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1 Introduction

Throughout this work, C designates the field of complex numbers, N indicates the set of positive
integers and N? = N \ {0} . First we recall some concepts related to q-calculus, which we need
in the development of this article. Let (a, q) ∈ C such that |q| < 1. The q-analog of a is given by

[a]q =
1− qa

1− q
, (1)

and the q-factorial function is defined by

[n]q! =
n∏

m=0

[m]q =
(q; q)n
(1− q)n

(2)

93



with (q; q)n =
∏n

m=1 (1−mq) . The corresponding q-binomial coefficient is given by the relation(
n

k

)
q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

. (3)

Finally the q-exponential generating function is defined by

eq(t) =
∑
n≥0

tn

[n]q!
=
∑
n≥0

(1− q)n

(q; q)n
tn. (4)

According to these notations, the q-Hermite polynomials Hn,q(x) are defined by means of the
generating function (see [4, 5])

Fq(x, t) =
∑
n≥0

(−1)nq(
n
2) eq(xt)t

2n

[2n]q!
=
∑
n≥0

Hn,q(x)
tq

[n]q!
. (5)

Recently, Waseem A. Khan and Divesh Srivastava (see [5, 12–14]) introduced the generalized
q-Hermite-based Apostol-type polynomials HF (α)

n,q (x; a, b;λ;µ, ν) by means of the generating
function(

2µtν

λeq(t) + ab

)α∑
n≥0

(−1)nq(
n
2) eq(xt)t

2n

[2n]q!
=
∑
n≥0

HF (α)
n,q (x; a, b;λ;µ, ν)

tq

[n]q!
(6)

with α ∈ N?, λ, a, b ∈ C and |t| < | log(−λ)|. Letting x = 0 in the definition (6):

HF (α)
n,q (a, b;λ;µ, ν) = HF (α)

n,q (0; a, b;λ;µ, ν)

are so called q-Hermite-based Apostol-type numbers of order α and generated by the function(
2µtν

λeq(t) + ab

)α∑
n≥0

(−1)nq(
n
2) t2n

[2n]q!
=
∑
n≥0

HF (α)
n,q (a, b;λ;µ, ν)

tq

[n]q!
. (7)

Other interesting links about q-Hermite-based Apostol-type numbers, (p; q)-analogue type of
Frobenius Genocchi numbers and polynomials and q-analogue of Hermite poly-Bernoulli
numbers and polynomials are illustrated in the works [6–11] of Waseem A. Khan et al.

2 Explicit formula of generalized q-Hermite-based
Apostol-type polynomials

The generalized q-Apostol type polynomials F (α)
n,q (x; a, b;λ) of order α ∈ N? are defined by

means of the generating function(
2µtν

λeq(t) + ab

)α
eq(xt) =

∑
n≥0

F (α)
n,q (x; a, b;λ)

tn

[n]q!
(8)

and the generalized q-Apostol type numbers F (α)
n,q (a, b;λ) = F

(α)
n,q (0; a, b;λ) are given by the

generating function (
2µtν

λeq(t) + ab

)α
=
∑
n≥0

F (α)
n,q (a, b;λ)

tn

[n]q!
. (9)
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Based on Cauchy product of series (see [1]); the q-analog Cauchy product of formal q-analog
generating functions ∑

n≥0

an
t

[n]q!
and

∑
n≥0

bn
t

[n]q!

is given by the following relation(∑
n≥0

an
t

[n]q!

)(∑
n≥0

bn
t

[n]q!

)
=
∑
n≥0

n∑
k=0

(
n

k

)
q

akbn−k
tn

[n]q!
. (10)

Regarding the generating function of generalized q-Hermite-based Apostol-type polynomials;

HF (α)
n,q (x; a, b;λ;µ, ν) follows from q-analog Cauchy product of

(
2µtν

λeq(t)+ab

)α
and Fq(x, t). By

means of identity (10) we have

HF (α)
n,q (x; a, b;λ;µ, ν) =

n∑
k=0

(
n

k

)
q

F
(α)
k,q (a, b;λ)Hn−k,q(x). (11)

To get explicit formula of HF (α)
n,q (x; a, b;λ;µ, ν) we must compute the corresponding explicit

formulae of numbers F (α)
n,q (a, b;λ) and polynomials Hn,q(x).

2.1 Explicit formula of q-Hermite polynomials

q-Hermite polynomials follow from q-analog Cauchy product of

eq(xt) and Fq(t) =
∑
n≥0

(−1)q(
n
2) tn

[n]q!
.

Explicitly we have the following theorem.

Theorem 2.1.

Hn,q(x) =

bn2 c∑
k=0

(−1)kq(
k
2)
(
n

2k

)
q

xn−2k. (12)

Proof. First let the sequence an be given by

an =
1

2
(1 + (−1)n) (−1)b

n
2 cq(

bn2 c
2 ).

Then

Fq(t) =
∑
n≥0

an
t2n

[2n]q!

and

Fq(x, t) =

(∑
n≥0

an
tn

[n]q!

)(∑
n≥0

xntn

[n]q!

)
.

Thus

Fq(x, t) =
∑
n≥0

n∑
k=0

(
n

k

)
q

akx
n−k tn

[n]q!
,
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but
n∑
k=0

(
n

k

)
q

akx
n−k =

bn2 c∑
k=0

(−1)kq(
k
2)
(
n

2k

)
q

xn−2k

and the result follows.

2.2 α-power q-analog generating function

To compute the explicit formula of α-power q-analog generating function; we must revisit some
advanced studies in this area. Consider the formal generating function f(t) =

∑
n≥0 ant

n with the
coefficients an are numbers or polynomials and the first term a0 6= 0. Then fα(t) is a generating
function too, with hint of umbral calculus we noted in [3] that

fα(t) =
∑
n≥0

∑
ai1+···+ain=α

ai1 . . . aint
n. (13)

In the general case α ∈ C?; an improvement of this result is given in our recent work [2], where

fα(t) = aα0 +
∑
n≥1

n∑
k=1

∑
sn(k)

(
α

k

)(
k

k1, . . . , kn

)
aα−k0 ak11 . . . aknn t

n, (14)

sn(k) is the set of all (k1, . . . , kn) ∈ Nn satisfying conditions k1 + · · · + kn = k and
k1+2k2+ · · ·+nkn = n. It is obvious to remark that kj = 0 for j ≥ n−k+1 and sn(k) reduces
to (n− k + 1)-uplet (k1, . . . , kn−k+1). We conclude that

fα(t) = aα0 +
∑
n≥1

n∑
k=1

(α)ka
α−k
0 Bn,k (1!a1, . . . , (n− k + 1)!an−k+1)

tn

n!
. (15)

Bn,k are exponential partial Bell polynomials given by the expression

Bn,k (x1, . . . , xn−k+1) =
n!

k!

∑
sn(k)

(
k

k1, . . . , kn−k+1

) n−k+1∏
r=1

(xr
r!

)kr
(16)

and defined by means of the generating function

1

k!

(∑
m≥1

xm
zm

m!

)
=
∑
n≥k

Bn,k (x1, . . . , xn−k+1)
zn

n!
. (17)

Stirling numbers S2 (n, k) obtained by the function

1

k!

(
et − 1

)k
=
∑
n≥0

S2 (n, k)
tn

n!
(18)

are special case ofBn,k and we haveBn,k (1, . . . , 1) = S2 (n, k). Consequently these polynomials
admit the following formulation

S2 (n, k) =
1

k!

k∑
j=1

(
k

j

)
(−1)k−jjn. (19)

According to exponential partial Bell polynomials, the explicit formula of q-analog generating
function fq(t) =

∑
n≥0 bn

tn

[n]q!
is given by the following theorem.
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Theorem 2.2.

fαq (t) = bα0 +
∑
n≥1

n∑
k=1

(α)kb
α−k
0 [n]q!

n!
Bn,k

(
r!br
(q, q)r

)
(1− q)n tn

[n]q!
, (20)

where

Bn,k

(
r!br
(q, q)r

)
= Bn,k

(
1!b1
(q, q)1

, . . . ,
(n− k + 1)!bn−k+1

(q, q)n−k+1

)
.

Proof. Let the sequence an =
bn

(n)q!
. Then fq(t) =

∑
n≥0 ant

n and by means of the expression

(15) we deduce that

fαq (t) = bα0 +
∑
n≥1

n∑
k=1

(α)ka
α−k
0 [n]q!

n!
Bn,k

(
1!b1
(1)q!

, . . . ,
(n− k + 1)!bn−k+1

(n− k + 1)q!

)
tn

[n]q!
.

But

Bn,k

(
1!b1
(1)q!

, . . . ,
(n− k + 1)!bn−k+1

(n− k + 1)q!

)
= (1− q)nBn,k

(
1!b1
(q, q)1

, . . . ,
(n− k + 1)!bn−k+1

(q, q)n−k+1

)
.

Then

fα(t) = bα0 +
∑
n≥1

n∑
k=1

(α)ka
α−k
0 [n]q!

n!
Bn,k

(
r!br
(q, q)r

)
(1− q)n tn

[n]q!
.

Let auxiliary sequence cn of numbers be defined by means of the generating function(
1

λeq(t) + ab

)α
=
∑
n≥0

cn
tn

[n]q!
.

According to Theorem 2.2 it follows that cn is written in the form given by the following
proposition.

Proposition 2.3. Let λ+ ab 6= 0. Then c0 =
(
λ+ ab

)−α and for n ≥ 1 we have

cn =
n∑
k=1

(−α)k
(
λ+ ab

)−α−k
[n]q

n!
λk(1− q)nBn,k

(
r!

(q, q)r

)
. (21)

Proof. The series expansion of λeq(t) + ab is

λeq(t) + ab = λ+ ab +
∑
n≥1

λ
tn

[n]q!
.

Then(
λeq(t) + ab

)−α
=
(
λ+ ab

)−α
+
∑
n≥1

n∑
k=1

(−α)k
(
λ+ ab

)−α−k
[n]q!

n!
λkBn,k

(
r!

(q, q)r

)
(1−q)n tn

[n]q!
.

Furthermore c0 =
(
λ+ ab

)−α and for n ≥ 1;

cn =
n∑
k=1

(−α)k
(
λ+ ab

)−α−k
[n]q!

n!
λk(1− q)nBn,k

(
r!

(q, q)r

)
.
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Corollary 2.3.1. We have F (α)
n,q (a, b;λ) = 0 for n < να, F (α)

να,q (a, b;λ) = 2µα
(
λ+ ab

)−α
[να]q!

and for n > να:

F (α)
n,q (a, b;λ) = 2µα[n]q!

n−να∑
k=1

(−α)k
(
λ+ ab

)−α−k
(n− να)!

(1− q)n−ναλkBn−να,k

(
r!

(q, q)r

)
. (22)

Proof. We have (
2µtν

λeq(t) + ab

)α
= 2µαtνα

(
1

λeq(t) + ab

)α
.

Then, (
2µtν

λeq(t) + ab

)α
= 2µαtνα

((
λ+ ab

)−α
+
∑
n≥1

cn
tn

[n]q!

)
.

Furthermore,(
2µtν

λeq(t) + ab

)α
= 2µα

(
λ+ ab

)−α
tνα + 2µα

∑
n≥να+1

cn−να
tn

[n− να]q!
.

Finally,∑
n≥0

F (α)
n,q (a, b;λ)

tn

[n]q!
= 2µα

(
λ+ ab

)−α
[να]q!

tνα

[να]q!
+ 2µα

∑
n≥να

[n]q!cn−να
[n− να]q!

tn

[n]q!
.

Then F (α)
n,q (a, b;λ) = 0 for n < να, F (α)

να,q (a, b;λ) = 2µα
(
λ+ ab

)−α
[να]q! and for n ≥ να we

have

F (α)
n,q (a, b;λ) = 2µα

[n]q!

[n− να]q!
cn−να.

Substitute the value of cn−να to get the desired result.

We have already found the necessary tools for computing the explicit formula of q-Hermite-
based Apostol-type polynomial.

Theorem 2.4. If λ+ ab 6= 0 we have HF (α)
n,q (x; a, b;λ;µ, ν) = 0 for n < να and for n ≥ να:

HF (α)
n,q (x; a, b;λ;µ, ν) = 2µα

(
λ+ ab

)−α
[να]q!

(
n

να

)
q

bn−να2 c∑
l=0

(−1)lq(
l
2)
(
n− να

2l

)
q

xn−να−2l

+ 2µα
∑
1

(
n

k

)
q

(
n− k
2l

)
q

[k]q!(1− q)k−να(−1)lλj(−α)j

× q(
l
2)
(
λ+ ab

)−α−j
(k − να)!

Bk−να,j

(
r!

(q, q)r

)
xn−k−2l,

where
∑

1 is the triple sum
∑n

k=να

∑k−να
j=1

∑bn−k2 c
l=0 .

Proof. Since

HF (α)
n,q (x; a, b;λ;µ, ν) =

n∑
k=να

(
n

k

)
q

F
(α)
k,q (a, b;λ)Hn−k,q(x)
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and

Hn−k,q(x) =

bn−k2 c∑
l=0

(−1)lq(
l
2)
(
n− k
2l

)
q

xn−k−2l.

Then

HF (α)
n,q (x; a, b;λ;µ, ν) = 2µα

(
λ+ ab

)−α
[να]q!

(
n

να

)
q

Hn−να,q(x)

+
n∑

k=να+1

(
n

k

)
q

F
(α)
k,q (a, b;λ)Hn−k,q(x)

and the desired result follows.

Remark 2.5. In the case λ+ ab = 0 and λ 6= 0; the result is totally different. We write

λeq(t) + ab = t
∑
n≥0

λ
tn

[n+ 1]q!
.

We consider ν ≥ 1, then we will have(
2µtν

λeq(t) + ab

)α
=

(
2µ

λ

)α
tνα−α

(
1∑

n≥0
tn

[n+1]q !

)α

.

But (
1∑

n≥0
tn

[n+1]q !

)α

= 1 +
∑
n≥1

n∑
k=1

(−α)k[n]q!
n!

Bn,k

(
r!

[n+ 1]q(q, q)r

)
× (1− q)n tn

[n]q!
.

Then (
2µtν

λeq(t) + ab

)α
=

(
2µ

λ

)α
tνα−α +

(
2µ

λ

)α∑
n≥1

n∑
k=1

(−α)k[n]q!
n!

×Bn,k

(
r!

[n+ 1]q(q, q)r

)
(1− q)n t

n+να−α

[n]q!

and (
2µtν

λeq(t) + ab

)α
=

(
2µ

λ

)α
tc +

(
2µ

λ

)α ∑
n≥c+1

n−c∑
k=1

(−α)k
(n− c)!

(1− q)n−c

×Bn−c,k

(
r!

[n− c+ 1]q(q, q)r

)
tn,

where c = να− α. Let us write(
2µtν

λeq(t) + ab

)α
=
∑
n≥0

dn
tn

[n]q!
.

Then dn = 0 for n < c, dc =
(
2µ

λ

)α
[c]q! and for n ≥ c+ 1 we have

dn =

(
2µ

λ

)α n−c∑
k=1

(−α)k[n]q!
(n− c)!

Bn−c,k

(
r!

[n− c+ 1]q(q, q)r

)
× (1− q)n−c .
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By means of the identity (11) we will have HF (α)
n,q (x; a, b;λ;µ, ν) =

∑n
k=c

(
n
k

)
q
dkHn−k,q(x).

Finally for n ≥ c

HF (α)
n,q (x; a, b;λ;µ, ν) =

(
2µ

λ

)α
[c]q!

bn−c2 c∑
l=0

(−1)lq(
l
2)
(
n− c
2l

)
q

xn−c−2l+

(
2µ

λ

)α n∑
k=0

k−c∑
j=1

bn−k2 c∑
l=0

(
n

k

)
q

(
n− k
2l

)
q

(−1)lq(
l
2) (−α)j[k]q!

(k − c)!
Bk−c,j

(
r!

[k − c+ 1]q(q, q)r

)
xn−k−2l.

3 Generalized fq-Hermite-based Apostol-type polynomials

Let α 6= 0 be a complex number and β real number. We consider the formal q-analog generating
function fq(t) =

∑
n≥0 bn

tn

[n]q!
with the condition that b0 is different from zero. A natural

generalization of q-Hermite-based Apostol-type polynomials is given by the following definition

Definition 3.1. The fq-Hermite-based Apostol-type polynomials HF (α)
n,fq

(x; a, b;λ;µ, ν) are given
by the generating function

βtmfαq (t)eq(xt)
∑
n≥0

(−1)nq(
n
2) t2n

[2n]q!
=
∑
n≥0

F
(α)
n,fq

(x; β; c)
tn

[n]q!
. (23)

Thereafter the fq-Hermite-based Apostol-type numbers F (α)
n,fq

(β; c) = F
(α)
n,fq

(0; β; c) are given
by the generating function

βtmfαq (t)
∑
n≥0

(−1)nq(
n
2) t2n

[2n]q!
=
∑
n≥0

F
(α)
n,fq

(β; c)
tn

[n]q!
. (24)

For −α ∈ N?, β = 2µα,m = να and fq(t) = λeq(t) + ab; F (α)
n,fq

(x; β) = HF (α)
n,q (x; a, b;λ;µ, ν).

Polynomials F (α)
n,fq

(x; β; c) follows from q-analog Cauchy product of generating functions

eq(xt)
∑
n≥0

(−1)nq(
n
2) t2n

[2n]q!
=
∑
n≥0

Hn,q(x)
tn

[n]q!

and
βtmfαq (t) =

∑
n≥0

bn
tn

[n]q!
.

The closed formula of polynomial F (α)
n,fq

(x; β; c) is established in the following theorem.

Theorem 3.2.

F
(α)
n,fq

(x; β; c) = βbα0

(
n

m

)
q

[m]q!

bn−m2 c∑
l=0

(−1)lq(
l
2)
(
n−m
2l

)
q

xn−m−2l +

β
∑
2

(
n

k

)
q

(
n− k
2l

)
q

(α)jb
α−j
0 [k]q!

(k −m)!
(1− q)k−m(−1)lq(

l
2)Bk−m,j

(
r!br
(q, q)r

)
xn−k−2l,

where
∑

2 is the triple sum
∑n

r=m+1

∑k−m
j=1

∑bn−k2 c
l=0 .
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Proof. Since

fαq (t) = bα0 +
∑
n≥1

n∑
k=1

(α)kb
α−k
0

n!
Bn,k

(
r!br
(q, q)r

)
(1− q)ntn,

then

tmfαq (t) = bα0 [m]q!
tm

[m]q!
+
∑

n≥m+1

n−m∑
k=1

(α)kb
α−k
0 [n]q!

(n−m)!
Bn−m,k

(
r!br
(q, q)r

)
(1− q)n−m tn

[n]q!
.

Writing

βtmfαq (t) =
∑
n≥0

cn
tn

[n]q!
;

then cn = 0 for n < m, cm = βbα0 [m]q! and for n > m we have

cn = β

n−m∑
k=1

(α)kb
α−k
0 [n]q!

(n−m)!
Bn−m,k

(
r!br
(q, q)r

)
(1− q)n−m

Thereafter in means of q-analog Cauchy product of generating functions we have

F
(α)
n,fq

(x; β; c) =
n∑

r=m

(
n

k

)
q

ckHn−k(x)

and the desired result follows.
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