Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 26, 2020, No. 4, 63–67 DOI: 10.7546/nntdm.2020.26.4.63-67

On Pythagorean triplet semigroups

Antoine Mhanna

SRS College Kleiat Lebanon e-mail: tmhanat@yahoo.com

Received: 27 November 2019 Revised: 3 November 2020 Accepted: 9 November 2020

Abstract: In this note we explain the two pseudo-Frobenius numbers for $\langle m^2 - n^2, m^2 + n^2, 2mn \rangle$ where m and n are two coprime numbers of different parity. This lets us give an Apéry set for these numerical semigroups.

Keywords: Numerical semigroups, Primitive Pythagorean triplets, Pseudo-Frobenius number. 2010 Mathematics Subject Classification: 11D07, 11D45, 11D85, 20M14.

1 Introduction and preliminaries

Let a_1, \ldots, a_n be *n* positive integers with $gcd(a_1, \ldots, a_n) = 1$, the set

$$
S := \left\{ \sum_{i=1}^{s} \lambda_i a_i \middle| s \in \mathbb{N}, \lambda_i \ge 0, \text{for all } i \right\}
$$

be called the numerical semigroup S and the integers a_1, \ldots, a_n be its generators. A numerical semigroup is minimally generated by a_1, \ldots, a_n if we cannot remove a generator without changing the set S; in this case we denote S by $\langle a_1, a_2, \ldots, a_n \rangle$. Given $S \neq \mathbb{N}$, the number $F(S) := \max\{n \in \mathbb{N} | n \notin S\}$ (which exists, see [5, Theorem 1.0.1]) is the Frobenius number of S . For a numerical semigroup S let

$$
T(S) := \{ x \in \mathbb{N} | x \notin S, x + s \in S, \text{ for all } s \in S, s > 0 \}.
$$

The cardinality of $T(S)$ is called the type of S and a number in $T(S)$ is called a pseudo-Frobenius number. The Apéry set of S with respect to $n \in S$ is the set $Ap(S, n) = \{s \in S | s - n \notin S \}$ and the genus of S denoted $q(S)$ is the cardinality of $\{N\setminus S\}$.

Definition 1. A numerical semigroup is said to be Arf if for all $s, r, t \in S$ with $s \geq r \geq t$, $s + r - t \in S$ *. For* $S = \langle a_1, \ldots, a_n \rangle$ *we define for every* $i \in \{2, \ldots, n\}$ *:*

$$
c_i = \min\{k \in \mathbb{N} \setminus \{0\} | k \cdot a_i \in \langle a_1, \ldots, a_{i-1} \rangle\},\
$$

S is then free if $a_1 = c_2 \cdots c_n$.

Remark 1 ([2,4,8]). Let a_1, a_2, \ldots, a_k be positive integers. If $gcd(a_2, \ldots, a_n) = d$ and $a_j = d.a'_j$ *for each* $j > 1$ *, then*

- The type of $\langle a_1, a_2, \ldots, a_n \rangle$ equals the type of $\langle a_1, a'_2, \ldots, a'_n \rangle$.
- *The type of* $S := \langle a_1, a_2, a_3 \rangle$ *is at most two (see* [2, Theorem 11]*) and it equals two if* S *has pairwise coprime minimal generators (see* [7]*).*
- Ap(S, n) has n elements and $g(S) = \frac{1}{n} \sum_{w \in \mathrm{Ap}(S,n)} w \frac{n-1}{2}$ $\frac{-1}{2}$ (see [8, Chapter 1]).

A survey on finding Frobenius numbers for numerical semigroups can be found in [5].

A Pythagorean triplet is a positive integer triplet (x, y, z) verifying $x^2 + y^2 = z^2$. We say that this triplet is primitive if any two integers from x, y, z are coprime and we have: *Every primitive Pythagorean triplet can be expressed as* $(m^2 - n^2, 2mn, m^2 + n^2)$ where m and n are coprime *numbers of different parity*.

Proposition 1. Let a and b be two coprime positive integers and let (x_0, y_0) denote the nonneg*ative couple (when it exists) verifying* $ax_0 + by_0 = n$, $0 \le y_0 < a$, $(by_0 = n \pmod{a}$ *then the number of nonnegative integer solutions to the equation* $ax + by = n$ equals $\left\lfloor \frac{n - by_0}{ab} \right\rfloor$ $+1.$

Proof. Set $x_i = x_0 - ib$ and $y_i = ia + y_0$, since a and b are coprime, for every i there is a unique y_i with $ia \leq y_i < (i + 1)a$ such that $ax_i + by_i = n$. Counting the nonnegative couples (x_i, y_i) we get the result. \Box

Corollary 1. Let m and n be two coprime positive integers of different parity. If $t \in \mathbb{N}$, $t > 1$ *and* $m > (t + 1)n$ *, then* (tn, tn) *is the unique nonnegative solution to*

$$
2tmn = (m-n)x + y(m+n).
$$
\n(1)

Proof. We apply Proposition 1 $y_0 = tn < m - n$, notice that $tmn - tn^2 < m^2 - n^2 \iff$ $tm(n-m) - n^2(t-1) < 0.$

Corollary 2 (Bézout). *The integer solutions of* (1) *are of the form:*

$$
(tn + k(m+n), tn - k(m-n))
$$

for some $k \in \mathbb{Z}$.

2 Main result

From the definition of a pseudo-Frobenius number F for a given $S := \langle a_1, a_2, a_3 \rangle$, $z := F + a_3 \in S$ but since $F \notin S$, $z = \sum^2$ $i=1$ $u_i a_i$, consequently any such number F can be written as $u a_1 + v a_2 - a_3$ for some $u > 0$ and $v > 0$. It is known ([6]) that for any numerical semigroup $\langle a, b \rangle$ a positive integer $x \notin S$ if and only if $x = \alpha a - \beta b$ for some $0 < \alpha < b$ and $0 < \beta < a$.

We set $a_1 = 2mn$, $a_2 = m^2 + n^2$ and $a_3 = m^2 - n^2$ so $S := \langle m^2 - n^2, m^2 + n^2, 2mn \rangle$: when $m = n + 1$, $a_1 = 2n(n + 1)$, $a_2 = 2n^2 + 2n + 1 = (2n + 1)(2n + 1) - 2n(n + 1) =$ $2n(n+1)(2n) - (2n^2-1)(2n+1)$ and $a_3 = 2n+1$, using Theorem 11's proof [2], we can find the two pseudo-Frobenius numbers of this semigroup (we leave it as an exercise). This method does not easily settle the general case, however the Frobenius number $F(S)$ (as $q(S)$) was given in Example 3 of [1], see also [3]. Recently a complete (different) study of Pythagorean semigroups including finding $T(S)$, $F(S)$ and $q(S)$ was done by A. Tripathi and E. F. Elizeche [9]. We thank the authors for correspondences.

Remark 2. We have $m(2mn) = n(m^2 - n^2) + n(m^2 + n^2)$, $m(m^2 + n^2) = n(2mn) + m(m^2 - n^2)$ $and (m+n)(m^2 - n^2) = (m-n)(m^2 + n^2) + (m-n)(2mn).$

Theorem 2.1. Let $S = \langle m^2 - n^2, m^2 + n^2, 2mn \rangle$, m coprime with n and of distinct parity, then $T(S) = \{PF(S), F(S)\}\$ where

$$
PF(S) = (m-1)(m^2 + n^2) + (n-1)(m^2 - n^2) - 2mn
$$

and

$$
F(S) = (m-1)(m2 – n2) + (m – 1)2mn – (m2 + n2)
$$

Proof. The proof is straight computationally, we verify that the two given numbers can not be in S and that $T(S) + a_i \in S$, $(i = 1, 2, 3)$.

$$
F(S) + a_2 = (m - 1)(m^2 - n^2) + (m - 1)2mn
$$

\n
$$
F(S) + a_3 = (m - 1)(m^2 + n^2) + (m - n - 1)2mn
$$

\n
$$
F(S) + a_1 = (n - 1)(m^2 + n^2) + (m + n - 1)(m^2 - n^2)
$$

\n
$$
PF(S) + a_3 = (m - n - 1)(m^2 + n^2) + (m - 1)2mn
$$

\n
$$
PF(S) + a_1 = (m - 1)(m^2 + n^2) + (n - 1)(m^2 - n^2)
$$

\n
$$
PF(S) + a_2 = (n - 1)2mn + (m + n - 1)(m^2 - n^2)
$$

Suppose $F(S) = \alpha(m^2 + n^2) + \beta(m^2 - n^2) + \gamma(2mn)$ where α, β, γ are nonnegative and we can assume that $\gamma < m$ by Remark 2 with $\alpha < 2m - 3$. If $\gamma = \alpha + v \ge \alpha$, then $F(S) =$ $\alpha(m+n)^2 + \beta(m-n)(m+n)+v(2mn)$ implying that $(m+n)$ divides $2mn(v-m)$, a contradiction. If otherwise $\gamma < \alpha = \gamma + \nu < 2m-3$, we get $F(S) = \gamma(m+n)^2 + \beta(m-n)(m+n) + \nu(m^2+n^2)$, which implies that $(m + n)$ divides $2mn(v + m)$, so $v = n$ or $v = m + 2n$. In case $v = n$, respectively $v = m + 2n$, after simplifying by $(m+n)$, we need to solve $2mn = (\gamma + 1+n)(m+n) +$ $(\beta - m + 1)(m - n)$, respectively, $4mn = (\gamma + 1 + m + 2n)(m + n) + (\beta - m + 1)(m - n)$, from Corollary 2 we see that supposing $n+1+\gamma = n+k(m-n)$, $(k \ge 1)$ (so $\beta-m+1 = n-k(m+n)$), $\beta = m-1+n-k(m+n) < 0$, a contradiction. The same contradiction is true for the respective case.

For the other number $PF(S) = (m-1)(m^2 + n^2) + (n-1)(m^2 - n^2) - 2mn$ the same arguments hold: Suppose $PF(S) = \alpha(m^2 + n^2) + \beta(m^2 - n^2) + \gamma(2mn)$ where α, β, γ are nonnegative and we can assume that $\gamma < m$ by Remark 2 with $\alpha < m + 2n - 3$. If $\gamma \leq \alpha = \gamma + v$, then $PF(S) = \gamma(m+n)^2 + \beta(m-n)(m+n) + v(m^2+n^2+2mn-2mn)$ implying that $(m + n)$ divides $2mn(v - m)$, so v must equal m, simplifying by $(m + n)$ we have to solve $(\gamma + 1)(m + n) = (n - 1 - \beta)(m - n)$, a contradiction. If otherwise $\alpha < \gamma = \alpha + \nu < m$, we get $PF(S) = \alpha(m+n)^2 + \beta(m-n)(m+n) + v(2mn)$, which implies that $(m+n)$ divides $2mn(v + m)$, so $v = n$. After simplifying by $(m + n)$, we need to solve $2mn = (m - \alpha - 1)(m + n) + (n - 1 - \beta)(m - n)$ from Corollary 2 we see that α and β cannot be both nonnegative, a contradiction. \Box

Now from Remark 1 and Theorem 2.1 we can give the Apéry set for $\langle m^2 - n^2, m^2 + n^2, 2mn \rangle$.

Lemma 2.2. Let $S = \langle m^2 - n^2, m^2 + n^2, 2mn \rangle$, then $Ap(S, 2mn) = \{a(m^2 + n^2) + b(m^2 - n^2),$ 0 ≤ a ≤ (m − 1) and 0 ≤ b ≤ (n − 1) or $0 \le a \le n - 1$ and $n \le b \le m + n - 1$ } and

$$
g(S) = \frac{m^3 - n^3 + 1}{2} + m^2 n - m^2 - mn.
$$

A numerical semigroup S is symmetric, respectively pseudo-symmetric, if $T(S) = \{F(S)\}\,$, respectively $T(S) = \{F(S), \frac{F(S)}{2}$ $\{\frac{(S)}{2}\}$. For $\langle m^2-n^2,m^2+n^2,2mn\rangle$

$$
2 \cdot PF(S) - F(S) > (m - 3) \cdot (m^{2} + n^{2}),
$$

by Theorem 2.1's expressions, a Pythagorean triplet semigroup is not free nor symmetric and it is Arf and pseudo-symmetric if $m = 2 = n + 1$.

Acknowledgements

Thanks to reviewers for constructive advice.

References

- [1] Fel, L. G. (2006). Frobenius Problem for Semigroups $S(d_1, d_2, d_3)$, *Funct. Anal. Other Math.*, 1, 119–157.
- [2] Fröberg, R., Gottlieb, C., & Hägkvist, R. (1987). On numerical semigroups, Semigroup *Forum*, 35, 63–83.
- [3] Gil, B. K., Han, J.-W., Kim, T. H., Koo, R. H., Lee, B. W., Lee, J., Nam, K. S., Park, H. W., & Park P.-S. (2015). Frobenius numbers of Pythagorean triples, *Int. J. Number Theory*, 11, 613–619.
- [4] Johnson, S. M. (1960). A Linear Diophantine Problem, *Can. J. Math.*, 12(2), 390–398.
- [5] Ramírez Alfonsín, J. L. (2005). *The Diophantine Frobenius Problem*, Oxford Univ. Press, Oxford.
- [6] Rosales, J. C., & Branco, M. B. (2011). The Frobenius problem for numerical semigroups, *Journal of Number Theory*, 131, 2310–2319.
- [7] Rosales, J. C., & García-Sánchez, P. A. (2004). Numerical semigroups with embedding dimension three, *Archiv der Mathematik*, 83, 488–496.
- [8] Rosales, J. C., & García-Sánchez, P. A. (2009). *Numerical semigroups*, Springer, New York.
- [9] Tripathi, A., & Elizeche, E. F. (2020). On numerical semigroups generated by primitive Pythagorean triplets, *Integers*, 20, A75.