references from [2]).

The aim of this paper is to extend (4) and (5) to the case of k-gamma functions.

2 Main results

The main results are contained in the following.

Theorem 2.1. One has the identity

n—1 n—l
kl 2r\ 2 1
Lpl—|=1(— — 6
e (5) - () R
Theorem 2.2. One has the identity

o) (22)72"

n kl (2?”) 2 forn=p
et — - Y~ — \/ﬁ 7
1=1,(I,n)=1 eXp{— (2%) 2 for n #£ p™

where p is an arbitraty prime, and m is an arbitrary positive integer.
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Theorem 2.3. One has the following Raabe type integral formula

1

2
/log Li(kx)dx = log ];T (8)
0
Theorem 2.4. One has the following asymptotic formula
3lo
Z log P ( %ﬁ + O(zlogz), (9)
T

n<lz
where Py(n) is defined in Theorem 2.2.
First, one needs the following auxiliary result.

Lemma 2.1. The following extension of the Euler reflexion formula holds true:

T
k sin (%) '

Proof. By using the fundamental identity (i) of (3) one can write that I'y(k — z) = —2T'x(—x).

Fk(iﬂ)rk(k‘ — $) =

By the Weierstrass type relation (iv) of (3) one gets

To(z )Fk — ) _xH( n2k2>

(where we have omitted some obvious computations). Now, by the classical Euler formula

sinmz _ H (1 B _) 1)

with the application for z := %, identity (10) follows. U

The following auxiliary result was stated first by A. Hurwitz ([7, 16]).
Lemma 2.2 Let s : [0, 1] — C be an arbitrary function, and put
k - k
=% s(5) am=2s(2).
keA(n)
where A(n) ={l:1<1<mn,(l,n) =1}. Then one has
n
= uld)yg (3) , (12)
dln

where 1 is the classical Mobius function.

Corollary 2.1 If F(n) = [] s(£)and G(n) = ﬁ (%), then

keA(n)
nA\ N #(d)
o =II(e(3)) !
() =T (¢ (3 (13)
din
Proof. This follows by letting f = In /" and g = In G in Lemma 2.2. U
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3 Proofs of the theorems

Proof of Theorem 2.1. Letting © = % in identity (10), we get

Fk(];l) T, (k (1—%)) :g'snj%l' (14)

By remarking that, when [ = 1,2,...,n — 1 one has
n—1
[ (+(1-7)) =TI (1)
=1
as 1— Lo nT_l, and applying identity (14)tol = 1, 2,...,n— 1, by term-by-term multiplication

n
of the of the obtained relation, we get

(fir () - (-

[Isin™
I=1
e ’7Tl gn—l
by the well-known trigonometric identity H sin — .
n n
Now, relation (6) follows at once from the above ]

Proof of Theorem 2.2. By Theorem 2.1 and Corollary 2.1, the left-hand side of (7) can be written

as
o\ 2 2 i) =3 Zul(i)
&
h(n) ’
where h(n) =[] (%),
dn
Now, it is well-known that (see, e.g., [7]) Zdﬂ< ) S pld) _ p(n) and > i ( )
dln dln d n dln
%M(d) =
Also, log h(n) = A(n) = logp if n = p™; and it is equal to 0, if n # p™. Thus, identity (7)
follows. 0

Proof of Theorem 2.3. We will use the classical Riemann sum approach, based on the limit

/lf(x)dx _ g&%gf (%) | (15)

Let f(z) = log I'y(kx). By Theorem 2.1, and relation (15) one has

1
) n—1 2m 1 1 2T
/long(kx)dx = nh_)rrolo( 5 108 (7) - %logn> =5 log (y) -
0

Thus gives relation (8). ]
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Proof of Theorem 2.4. By Theorem 2.2 one can write

> log Pi(n) =Y (@ log (%T) - %A(n))

n<z ngm
1
log ZSO —§ZA(n)
n<x n<x

1 2r (3 1

= Zlog == [ a2 1 i
5 log (ﬂx +O(x ogx)) 2O(x)
3log 2~

where we have used the classical asymptotic relations (see, e.g., [7]):

ng = —a: >+ O(xlog ),
n<lx
and
>_Aln
n<x
This completes the proof. ]
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