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1 Introduction

The (unsigned) Lah numbers, denoted by L(n, k), count the number of partitions of a set X with
n elements into k nonempty linearly ordered subsets. These numbers are known to satisfy the
following basic combinatorial properties:

• explicit formula

L(n, k) =
n!

k!

(
n− 1

k − 1

)
; (1)

• recurrence relation

L(n+ 1, k) = L(n, k − 1) + (n+ k)L(n, k); (2)

• exponential generating function
∞∑
n=0

L(n, k)
tn

n!
=

1

k!

(
t

1− t

)k
. (3)

80



The numbers L(n, k) are often defined as coefficients of rising factorials in terms of falling
factorials. That is

〈t〉n =
n∑
k=0

L(n, k)(t)k, (4)

where
〈t〉n = t(t+ 1)(t+ 2) · · · (t+ n− 1)

is the rising factorial of t of order n and

(t)k = t(t− 1)(t− 2) · · · (t− k + 1)

is the falling factorial of t of order k with 〈t〉0 = (t)0 = 1 and (−t)n = (−1)n 〈t〉n. The Lah
numbers are actually closely-related with the well-known Stirling numbers. To illustrate this,
we first recall that the Stirling numbers of the first and second kinds, denoted by

[
n
j

]
and
{
n
j

}
,

respectively, are defined as coefficients in the expansions of the relations

(t)n =
n∑
j=0

(−1)n−j
[
n

j

]
tj (5)

and

tn =
n∑
j=0

{
n

j

}
(t)j. (6)

Notice that putting −t in place of t in (5) yields

〈t〉n =
n∑
j=0

[
n

j

]
tj. (7)

By substituting (6) in the right-hand side of (7), we get

〈t〉n =
n∑
j=0

[
n

j

] j∑
k=0

{
j

k

}
(t)k

=
n∑
k=0

(
n∑
j=k

[
n

j

]{
j

k

})
(t)k.

By combining this with (4) and comparing the coefficients of (t)k, we are able to write

L(n, k) =
n∑
j=k

[
n

j

]{
j

k

}
. (8)

It is important to note that here, the numbers
[
n
j

]
particularly refer to the “unsigned” Stirling

numbers of the first kind which count the number of permutations of the n-element set X into j
disjoint cycles. Similarly, the Stirling numbers of the second kind

{
n
j

}
can be combinatorially

interpreted as the number of partitions of X into j nonempty blocks. With this, the Bell numbers
Bn are defined as the total number of partitions of the n-element set X . That is,

Bn =
n∑
k=0

{
n

k

}
. (9)
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The paper of Petkovšek and Pisanski [20], and the books of Comtet [4] and Chen and Kho [2]
contain detailed discussions on the Lah, Stirling and Bell numbers, including their respective
combinatorial properties and interpretations. In addition to these, Qi [21] recently obtained an
explicit formula for the Bell numbers expressed in terms of both the Lah numbers and the Stirling
numbers of the second kind, viz.

Bn =
n∑
k=1

(−1)n−k
(

k∑
`=1

L(k, `)

){
n

k

}
. (10)

The results of this paper are organized as follows. In Section 2, we present the translated
Whitney numbers and derive some formulas which generalize already-existing identities for the
classical Lah numbers, including one that will generalize (10). In Section 3, we establish the
q-analogues of some of the results in Section 2 using as framework the translated q-Whitney
numbers.

2 Translated Whitney numbers

In 2013, Belbachir and Bousbaa [1] introduced the translated Whitney numbers using a
combinatorial approach which involves “mutations” of some elements of a given finite set. To be
more precise, the translated Whitney numbers of first kind, denoted by w̃(α)(n, k), were defined
as the number of permutations of n elements with k cycles such that the elements of each cycle
can mutate in α ways, except the dominant one while the translated Whitney numbers of the
second kind, denoted by W̃(α)(n, k), were defined as the number of partitions of the an n-element
set into k subsets such that the elements of each subset can mutate in α ways, except the dominant
one. These numbers were shown to satisfy the recurrence relations [1, Theorems 2 and 8]

w̃(α)(n, k) = w̃(α)(n− 1, k − 1) + α(n− 1)w̃(α)(n− 1, k) (11)

and
W̃(α)(n, k) = W̃(α)(n− 1, k − 1) + αkW̃(α)(n− 1, k), (12)

and the horizontal generating functions [1, Theorems 4 and 10]

(t| − α)n =
n∑
k=0

w̃(α)(n, k)x
k (13)

and

xn =
n∑
k=0

W̃(α)(n, k)(t|α)k, (14)

where (t|α)n denotes the generalized factorial of t of increment α given by

(t|α)n =
n−1∏
i=0

(t− iα), (t|α)0 = 1.

In the same paper, Belbachir and Bousbaa [1] also defined translated Whitney–Lah numbers,
denoted by ŵ(α)(n, k), as the number of ways to distribute the set {1, 2, . . . , n} into k ordered
lists such that the elements of each list can mutate with α ways, except the dominant one. The
values of the numbers ŵ(α)(n, k) can be computed using the recurrence relation [1, Theorem 13]
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ŵ(α)(n, k) = ŵ(α)(n− 1, k − 1) + α(n+ k − 1)ŵ(α)(n− 1, k) (15)

and can be generated using [1, Corollary 15]

(t| − α)n =
n∑
k=0

ŵ(α)(n, k)(t|α)k. (16)

Similar to what is observed in equation (8), the translated Whitney–Lah numbers may also be
expressed as sum of products of w̃(α)(n, k) and W̃(α)(n, k) as follows [1, Corollary 14]

ŵ(α)(n, k) =
n∑
j=k

w̃(α)(n, j)W̃(α)(j, k). (17)

It is evident that the translated Whitney and Whitney–Lah numbers are generalizations of the
Stirling and Lah numbers, respectively. This may be verified by simply setting α = 1 in the
defining relations of the former.

Recently, Mansour et al. [16] defined the recurrence relation

u(n, k) = u(n− 1, k − 1) + (an−1 + bk)u(n− 1, k) (18)

for two sequences (ai)i≥0 and (bi)i≥0 with boundary conditions given by

u(n, 0) =
n−1∏
i=0

(ai + b0), u(0, k) = δ0,k,

where

δi,j =

{
0, if i 6= j

1, if i = j

is the Kronecker delta. Notice that if an−1 = α(n−1) and bk = αk, the above recurrence relation
coincides with equation (15). Moreover, the following useful formula was first established in the
same paper:

u(n, k) =
k∑
j=0

( ∏n−1
i=0 (bj + ai)∏n−1

i=0,i 6=j(bj − bi)

)
. (19)

In a later paper, Mansour et al. [17] used the identity in (19) to derive an explicit formula for a
certain generalization of the translated Whitney numbers (see [17, Equation 19]). We also note
of another related paper by Mansour and Shattuck [19] which provide additional insights on Lah
numbers.

Now, for ai = αi and bj = αj, we utilize equation (19) to obtain an explicit formula for
ŵ(α)(n, k) given in the next theorem.

Theorem 2.1. The translated Whitney–Lah numbers satisfy the following explicit formula:

ŵ(α)(n, k) =
αn−k

k!

k∑
j=0

(−1)k−j
(
k

j

)
〈j〉n . (20)

This theorem allows us to write the numbers ŵ(α)(n, k) in a closed form similar to (1). It is
implied in the proof of the succeeding corollary.
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Corollary 2.1.1. The translated Whitney–Lah numbers satisfy the following relation:

ŵ(α)(n, k) = αn−kL(n, k). (21)

Proof. Since 〈j〉n = (j + n− 1)n, then

ŵ(α)(n, k) =
αn−k

k!

k∑
j=0

(−1)k−j
(
k

j

)
(j + n− 1)n

= αn−k
n!

k!

k∑
j=0

(−1)k−j
(
k

j

)(
j + n− 1

n

)
.

From [9, Identity 5.24], it is known that the binomial coefficients satisfy the following useful
identity: ∑

j

(
`

m+ j

)(
s+ j

n

)
(−1)j = (−1)`+m

(
s−m
n− `

)
. (22)

Hence, with m = 0, ` = k and s = n− 1, we obtain

ŵ(α)(n, k) = αn−k
n!

k!

(
n− 1

n− k

)
. (23)

This completes the proof.

Corollary 2.1.2. The translated Whitney–Lah numbers satisfy the following exponential
generating function:

∞∑
n=k

ŵ(α)(n, k)
tn

n!
=

1

k!

(
t

1− αt

)k
. (24)

Proof. Applying (20), and both the binomial and negative binomial expansions,
∞∑
n=k

ŵ(α)(n, k)
tn

n!
=

1

αkk!

k∑
j=0

(−1)k−j
(
k

j

) ∞∑
n=k

(αt)n
(
j + n− 1

n

)

=
1

αkk!

k∑
j=0

(−1)k−j
(
k

j

)
(1− αt)−j

=
1

αk
[
(1− αt)−1 − 1

]k
=

1

k!

(
t

1− αt

)k
.

Clearly, the results shown in the previous corollaries give back identities (1) and (3) for the
classical Lah numbers when α = 1. The binomial identity in (22) can also be utilized to derive
another interesting formula for the translated Whitney–Lah numbers. By setting s = n, ` = k−1

and m = −1,
k∑
j=1

(
k − 1

j − 1

)(
n+ j

n

)
(−1)j = (−1)k−2

(
n+ 1

n− k + 1

)
.

Multiplying both sides by k! gives
k∑
j=1

(
k − 1

j − 1

)(
n+ j

n

)
(−1)j =

k∑
j=1

ŵ(α)(k, j)
(n+ j)!(−1)j

n!αk−j

in the left-hand side after using (23).
84



On the other hand, the right-hand side simply becomes

(−1)k−2
(

n+ 1

n− k + 1

)
= (−1)k (n+ 1)!

(n− k + 1)!
.

Thus, we have derived the following theorem:

Theorem 2.2. For k ≥ 2 and n ≥ k − 1, the translated Whitney–Lah numbers satisfy
k∑
j=1

(−α)jŵ(α)(k, j)(n+ j)! = (−α)k n!(n+ 1)!

(n− k + 1)!
. (25)

When α = 1, we immediately recognize
k∑
j=1

(−1)jL(k, j)(n+ j)! = (−1)k n!(n+ 1)!

(n− k + 1)!
, (26)

an identity for the classical Lah numbers which was proved using six different methods by Guo
and Qi [10]. A more direct approach in establishing (25) is as follows.

Alternative proof of Theorem 2.2. The generating function in (16) may be rewritten as

(−α)k(−t)k =
k∑
j=0

αkŵ(α)(k, j)(t)j. (27)

Since (−n− 1)jn! = (−1)j(n+ j)!, then replacing t with −n− 1 in the previous equation gives

(−α)kn!(n+ 1)k =
k∑
j=0

(−α)jŵ(α)(k, j)(n+ j)!

as desired.

We now proceed to deriving a generalization of the Bell number formula in (10). In the paper
of Qi [21], two methods to prove (10) are presented. The first one employs the Faa di Bruno’s
formula and the n-th derivative of the exponential function e±1/x given by(

e±1/x
)(n)

= (−1)ne±1/x
n∑
k=1

(±1)kL(n, k) 1

tn+k

found in the paper of Daboud et al. [7]. The second is less complicated and requires only the use
of the inverse relation

fn =
n∑
j=0

[
n

j

]
gj ⇐⇒ gn =

n∑
j=0

(−1)n−j
{
n

j

}
fj. (28)

To obtain our next objective, we adopt a process that is similar to the latter since by using the
orthogonal relations [13, Corollary 4.2]

n∑
j=m

(−1)j−mW̃(α)(n, j)w̃(α)(j,m) =
n∑

j=m

(−1)n−jw̃(α)(n, j)W̃(α)(j,m) = δm,n,

it can be easily shown that the following inverse relation for the translated Whitney numbers of
the first kind is valid:

fn =
n∑
j=0

w̃(α)(n, j)gj ⇐⇒ gn =
n∑
j=0

(−1)n−jw̃(α)(n, j)fj. (29)
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Now, taking gj = W̃(α)(j, k) and fn = ŵ(α)(n, k), we can apply the above inverse relation to
(17) to get

W̃(α)(n, k) =
n∑
j=0

(−1)n−jW̃(α)(n, j)ŵ(α)(j, k). (30)

We then recall that the translated Dowling numbers [15], denoted by D(α)(n), are defined as the
sum of the translated Whitney numbers of the second kind, i.e.

D(α)(n) =
n∑
k=0

W̃(α)(n, k). (31)

So by summing both sides of (30) up to n and appyling (31),

D(α)(n) =
n∑
k=0

n∑
j=0

(−1)n−jW̃(α)(n, j)ŵ(α)(j, k).

Thus, we have proved the result in the next theorem.

Theorem 2.3. The translated Dowling numbers satisfy the explicit formula given by

D(α)(n) =
n∑
j=0

(−1)n−j
(

j∑
k=0

ŵ(α)(j, k)

)
W̃(α)(n, j). (32)

To close this section, notice that by (21), we may write

D(α)(n) =
n∑
j=0

(−1)n−j
(

j∑
k=0

αj−kL(j, k)

)
W̃(α)(n, j).

Since it is known that [13, 15] W̃(1)(n, j) =
{
n
j

}
and D(1)(n) = Bn, it means that the formula

in (32) reduces to the one in (10) when α = 1. Moreover, we acknowledge a generalization of
(32) that can be seen in the paper of Corcino et al. [6]. The result in the said paper involves an
explicit formula for the (r, β)-Bell numbers (or r-Dowling numbers). Readers are also directed
to another paper by Corcino et al. [5] which contain more related results.

3 Translated q-Whitney–Lah numbers

Let [n]q denote the q-analogue of an integer n defined by

[n]q =
qn − 1

q − 1
= 1 + q + q2 + · · ·+ qn−1

and let [t|α]n denote the product

[t|α]n =
n−1∏
i=0

[t− iα]q.

The translated q-Whitney numbers of the first and second kinds [14], denoted by w1
(α)[n, k]q and

w2
(α)[n, k]q, respectively, are defined in terms of the following horizontal generating functions:
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[t|α]n =
n∑
k=0

w1
(α)[n, k]q[t]

k
q (33)

and

[t]nq =
n∑
k=0

w2
(α)[n, k]q[t|α]k. (34)

Various combinatorial properties of the numbers w1
(α)[n, k]q and w2

(α)[n, k]q and a certain
combinatorial interpretation in the context of A-tableaux have already been established in the
same paper. The properties include the inverse relation [14, Corollary 2.10]

fn =
n∑
j=0

w1
(α)[n, j]qgj ⇐⇒ gn =

n∑
j=0

w2
(α)[n, j]qfj. (35)

In general, the term “q-analogue” refers to a mathematical expression in terms of a parameter q
such that as q → 1, it reduces to a known identity or formula. For instance, it is clear that

lim
q→1

[n]q = n.

Other examples are the q-binomial coefficient(
n

k

)
q

=
k∏
j=1

qn−j+1 − 1

qj − 1
=

[n]q!

[k]q![n− k]q!

and the q-falling factorial of n of order k

[n]q,k =
k−1∏
j=0

qn−j − 1

q − 1
=

[n]q!
[n− k]q!,

where [n]q! =
∏n

i=1[i]q is the q-factorial of n. See for instance the following limits which are
easy to verify:

lim
q→1

[n]q! = n!, lim
q→1

(
n

k

)
q

=

(
n

k

)
, lim

q→1
[n]q,k = (n)k.

The book of Kac and Cheung [11] is a rich source for further discussions on q-analogues. The
study of q-analogues of mathematical identities has been the interest of many mathematicians over
a long period of time. For the case of the Lah numbers, Lindsay et al. [12] defined a q-analogue
Lq(n, k) in terms of the following relation:

t(t+ [1]q) · · · (t+ [n− 1]q) =
n∑
k=0

Lq(n, k)t(t− [1]q) · · · (t− [k − 1]q). (36)

An earlier q-analogue of the Lah numbers can be attributed to Garsia and Remmel [8] who defined
the q-Lah numbers, denoted by Lq(n, k), as

[t]q[t+ 1]q · · · [t+ n− 1]q =
n∑
k=0

Lq(n, k)[t]q[t− 1]q · · · [t− k + 1]q (37)

with the recurrence relation

Lq(n+ 1, k) = qn+k−1Lq(n, k − 1) + [n+ k]qLq(n, k) (38)
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and explicit formula

Lq(n, k) =

(
n

k

)
q

[n− 1]q!

[k − 1]q!
qk(k−1). (39)

A more general notion was also introduced in [14, Equation 15] called the translated q-Whitney
numbers of the third kind, denoted by L(α)[n, k]q, which are defined as coefficients in the
expansion of

[t| − α]n =
n∑
k=0

L(α)[n, k]q[t|α]k. (40)

These numbers can be computed recursively using the formula [14, Equation 31]

L(α)[n+ 1, k]q = qα(n+k−1)L(α)[n, k − 1]q + [α(n+ k)]qL(α)[n, k]q. (41)

Looking at equations (38) and (41), it is easy to see that L(1)[n, k]q = Lq(n, k).

Theorem 3.1. The numbers L(α)[n, k]q satisfy the following:

L(α)[n, k]q =
n∑
j=0

w1
(−α)[n, j]qw

2
(α)[j, k]q. (42)

Proof. Putting −α in place of α in (33) and by applying (34),

[t| − α]n =
n∑
k=0

w1
(−α)[n, k]q[t]

k
q

=
n∑
j=0

{
n∑
k=j

w1
(−α)[n, k]qw

2
(α)[k, j]q

}
[t|α]j.

Comparing the coefficients of [t|α]j in the last equation with that of (40) gives the desired
result.

The identity in the previous theorem suggests that the numbers L(α)[n, k]q may be referred to
as the translated q-Whitney–Lah numbers. To establish an explicit formula, we will use a method
different from the one used in the previous section. We start by rewriting (40) into the form

[αk| − α]n =
n∑
j=0

L(α)[n, j]q[αk|α]j

=
k∑
j=0

(
k

j

)
qα

L(α)[n, j]q[αk|α]j(
k
j

)
qα

 .

Since the well-known q-binomial inversion formula can be expressed as

fk =
k∑
j=0

(
k

j

)
qα
gj ⇐⇒ gk =

k∑
j=0

(−1)k−jqα(
k−j
2 )
(
k

j

)
qα
fj, (43)

then with fk = [αk| − α]q and gj =
L(α)[n,j]q [αk|α]j

(kj)qα
, we get

[αk|α]kL(α)[n, k]q =
k∑
j=0

(−1)k−jqα(
k−j
2 )
(
k

j

)
qα
[αj| − α]n,

the result in the next theorem.
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Theorem 3.2. The translated q-Whitney–Lah numbers satisfy the following explicit formula:

L(α)[n, k]q =
1

[k]qα ![α]kq

k∑
j=0

(−1)k−jqα(
k−j
2 )
(
k

j

)
qα
[αj| − α]n. (44)

Formula (44) is a q-analogue of the explicit formula in (20) since

lim
q→1

[k]qα ! = k!, lim
q→1

[αj|α]n = αn 〈j〉n

and

lim
q→1

L(α)[n, k]q = lim
q→1

(
1

[k]qα ![α]kq

k∑
j=0

(−1)k−jqα(
k−j
2 )
(
k

j

)
qα
[αj| − α]n

)

=
αn−k

k!

k∑
j=0

(−1)k−j
(
k

j

)
〈j〉n .

Furthermore, we may use the above explicit formula in establishing a kind of exponential
generating function for the numbers L(α)[n, k]q. But before proceeding, we first mention the
following useful identities:

[αj| − α]n = [α]nq [j + n− 1]qα,n,
[j + n− 1]qα,n

[n]qα !
=

(
j + n− 1

n

)
qα

(45)

and
n−1∏
k=0

1

1− qkt
=
∞∑
k=0

(
n+ k − 1

k

)
q

tk. (46)

Corollary 3.2.1. The translated q-Whitney–Lah numbers satisfy the following exponential
generating function:

∞∑
n=0

L(α)[n, k]q
tn

[n]qα !
=

1

[k]qα ![α]kq

k∑
j=0

(−1)k−jqα(
k−j
2 )
(
k

j

)
qα

j−1∏
n=0

(1− qαn[α]qt)−1. (47)

Proof. From equations (44) and (45), we have
∞∑
n=0

L(α)[n, k]q
tn

[n]qα !
=

1

[k]qα ![α]kq

k∑
j=0

(−1)k−jqα(
k−j
2 )
(
k

j

)
qα

∞∑
n=0

(
j + n− 1

n

)
qα
([α]qt)

n.

The result is obtained by applying (46) in the second summation.

By taking the limit of (47) as q → 1,

lim
q→1

∞∑
n=0

L(α)[n, k]q
tn

[n]qα !
=

1

αkk!

k∑
j=0

(−1)k−j
(
k

j

)(
1

1− αt

)j
which in turn simplifies to (24). On the other hand, the next theorem contains a q-analogue
of (25).

Theorem 3.3. The translated q-Whitney–Lah numbers satisfy the following:
k∑
j=0

(−[α]q)jq−nj−(
j+1
2 )L(α)[k, j]q[n+ j]qα ! =

(−[α]q)k[n]qα ![n+ 1]qα !

[n− k + 1]qα !
. (48)
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Proof. The proof is somewhat parallel to the alternative proof of Theorem 2.2. We proceed by
rewriting (40) as

[−α]kq
k−1∏
i=0

[−t− i]qα =
k∑
j=0

[α]jqL(α)[k, j]q

j−1∏
i=0

[t− i]qα . (49)

We put −n− 1 in place of t and multiply both sides by [n]qα ! so that the left-hand side becomes

[−α]kq
k−1∏
i=0

[n+ 1− i]qα [n]qα ! = [−α]kq [n]qα ![n+ 1]qα,k

=
[−α]kq [n]qα ![n+ 1]qα !

[n− k + 1]qα !

while the right-hand side is

k∑
j=0

[α]jqL(α)[k, j]q[n]qα !

j−1∏
i=0

[t− i]qα =
k∑
j=0

(−[α]q)jq−nj−(
j+1
2 )L(α)[k, j]q[n+ j]qα !,

where the identity j(n + 1) +
(
j
2

)
= nj +

(
j+1
2

)
is used. Combining these equations give the

desired result.

The corollary below is a direct consequence of (48) when we set α = 1. This formula is a
q-analogue of Guo and Qi’s [10] identity in (26) which can easily be verified by taking the limit
as q → 1.

Corollary 3.3.1. The q-Lah numbers satisfy

k∑
j=0

(−1)jq−nj−(
j+1
2 )Lq(k, j)[n+ j]q! =

(−1)k[n]q![n+ 1]q
[n− k + 1]q

. (50)

The translated q-Dowling numbers [14], denoted by D(α)[n]q, are defined by the following
sum:

D(α)[n]q =
n∑
k=0

w2
(α)[n, k]q. (51)

The last theorem presents a q-analogue of the explicit formula in (32).

Theorem 3.4. The translated q-Dowling numbers satisfy the following explicit formula

D(α)[n]q =
n∑
j=0

(
k∑
j=0

L(α)[j, k]q

)
w2

(−α)[n, j]q. (52)

Proof. We put −α in place of α, and set gj = w2
(α)[j, k]q and fn = L(α)[n, k]q in the inverse

relation in (35) so that when the resulting relation is applied to (42),

w2
(α)[n, k]q =

n∑
j=0

w2
(−α)[n, j]qL(α)[j, k]q.

The desired result is obtained by summing over up to n.
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The explicit formula [15, Equation 10]

W̃(α)(n, k) =
1

αkk!

k∑
j=0

(−1)k−j
(
k

j

)
(αj)n

shows that W̃(−α)(n, k) = (−1)n−kW̃(α)(n, k). Hence,

lim
q→1

D(α)[n]q = lim
q→1

n∑
j=0

(
k∑
j=0

L(α)[j, k]q

)
w2

(−α)[n, j]q

=
n∑
j=0

(−1)n−j
(

j∑
k=0

ŵ(α)(j, k)

)
W̃(α)(n, j)

which is precisely (32). A similar formula for a q-analogue of the r-Dowling numbers can be
seen in the paper of Cillar and Corcino [3]. However, since the definitions of their q-analogue and
ours are distinctly motivated, it is difficult to say that their result is a generalization of the one in
Theorem 3.4.

As we end, it may be worthwhile to say that the present paper was not able to express the
explicit formula of L(α)[n, k]q in a way similar to that of (23) for the case of ŵ(α)(n, k). Perhaps
this can be done by establishing a q-analogue of the binomial identity in (22) and use it to simplify
the right-hand side of the explicit formula in (44).
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